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Abstract

Once released, treebanks tend to remain
unchanged despite any shortcomings in
their depth of linguistic analysis or cover-
age of specific phenomena. Instead, sepa-
rate resources are created to address such
problems. In this paper we show how to
improve the quality of a treebank, by in-
tegrating resources and implementing im-
proved analyses for specific constructions.

We demonstrate this rebanking process
by creating an updated version of CCG-
bank that includes the predicate-argument
structure of both verbs and nouns, base-
NP brackets, verb-particle constructions,
and restrictive and non-restrictive nominal
modifiers; and evaluate the impact of these
changes on a statistical parser.

1 Introduction

Progress in natural language processing relies on
direct comparison on shared data, discouraging
improvements to the evaluation data. This means
that we often spend years competing to reproduce
partially incorrect annotations. It also encourages
us to approach related problems as discrete tasks,
when a new data set that adds deeper information
establishes a new incompatible evaluation.

Direct comparison has been central to progress
in statistical parsing, but it has also caused prob-
lems. Treebanking is a difficult engineering task:
coverage, cost, consistency and granularity are all
competing concerns that must be balanced against
each other when the annotation scheme is devel-
oped. The difficulty of the task means that we
ought to view treebanking as an ongoing process
akin to grammar development, such as the many
years of work on the ERG (Flickinger, 2000).

This paper demonstrates how a treebank can be
rebanked to incorporate novel analyses and infor-

mation from existing resources. We chose to work
on CCGbank (Hockenmaier and Steedman, 2007),
a Combinatory Categorial Grammar (Steedman,
2000) treebank acquired from the Penn Treebank
(Marcus et al., 1993). This work is equally ap-
plicable to the corpora described by Miyao et al.
(2004), Shen et al. (2008) or Cahill et al. (2008).

Our first changes integrate four previously sug-
gested improvements to CCGbank. We then de-
scribe a novel CCG analysis of NP predicate-
argument structure, which we implement using
NomBank (Meyers et al., 2004). Our analysis al-
lows the distinction between core and peripheral
arguments to be represented for predicate nouns.

With this distinction, an entailment recognition
system could recognise that Google’s acquisition
of YouTube entailed Google acquired YouTube, be-
cause equivalent predicate-argument structures are
built for both. Our analysis also recovers non-
local dependencies mediated by nominal predi-
cates; for instance, Google is the agent of acquire
in Google’s decision to acquire YouTube.

The rebanked corpus extends CCGbank with:

1. NP brackets from Vadas and Curran (2008);

2. Restored and normalised punctuation;

3. Propbank-derived verb subcategorisation;

4. Verb particle structure drawn from Propbank;

5. Restrictive and non-restrictive adnominals;

6. Reanalyses to promote better head-finding;

7. Nombank-derived noun subcategorisation.

Together, these changes modify 30% of the la-
belled dependencies in CCGbank, demonstrating
how multiple resources can be brought together in
a single, richly annotated corpus. We then train
and evaluate a parser for these changes, to investi-
gate their impact on the accuracy of a state-of-the-
art statistical CCG parser.
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2 Background and motivation

Formalisms like HPSG (Pollard and Sag, 1994),
LFG (Kaplan and Bresnan, 1982), and CCG (Steed-
man, 2000) are linguistically motivated in the
sense that they attempt to explain and predict
the limited variation found in the grammars of
natural languages. They also attempt to spec-
ify how grammars construct semantic representa-
tions from surface strings, which is why they are
sometimes referred to as deep grammars. Anal-
yses produced by these formalisms can be more
detailed than those produced by skeletal phrase-
structure parsers, because they produce fully spec-
ified predicate-argument structures.

Unfortunately, statistical parsers do not take ad-
vantage of this potential detail. Statistical parsers
induce their grammars from corpora, and the
corpora for linguistically motivated formalisms
currently do not contain high quality predicate-
argument annotation, because they were derived
from the Penn Treebank (PTB Marcus et al., 1993).
Manually written grammars for these formalisms,
such as the ERG HPSG grammar (Flickinger, 2000)
and the XLE LFG grammar (Butt et al., 2006)
produce far more detailed and linguistically cor-
rect analyses than any English statistical parser,
due to the comparatively coarse-grained annota-
tion schemes of the corpora statistical parsers are
trained on. While rule-based parsers use gram-
mars that are carefully engineered (e.g. Oepen
et al., 2004), and can be updated to reflect the best
linguistic analyses, statistical parsers have so far
had to take what they are given.

What we suggest in this paper is that a tree-
bank’s grammar need not last its lifetime. For a
start, there have been many annotations of the PTB

that add much of the extra information needed to
produce very high quality analyses for a linguis-
tically motivated grammar. There are also other
transformations which can be made with no addi-
tional information. That is, sometimes the existing
trees allow transformation rules to be written that
improve the quality of the grammar.

Linguistic theories are constantly changing,
which means that there is a substantial lag between
what we (think we) understand of grammar and
the annotations in our corpora. The grammar en-
gineering process we describe, which we dub re-
banking, is intended to reduce this gap, tightening
the feedback loop between formal and computa-
tional linguistics.

2.1 Combinatory Categorial Grammar
Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a lexicalised grammar, which means
that all grammatical dependencies are specified
in the lexical entries and that the production of
derivations is governed by a small set of rules.

Lexical categories are either atomic (S , NP ,
PP , N ), or a functor consisting of a result, direc-
tional slash, and argument. For instance, in might
head a PP -typed constituent with one NP -typed
argument, written as PP/NP .

A category can have a functor as its result, so
that a word can have a complex valency structure.
For instance, a verb phrase is represented by the
category S\NP : it is a function from a leftward
NP (a subject) to a sentence. A transitive verb
requires an object to become a verb phrase, pro-
ducing the category (S\NP)/NP .

A CCG grammar consists of a small number of
schematic rules, called combinators. CCG extends
the basic application rules of pure categorial gram-
mar with (generalised) composition rules and type
raising. The most common rules are:

X /Y Y ⇒ X (>)
Y X \Y ⇒ X (<)

X /Y Y /Z ⇒ X /Z (>B)
Y \Z X \Y ⇒ X \Z (<B)
Y /Z X \Y ⇒ X /Z (<B×)

CCGbank (Hockenmaier and Steedman, 2007)
extends this compact set of combinatory rules with
a set of type-changing rules, designed to strike a
better balance between sparsity in the category set
and ambiguity in the grammar. We mark type-
changing rules TC in our derivations.

In wide-coverage descriptions, categories are
generally modelled as typed-feature structures
(Shieber, 1986), rather than atomic symbols. This
allows the grammar to include a notion of headed-
ness, and to unify under-specified features.

We occasionally must refer to these additional
details, for which we employ the following no-
tation. Features are annotated in square-brackets,
e.g. S [dcl ]. Head-finding indices are annotated on
categories in subscripts, e.g. (NPy\NPy)/NPz .
The index of the word the category is assigned to
is left implicit. We will sometimes also annotate
derivations with the heads of categories as they are
being built, to help the reader keep track of what
lexemes have been bound to which categories.
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3 Combining CCGbank corrections

There have been a few papers describing correc-
tions to CCGbank. We bring these corrections to-
gether for the first time, before building on them
with our further changes.

3.1 Compound noun brackets
Compound noun phrases can nest inside each
other, creating bracketing ambiguities:

(1) (crude oil) prices

(2) crude (oil prices)

The structure of such compound noun phrases
is left underspecified in the Penn Treebank (PTB),
because the annotation procedure involved stitch-
ing together partial parses produced by the Fid-
ditch parser (Hindle, 1983), which produced flat
brackets for these constructions. The bracketing
decision was also a source of annotator disagree-
ment (Bies et al., 1995).

When Hockenmaier and Steedman (2002) went
to acquire a CCG treebank from the PTB, this posed
a problem. There is no equivalent way to leave
these structures under-specified in CCG, because
derivations must be binary branching. They there-
fore employed a simple heuristic: assume all such
structures branch to the right. Under this analysis,
crude oil is not a constituent, producing an incor-
rect analysis as in (1).

Vadas and Curran (2007) addressed this by
manually annotating all of the ambiguous noun
phrases in the PTB, and went on to use this infor-
mation to correct 20,409 dependencies (1.95%) in
CCGbank (Vadas and Curran, 2008). Our changes
build on this corrected corpus.

3.2 Punctuation corrections
The syntactic analysis of punctuation is noto-
riously difficult, and punctuation is not always
treated consistently in the Penn Treebank (Bies
et al., 1995). Hockenmaier (2003) determined
that quotation marks were particularly problem-
atic, and therefore removed them from CCGbank
altogether. We use the process described by Tse
and Curran (2008) to restore the quotation marks
and shift commas so that they always attach to the
constituent to their left. This allows a grammar
rule to be removed, preventing a great deal of spu-
rious ambiguity and improving the speed of the
C&C parser (Clark and Curran, 2007) by 37%.

3.3 Verb predicate-argument corrections
Semantic role descriptions generally recognise a
distinction between core arguments, whose role
comes from a set specific to the predicate, and pe-
ripheral arguments, who have a role drawn from a
small, generic set. This distinction is represented
in the surface syntax in CCG, because the category
of a verb must specify its argument structure. In
(3) as a director is annotated as a complement; in
(4) it is an adjunct:

(3) He
NP

joined
(S\NP)/PP

as a director
PP

(4) He
NP

joined
S\NP

as a director
(S\NP)\(S\NP)

CCGbank contains noisy complement and ad-
junct distinctions, because they were drawn from
PTB function labels which imperfectly represent
the distinction. In our previous work we used
Propbank (Palmer et al., 2005) to convert 1,543
complements to adjuncts and 13,256 adjuncts to
complements (Honnibal and Curran, 2007). If a
constituent such as as a director received an ad-
junct category, but was labelled as a core argu-
ment in Propbank, we changed it to a comple-
ment, using its head’s part-of-speech tag to infer
its constituent type. We performed the equivalent
transformation to ensure all peripheral arguments
of verbs were analysed as adjuncts.

3.4 Verb-particle constructions
Propbank also offers reliable annotation of verb-
particle constructions. This was not available in
the PTB, so Hockenmaier and Steedman (2007)
annotated all intransitive prepositions as adjuncts:

(5) He
NP

woke
S\NP

up
(S\NP)\(S\NP)

We follow Constable and Curran (2009) in ex-
ploiting the Propbank annotations to add verb-
particle distinctions to CCGbank, by introducing a
new atomic category PT for particles, and chang-
ing their status from adjuncts to complements:

(6) He
NP

woke
(S\NP)/PT

up
PT

This analysis could be improved by adding extra
head-finding logic to the verbal category, to recog-
nise the multi-word expression as the head.
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Rome ′s gift of peace to Europe

NP (NP/(N /PP))\NP (N /PP)/PP)/PP PP/NP NP PP/NP NP
< > >

N /(N /PP) PP PP
>

(N /PP)/PP
>

N /PP
>

NP

Figure 1: Deverbal noun predicate with agent, patient and beneficiary arguments.

4 Noun predicate-argument structure

Many common nouns in English can receive
optional complements and adjuncts, realised by
prepositional phrases, genitive determiners, com-
pound nouns, relative clauses, and for some nouns,
complementised clauses. For example, deverbal
nouns generally have argument structures similar
to the verbs they are derived from:

(7) Rome’s destruction of Carthage

(8) Rome destroyed Carthage

The semantic roles of Rome and Carthage are the
same in (7) and (8), but the noun cannot case-
mark them directly, so of and the genitive clitic
are pressed into service. The semantic role de-
pends on both the predicate and subcategorisation
frame:

(9) Carthage’sp destructionPred.

(10) Rome’sa destructionPred. of Carthagep

(11) Rome’sa giftPred.

(12) Rome’sa giftPred. of peacep to Europeb

In (9), the genitive introduces the patient, but
when the patient is supplied by the PP, it instead
introduces the agent. The mapping differs for gift,
where the genitive introduces the agent.

Peripheral arguments, which supply generically
available modifiers of time, place, cause, quality
etc, can be realised by pre- and post-modifiers:

(13) The portrait in the Louvre

(14) The fine portrait

(15) The Louvre’s portraits

These are distinct from core arguments because
their interpretation does not depend on the pred-
icate. The ambiguity can be seen in an NP such as
The nobleman’s portrait, where the genitive could
mark possession (peripheral), or it could introduce
the patient (core). The distinction between core
and peripheral arguments is particularly difficult
for compound nouns, as pre-modification is very
productive in English.

4.1 CCG analysis
We designed our analysis for transparency be-
tween the syntax and the predicate-argument
structure, by stipulating that all and only the core
arguments should be syntactic arguments of the
predicate’s category. This is fairly straightforward
for arguments introduced by prepositions:

destruction of Carthage

N /PPy PPy/NPy NP
>

PPCarthage
>

Ndestruction

In our analysis, the head of of Carthage is
Carthage, as of is assumed to be a semantically
transparent case-marker. We apply this analysis
to prepositional phrases that provide arguments to
verbs as well — a departure from CCGbank.

Prepositional phrases that introduce peripheral
arguments are analysed as syntactic adjuncts:

The war in 149 B.C.

NPy/Ny N (Ny\Ny)/NPz NP
>

(Ny\Ny)in
<

Nwar
>

NPwar

Adjunct prepositional phrases remain headed by
the preposition, as it is the preposition’s semantics
that determines whether they function as temporal,
causal, spatial etc. arguments. We follow Hocken-
maier and Steedman (2007) in our analysis of gen-
itives which realise peripheral arguments, such as
the literal possessive:

Rome ′s aqueducts

NP (NPy/Ny)\NPz N
<

(NPy/Ny)′s
>

NPaqueducts

Arguments introduced by possessives are a lit-
tle trickier, because the genitive also functions as
a determiner. We achieve this by having the noun
subcategorise for the argument, which we type
PP , and having the possessive subcategorise for
the unsaturated noun to ultimately produce an NP :
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Google ′s decision to buy YouTube

NP (NPy/(Ny/PPz )y)\NPz (N /PPy)/(S [to]z\NPy)z (S [to]y\NPz )y/(S [b]y\NPz )y (S [b]\NPy)/NPz NP
< >

NPy/(Ny/PPGoogle)y S [b]\NPy
>B >

NPdecision/(S [to]y\NPGoogle)y S [to]buy\NPy
>

NP

Figure 2: The coindexing on decision’s category allows the hard-to-reach agent of buy to be recovered. A non-normal form
derivation is shown so that instantiated variables can be seen.

Carthage ′s destruction

NP (NPy/(Ny/PPz )y)\NPz N /PPy
<

(NPy/(Ny/PPCarthage)y)′s
>

NPdestruction

In this analysis, we regard the genitive clitic as a
case-marker that performs a movement operation
roughly analogous to WH-extraction. Its category
is therefore similar to the one used in object ex-
traction, (N \N )/(S/NP). Figure 1 shows an ex-
ample with multiple core arguments.

This analysis allows recovery of verbal argu-
ments of nominalised raising and control verbs, a
construction which both Gildea and Hockenmaier
(2003) and Boxwell and White (2008) identify as a
problem case when aligning Propbank and CCG-
bank. Our analysis accommodates this construc-
tion effortlessly, as shown in Figure 2. The cate-
gory assigned to decision can coindex the missing
NP argument of buy with its own PP argument.
When that argument is supplied by the genitive,
it is also supplied to the verb, buy, filling its de-
pendency with its agent, Google. This argument
would be quite difficult to recover using a shallow
syntactic analysis, as the path would be quite long.
There are 494 such verb arguments mediated by
nominal predicates in Sections 02-21.

These analyses allow us to draw comple-
ment/adjunct distinctions for nominal predicates,
so that the surface syntax takes us very close to
a full predicate-argument analysis. The only in-
formation we are not specifying in the syntac-
tic analysis are the role labels assigned to each
of the syntactic arguments. We could go further
and express these labels in the syntax, produc-
ing categories like (N /PP{0}y)/PP{1}z and
(N /PP{1}y)/PP{0}z , but we expect that this
would cause sparse data problems given the lim-
ited size of the corpus. This experiment would be
an interesting subject of future work.

The only local core arguments that we do not
annotate as syntactic complements are compound
nouns, such as decision makers. We avoided these

arguments because of the productivity of noun-
noun compounding in English, which makes these
argument structures very difficult to recover.

We currently do not have an analysis that allows
support verbs to supply noun arguments, so we
do not recover any of the long-range dependency
structures described by Meyers et al. (2004).

4.2 Implementation and statistics
Our analysis requires semantic role labels for each
argument of the nominal predicates in the Penn
Treebank — precisely what NomBank (Meyers
et al., 2004) provides. We can therefore draw our
distinctions using the process described in our pre-
vious work, Honnibal and Curran (2007).

NomBank follows the same format as Prop-
bank, so the procedure is exactly the same. First,
we align CCGbank and the Penn Treebank, and
produce a version of NomBank that refers to CCG-
bank nodes. We then assume that any preposi-
tional phrase or genitive determiner annotated as
a core argument in NomBank should be analysed
as a complement, while peripheral arguments and
adnominals that receive no semantic role label at
all are analysed as adjuncts.

We converted 34,345 adnominal prepositional
phrases to complements, leaving 18,919 as ad-
juncts. The most common preposition converted
was of, which was labelled as a core argument
99.1% of the 19,283 times it occurred as an ad-
nominal. The most common adjunct preposition
was in, which realised a peripheral argument in
59.1% of its 7,725 occurrences.

The frequent prepositions were more skewed to-
wards core arguments. 73% of the occurrences of
the 5 most frequent prepositions (of, in, for, on and
to) realised peripheral arguments, compared with
53% for other prepositions.

Core arguments were also more common than
peripheral arguments for possessives. There are
20,250 possessives in the corpus, of which 75%
were converted to complements. The percentage
was similar for both personal pronouns (such as
his) and genitive phrases (such as the boy’s).
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5 Adding restrictivity distinctions

Adnominals can have either a restrictive or a non-
restrictive (appositional) interpretation, determin-
ing the potential reference of the noun phrase
it modifies. This ambiguity manifests itself in
whether prepositional phrases, relative clauses and
other adnominals are analysed as modifiers of
either N or NP, yielding a restrictive or non-
restrictive interpretation respectively.

In CCGbank, all adnominals attach to NPs,
producing non-restrictive interpretations. We
therefore move restrictive adnominals to N nodes:

All staff on casual contracts

NP/N N (N \N )/NP N /N N
>

N
TC

NP
>

N \N
<

N
>

NP
This corrects the previous interpretation, which

stated that there were no permanent staff.

5.1 Implementation and statistics
The Wall Street Journal’s style guide mandates
that this attachment ambiguity be managed by
bracketing non-restrictive relatives with commas
(Martin, 2002, p. 82), as in casual staff, who have
no health insurance, support it. We thus use punc-
tuation to make the attachment decision.

All NP\NP modifiers that are not preceded by
punctuation were moved to the lowest N node
possible and relabelled N \N . We select the low-
est (i.e. closest to leaf) N node because some ad-
jectives, such as present or former, require scope
over the qualified noun, making it safer to attach
the adnominal first.

Some adnominals in CCGbank are created by
the S\NP → NP\NP unary type-changing rule,
which transforms reduced relative clauses. We in-
troduce a S\NP → N \N in its place, and add a
binary rule cued by punctuation to handle the rela-
tively rare non-restrictive reduced relative clauses.

The rebanked corpus contains 34,134 N \N re-
strictive modifiers, and 9,784 non-restrictive mod-
ifiers. Most (61%) of the non-restrictive modifiers
were relative clauses.

6 Reanalysing partitive constructions

True partitive constructions consist of a quantifier
(16), a cardinal (17) or demonstrative (18) applied
to an NP via of. There are similar constructions
headed by common nouns, as in (19):

(16) Some of us

(17) Four of our members

(18) Those of us who smoke

(19) A glass of wine

We regard the common noun partitives as headed
by the initial noun, such as glass, because this
noun usually controls the number agreement. We
therefore analyse these cases as nouns with prepo-
sitional arguments. In (19), glass would be as-
signed the category N /PP .

True partitive constructions are different, how-
ever: they are always headed by the head of the NP
supplied by of. The construction is quite common,
because it provides a way to quantify or apply two
different determiners.

Partitive constructions are not given special
treatment in the PTB, and were analysed as noun
phrases with a PP modifier in CCGbank:

Four of our members

NP (NPy\NPy)/NPz NPy/Ny N
>

NPmembers
>

(NPy\NPy)of
<

NPFour

This analysis does not yield the correct seman-
tics, and may even hurt parser performance, be-
cause the head of the phrase is incorrectly as-
signed. We correct this with the following anal-
ysis, which takes the head from the NP argument
of the PP:

Four of our members

NPy/PPy PPy/NPy NPy/Ny N
>

NPmembers
>

PPmembers
>

NPmembers

The cardinal is given the category NP/PP ,
in analogy with the standard determiner category
which is a function from a noun to a noun phrase
(NP/N ).
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Corpus L. DEPS U. DEPS CATS

+NP brackets 97.2 97.7 98.5
+Quotes 97.2 97.7 98.5
+Propbank 93.0 94.9 96.7
+Particles 92.5 94.8 96.2
+Restrictivity 79.5 94.4 90.6
+Part. Gen. 76.1 90.1 90.4
+NP Pred-Arg 70.6 83.3 84.8

Table 1: Effect of the changes on CCGbank, by percentage
of dependencies and categories left unchanged in Section 00.

6.1 Implementation and Statistics
We detect this construction by identifying NPs
post-modified by an of PP. The NP’s head must
either have the POS tag CD, or be one of the follow-
ing words, determined through manual inspection
of Sections 02-21:

all, another, average, both, each, another, any,
anything, both, certain, each, either, enough, few,
little, most, much, neither, nothing, other, part,
plenty, several, some, something, that, those.

Having identified the construction, we simply rela-
bel the NP to NP/PP , and the NP\NP adnom-
inal to PP . We identified and reanalysed 3,010
partitive genitives in CCGbank.

7 Similarity to CCGbank

Table 1 shows the percentage of labelled depen-
dencies (L. Deps), unlabelled dependencies (U.
Deps) and lexical categories (Cats) that remained
the same after each set of changes.

A labelled dependency is a 4-tuple consisting of
the head, the argument, the lexical category of the
head, and the argument slot that the dependency
fills. For instance, the subject fills slot 1 and the
object fills slot 2 on the transitive verb category
(S\NP)/NP . There are more changes to labelled
dependencies than lexical categories because one
lexical category change alters all of the dependen-
cies headed by a predicate, as they all depend on
its lexical category. Unlabelled dependencies con-
sist of only the head and argument.

The biggest changes were those described in
Sections 4 and 5. After the addition of nominal
predicate-argument structure, over 50% of the la-
belled dependencies were changed. Many of these
changes involved changing an adjunct to a com-
plement, which affects the unlabelled dependen-
cies because the head and argument are inverted.

8 Lexicon statistics

Our changes make the grammar sensitive to new
distinctions, which increases the number of lexi-
cal categories required. Table 2 shows the number

Corpus CATS Cats ≥ 10 CATS/WORD

CCGbank 1286 425 8.6
+NP brackets 1298 429 8.9
+Quotes 1300 431 8.8
+Propbank 1342 433 8.9
+Particles 1405 458 9.1
+Restrictivity 1447 471 9.3
+Part. Gen. 1455 474 9.5
+NP Pred-Arg 1574 511 10.1

Table 2: Effect of the changes on the size of the lexicon.

of lexical categories (Cats), the number of lexical
categories that occur at least 10 times in Sections
02-21 (Cats≥ 10), and the average number of cat-
egories available for assignment to each token in
Section 00 (Cats/Word). We followed Clark and
Curran’s (2007) process to determine the set of
categories a word could receive, which includes
a part-of-speech back-off for infrequent words.

The lexicon steadily grew with each set of
changes, because each added information to the
corpus. The addition of quotes only added two cat-
egories (LQU and RQU ), and the addition of the
quote tokens slightly decreased the average cate-
gories per word. The Propbank and verb-particle
changes both introduced rare categories for com-
plicated, infrequent argument structures.

The NP predicate-argument structure modifica-
tions added the most information. Head nouns
were previously guaranteed the category N in
CCGbank; possessive clitics always received the
category (NP/N )\NP ; and possessive personal
pronouns were always NP/N . Our changes in-
troduce new categories for these frequent tokens,
which meant a substantial increase in the number
of possible categories per word.

9 Parsing Evaluation

Some of the changes we have made correct prob-
lems that have caused the performance of a sta-
tistical CCG parser to be over-estimated. Other
changes introduce new distinctions, which a parser
may or may not find difficult to reproduce. To in-
vestigate these issues, we trained and evaluated the
C&C CCG parser on our rebanked corpora.

The experiments were set up as follows. We
used the highest scoring configuration described
by Clark and Curran (2007), the hybrid depen-
dency model, using gold-standard POS tags. We
followed Clark and Curran in excluding sentences
that could not be parsed from the evaluation. All
models obtained similar coverage, between 99.0
and 99.3%. The parser was evaluated using depen-
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WSJ 00 WSJ 23
Corpus LF UF CAT LF UF CAT

CCGbank 87.2 92.9 94.1 87.7 93.0 94.4
+NP brackets 86.9 92.8 93.8 87.3 92.8 93.9
+Quotes 86.8 92.7 93.9 87.1 92.6 94.0
+Propbank 86.7 92.6 94.0 87.0 92.6 94.0
+Particles 86.4 92.5 93.8 86.8 92.6 93.8
All Rebanking 84.2 91.2 91.9 84.7 91.3 92.2

Table 3: Parser evaluation on the rebanked corpora.
Corpus Rebanked CCGbank

LF UF LF UF

+NP brackets 86.45 92.36 86.52 92.35
+Quotes 86.57 92.40 86.52 92.35
+Propbank 87.76 92.96 87.74 92.99
+Particles 87.50 92.77 87.67 92.93
All Rebanking 87.23 92.71 88.02 93.51

Table 4: Comparison of parsers trained on CCGbank and
the rebanked corpora, using dependencies that occur in both.

dencies generated from the gold-standard deriva-
tions (Boxwell, p.c., 2010).

Table 3 shows the accuracy of the parser on Sec-
tions 00 and 23. The parser scored slightly lower
as the NP brackets, Quotes, Propbank and Parti-
cles corrections were added. This apparent decline
in performance is at least partially an artefact of
the evaluation. CCGbank contains some depen-
dencies that are trivial to recover, because Hock-
enmaier and Steedman (2007) was forced to adopt
a strictly right-branching analysis for NP brackets.

There was a larger drop in accuracy on the
fully rebanked corpus, which included our anal-
yses of restrictivity, partitive constructions and
noun predicate-argument structure. This might
also be explained by the evaluation, as the re-
banked corpus includes much more fine-grained
distinctions. The labelled dependencies evaluation
is particularly sensitive to this, as a single category
change affects multiple dependencies. This can be
seen in the smaller gap in category accuracy.

We investigated whether the differences in per-
formance were due to the different evaluation data
by comparing the parsers’ performance against the
original parser on the dependencies they agreed
upon, to allow direct comparison. To do this, we
extracted the CCGbank intersection of each cor-
pus’s Section 00 dependencies.

Table 4 compares the labelled and unlabelled re-
call of the rebanked parsers we trained against the
CCGbank parser on these intersections. Note that
each row refers to a different intersection, so re-
sults are not comparable between rows. This com-
parison shows that the declines in accuracy seen in
Table 3 were largely confined to the corrected de-

pendencies. The parser’s performance remained
fairly stable on the dependencies left unchanged.

The rebanked parser performed 0.8% worse
than the CCGbank parser on the intersection de-
pendencies, suggesting that the fine-grained dis-
tinctions we introduced did cause some sparse data
problems. However, we did not change any of
the parser’s maximum entropy features or hyper-
parameters, which are tuned for CCGbank.

10 Conclusion

Research in natural language understanding is
driven by the datasets that we have available. The
most cited computational linguistics work to date
is the Penn Treebank (Marcus et al., 1993)1. Prop-
bank (Palmer et al., 2005) has also been very
influential since its release, and NomBank has
been used for semantic dependency parsing in the
CoNLL 2008 and 2009 shared tasks.

This paper has described how these resources
can be jointly exploited using a linguistically moti-
vated theory of syntax and semantics. The seman-
tic annotations provided by Propbank and Nom-
Bank allowed us to build a corpus that takes much
greater advantage of the semantic transparency
of a deep grammar, using careful analyses and
phenomenon-specific conversion rules.

The major areas of CCGbank’s grammar left to
be improved are the analysis of comparatives, and
the analysis of named entities. English compar-
atives are diverse and difficult to analyse. Even
the XTAG grammar (Doran et al., 1994), which
deals with the major constructions of English in
enviable detail, does not offer a full analysis of
these phenomena. Named entities are also difficult
to analyse, as many entity types obey their own
specific grammars. This is another example of a
phenomenon that could be analysed much better
in CCGbank using an existing resource, the BBN

named entity corpus.
Our rebanking has substantially improved

CCGbank, by increasing the granularity and lin-
guistic fidelity of its analyses. We achieved this
by exploiting existing resources and crafting novel
analyses. The process we have demonstrated can
be used to train a parser that returns dependencies
that abstract away as much surface syntactic vari-
ation as possible — including, now, even whether
the predicate and arguments are expressed in a
noun phrase or a full clause.

1http://clair.si.umich.edu/clair/anthology/rankings.cgi
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