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Abstract 

We present a simple semi-supervised 

relation extraction system with large-scale 
word clustering. We focus on 

systematically exploring the effectiveness 

of different cluster-based features. We also 

propose several statistical methods for 
selecting clusters at an appropriate level of 

granularity. When training on different 

sizes of data, our semi-supervised approach 
consistently outperformed a state-of-the-art 

supervised baseline system. 

1 Introduction 

Relation extraction is an important information 

extraction task in natural language processing 
(NLP), with many practical applications. The goal 

of relation extraction is to detect and characterize 

semantic relations between pairs of entities in text. 
For example, a relation extraction system needs to 

be able to extract an Employment relation between 

the entities US soldier and US in the phrase US 
soldier.  

Current supervised approaches for tackling this 

problem, in general, fall into two categories: 
feature based and kernel based. Given an entity 

pair and a sentence containing the pair, both 

approaches usually start with multiple level 
analyses of the sentence such as tokenization, 

partial or full syntactic parsing, and dependency 

parsing. Then the feature based method explicitly 
extracts a variety of lexical, syntactic and semantic 

features for statistical learning, either generative or 

discriminative (Miller et al., 2000; Kambhatla, 

2004; Boschee et al., 2005; Grishman et al., 2005; 
Zhou et al., 2005; Jiang and Zhai, 2007). In 

contrast, the kernel based method does not 

explicitly extract features; it designs kernel 
functions over the structured sentence 

representations (sequence, dependency or parse 

tree) to capture the similarities between different 
relation instances (Zelenko et al., 2003; Bunescu 

and Mooney, 2005a; Bunescu and Mooney, 2005b; 

Zhao and Grishman, 2005; Zhang et al., 2006; 
Zhou et al., 2007; Qian et al., 2008). Both lines of 

work depend on effective features, either explicitly 

or implicitly.  
The performance of a supervised relation 

extraction system is usually degraded by the 

sparsity of lexical features. For example, unless the 
example US soldier has previously been seen in the 

training data, it would be difficult for both the 

feature based and the kernel based systems to 
detect whether there is an Employment relation or 

not. Because the syntactic feature of the phrase US 

soldier is simply a noun-noun compound which is 
quite general, the words in it are crucial for 

extracting the relation. 

This motivates our work to use word clusters as 
additional features for relation extraction. The 

assumption is that even if the word soldier may 

never have been seen in the annotated Employment 
relation instances, other words which share the 

same cluster membership with soldier such as 

president and ambassador may have been 
observed in the Employment instances. The 

absence of lexical features can be compensated by 
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the cluster features. Moreover, word clusters may 

implicitly correspond to different relation classes. 
For example, the cluster of president may be 

related to the Employment relation as in US 

president while the cluster of businessman may be 
related to the Affiliation relation as in US 

businessman.   

The main contributions of this paper are: we 
explore the cluster-based features in a systematic 

way and propose several statistical methods for 

selecting effective clusters.  We study the impact 
of the size of training data on cluster features and 

analyze the performance improvements through an 

extensive experimental study. 
The rest of this paper is organized as follows: 

Section 2 presents related work and Section 3 

provides the background of the relation extraction 
task and the word clustering algorithm. Section 4 

describes in detail a state-of-the-art supervised 

baseline system. Section 5 describes the cluster-
based features and the cluster selection methods. 

We present experimental results in Section 6 and 

conclude in Section 7.  

2 Related Work 

The idea of using word clusters as features in 
discriminative learning was pioneered by Miller et 

al. (2004), who augmented name tagging training 

data with hierarchical word clusters generated by 
the Brown clustering algorithm (Brown et al., 1992) 

from a large unlabeled corpus. They used different 

thresholds to cut the word hierarchy to obtain 
clusters of various granularities for feature 

decoding. Ratinov and Roth (2009) and Turian et 

al. (2010) also explored this approach for name 
tagging. Though all of them used the same 

hierarchical word clustering algorithm for the task 

of name tagging and reported improvements, we 
noticed that the clusters used by Miller et al. (2004) 

were quite different from that of Ratinov and Roth 

(2009) and Turian et al. (2010). To our knowledge, 
there has not been work on selecting clusters in a 

principled way. We move a step further to explore 

several methods in choosing effective clusters. A 
second difference between this work and the above 

ones is that we utilize word clusters in the task of 

relation extraction which is very different from 
sequence labeling tasks such as name tagging and 

chunking. 

Though Boschee et al. (2005) and Chan and 

Roth (2010) used word clusters in relation 
extraction, they shared the same limitation as the 

above approaches in choosing clusters. For 

example, Boschee et al. (2005) chose clusters of 
different granularities and Chan and Roth (2010) 

simply used a single threshold for cutting the word 

hierarchy.  Moreover, Boschee et al. (2005) only 
augmented the predicate (typically a verb or a 

noun of the most importance in a relation in their 

definition) with word clusters while Chan and Roth 
(2010) performed this for any lexical feature 

consisting of a single word. In this paper, we 

systematically explore the effectiveness of adding 
word clusters to different lexical features.  

3 Background  

3.1 Relation Extraction 

One of the well defined relation extraction tasks is 
the Automatic Content Extraction

1
 (ACE) program 

sponsored by the U.S. government. ACE 2004 

defined 7 major entity types: PER (Person), ORG 
(Organization), FAC (Facility), GPE (Geo-Political 

Entity: countries, cities, etc.), LOC (Location), 

WEA (Weapon) and VEH (Vehicle). An entity has 
three types of mention: NAM (proper name), NOM 

(nominal) or PRO (pronoun). A relation was 

defined over a pair of entity mentions within a 
single sentence. The 7 major relation types with 

examples are shown in Table 1. ACE 2004 also 

defined 23 relation subtypes. Following most of 
the previous work, this paper only focuses on 

relation extraction of major types. 
Given a relation instance ( , , )i jx s m m , where 

im  and jm  are a pair of mentions and s  is the 
sentence containing the pair, the goal is to learn a 
function which maps the instance x to a type c, 
where c is one of the 7 defined relation types or the 
type Nil (no relation exists). There are two 
commonly used learning paradigms for relation 
extraction: 

Flat: This strategy performs relation detection 
and classification at the same time. One multi-class 
classifier is trained to discriminate among the 7 
relation types plus the Nil type. 

Hierarchical: This one separates relation 
detection from relation classification. One binary 

                                                        
1 Task definition: http://www.itl.nist.gov/iad/894.01/tests/ace/ 
ACE guidelines: http://projects.ldc.upenn.edu/ace/ 
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classifier is trained first to distinguish between 
relation instances and non-relation instances. This 
can be done by grouping all the instances of the 7 
relation types into a positive class and the instances 
of Nil into a negative class. Then the thresholded 
output of this binary classifier is used as training 
data for learning a multi-class classifier for the 7 
relation types (Bunescu and Mooney, 2005b). 
 

Type Example 

EMP-ORG US president 

PHYS a military base in Germany 

GPE-AFF U.S. businessman 

PER-SOC a spokesman for the senator 

DISC each of whom 

ART US helicopters 

OTHER-AFF Cuban-American people 

 
Table 1:  ACE relation types and examples from the 

annotation guideline 2 . The heads of the two entity 

mentions are marked. Types are listed in decreasing 
order of frequency of occurrence in the ACE corpus. 

3.2 Brown Word Clustering 

The Brown algorithm is a hierarchical clustering 

algorithm which initially assigns each word to its 

own cluster and then repeatedly merges the two 
clusters which cause the least loss in average 

mutual information between adjacent clusters 

based on bigram statistics.  By tracing the pairwise 
merging steps, one can obtain a word hierarchy 

which can be represented as a binary tree. A word 

can be compactly represented as a bit string by 
following the path from the root to itself in the tree, 

assigning a 0 for each left branch, and a 1 for each 

right branch. A cluster is just a branch of that tree. 
A high branch may correspond to more general 

concepts while the lower branches it includes 

might correspond to more specific ones.  
Brown et al. (1992) described an efficient 

implementation based on a greedy algorithm which 

initially assigned only the most frequent words into 
distinct clusters. It is worth pointing out that in this 

implementation each word occupies a leaf in the 

hierarchy, but each leaf might contain more than 
one word as can be seen from Table 2. The lengths 

of the bit strings also vary among different words. 
 
 

                                                        
2 http://projects.ldc.upenn.edu/ace/docs/EnglishRDCV4-3-
2.PDF 

Bit string Examples 

111011011100 US … 

1110110111011 U.S. … 

1110110110000 American … 

1110110111110110 Cuban, Pakistani, Russian …  

11111110010111 Germany, Poland, Greece …  

110111110100 businessman, journalist, reporter 

1101111101111 president, governor, premier…  

1101111101100    senator, soldier, ambassador … 

11011101110 spokesman, spokeswoman, … 

11001100 people, persons, miners, Haitians 

110110111011111 base, compound, camps, camp … 

110010111 helicopters, tanks, Marines … 

 
Table 2: An example of words and their bit string 

representations obtained in this paper. Words in bold are 

head words that appeared in Table 1. 

4 Feature Based Relation Extraction 

Given a pair of entity mentions ,i jm m  and the 
sentence containing the pair, a feature based 
system extracts a feature vector v  which contains 
diverse lexical, syntactic and semantic features. 
The goal is to learn a function which can estimate 
the conditional probability ( | )p c v , the probability 
of a relation type c given the feature vector v . The 
type with the highest probability will be output as 
the class label for the mention pair.  

We now describe a supervised baseline system 

with a very large set of features and its learning 

strategy.  

4.1 Baseline Feature Set 

We first adopted the full feature set from Zhou et 

al. (2005), a state-of-the-art feature based relation 

extraction system. For space reasons, we only 
show the lexical features as in Table 3 and refer the 

reader to the paper for the rest of the features.  

At the lexical level, a relation instance can be 
seen as a sequence of tokens which form a five 

tuple <Before, M1, Between, M2, After>. Tokens 

of the five members and the interaction between 
the heads of the two mentions can be extracted as 

features as shown in Table 3. 

In addition, we cherry-picked the following 
features which were not included in Zhou et al. 

(2005) but were shown to be quite effective for 

relation extraction. 
Bigram of the words between the two mentions: 

This was extracted by both Zhao and Grishman 

(2005) and Jiang and Zhai (2007), aiming to 
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provide more order information of the tokens 

between the two mentions. 
Patterns:  There are three types of patterns: 1) 

the sequence of the tokens between the two 

mentions as used in Boschee et al. (2005); 2) the 
sequence of the heads of the constituents between 

the two mentions as used by Grishman et al. (2005); 

3) the shortest dependency path between the two 
mentions in a dependency tree as adopted by 

Bunescu and Mooney (2005a). These patterns can 

provide more structured information of how the 
two mentions are connected.  

Title list: This is tailored for the EMP-ORG type 

of relations as the head of one of the mentions is 
usually a title. The features are decoded in a way 

similar to that of Sun (2009).  
 

Position Feature Description 

Before BM1F first word before M1 

BM1L second word before M1 

M1 WM1 bag-of-words in M1 

HM1 head3 word of M1 

Between WBNULL when no word in between 

WBFL the only word in between when 

only one word in between 

WBF first word in between when at 

least two words in between 

WBL last word in between when at 

least two words in between 

WBO other words in between except 

first and last words when at 

least three words in between 

M2 WM2 bag-of-words in M2 

HM2 head word of M2 

M12 HM12 combination of HM1 and HM2 

After AM2F  first word after M2 

AM2L  second word after M2 

 

Table 3: Lexical features for relation extraction. 

4.2 Baseline Learning Strategy 

We employ a simple learning framework that is 

similar to the hierarchical learning strategy as 
described in Section 3.1. Specifically, we first train 

a binary classifier to distinguish between relation 

instances and non-relation instances. Then rather 
than using the thresholded output of this binary 

classifier as training data, we use only the 

annotated relation instances to train a multi-class 
classifier for the 7 relation types. In the test phase, 
                                                        
3 The head word of a mention is normally set as the last word 
of the mention as in Zhou et al. (2005). 

given a test instance x , we first apply the binary 

classifier to it for relation detection; if it is detected 

as a relation instance we then apply the multi-class 

relation classifier to classify it
4
. 

5 Cluster Feature Selection 

The selection of cluster features aims to answer the 
following two questions: which lexical features 

should be augmented with word clusters to 

improve generalization accuracy? How to select 
clusters at an appropriate level of granularity? We 

will describe our solutions in Section 5.1 and 5.2. 

5.1 Cluster Feature Decoding 

While each one of the lexical features in Table 3 
used by the baseline can potentially be augmented 

with word clusters, we believe the effectiveness of 

a lexical feature with augmentation of word 
clusters should be tested either individually or 

incrementally according to a rank of its importance 

as shown in Table 4. We will show the 
effectiveness of each cluster feature in the 

experiment section. 
 

Impor- 

tance 

Lexical 

Feature 

Description of 

lexical feature 

Cluster Feature 

1 HM HM1, HM2 and 

HM12 

HM1_WC, 

HM2_WC, 

HM12_WC 

2 BagWM WM1 and WM2 BagWM_WC 

3 HC a head5 of a chunk 

in context 

HC_WC 

4 BagWC word of context BagWC_WC 

 

Table 4: Cluster features ordered by importance. 

 

The importance is based on linguistic intuitions 

and observations of the contributions of different 

lexical features from various feature based systems. 
Table 4 simplifies a relation instance as a three 

tuple <Context, M1, M2> where the Context 

includes the Before, Between and After from the 

                                                        
4 Both the binary and multi-class classifiers output normalized 
probabilities in the range [0,1]. When the binary classifier’s 
prediction probability is greater than 0.5, we take the 
prediction with the highest probability of the multi-class 
classifier as the final class label. When it is in the range 

[0.3,0.5], we only consider as the final class label the 
prediction of the multi-class classifier with a probability which 
is greater than 0.9. All other cases are taken as non-relation 
instances. 
5 The head of a chunk is defined as the last word in the chunk. 
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five tuple representation. As a relation in ACE is 

usually short, the words of the two entity mentions 
can provide more critical indications for relation 

classification than the words from the context. 

Within the two entity mentions, the head word of 
each mention is usually more important than other 

words of the mention; the conjunction of the two 

heads can provide an additional clue. And in 
general words other than the chunk head in the 

context do not contribute to establishing a 

relationship between the two entity mentions. 
The cluster based semi-supervised system works 

by adding an additional layer of lexical features 

that incorporate word clusters as shown in column 
4 of Table 4. Take the US soldier as an example, if 

we decide to use a length of 10 as a threshold to 

cut the Brown word hierarchy to generate word 
clusters, we will extract a cluster feature 

HM1_WC10=1101111101 in addition to the 

lexical feature HM1=soldier given that the full bit 
string of soldier is  1101111101100 in Table 2. 

(Note that the cluster feature is a nominal feature, 

not to be confused with an integer feature.) 

5.2 Selection of Clusters 

Given the bit string representations of all the words 

in a vocabulary, researchers usually use prefixes of 
different lengths of the bit strings to produce word 

clusters of various granularities. However, how to 

choose the set of prefix lengths in a principled way? 
This has not been answered by prior work. 

Our main idea is to learn the best set of prefix 

lengths, perhaps through the validation of their 
effectiveness on a development set of data. To our 

knowledge, previous research simply uses ad-hoc 

prefix lengths and lacks this training procedure. 
The training procedure can be extremely slow for 

reasons to be explained below. 
Formally, let l  be the set of available prefix 

lengths ranging from 1 bit to the length of the 
longest bit string in the Brown word hierarchy and 
let m  be the set of prefix lengths we want to use in 
decoding cluster features, then the problem of 
selecting effective clusters transforms to finding a 
| |m -combination of the set l which maximizes 
system performance. The training procedure can be 
extremely time consuming if we enumerate every 
possible | |m -combination of l , given that | |m  
can range from 1 to the size of l and the size of 
l equals the length of the longest bit string which is 

usually 20 when inducing 1,000 clusters using the 
Brown algorithm.                                  

One way to achieve better efficiency is to 
consider only a subset of l instead of the full set. In 
addition, we limit ourselves to use sizes 3 and 4 for 
m  for matching prior work. This keeps the cluster 
features to a manageable size considering that 
every word in your vocabulary could contribute to 
a lexical feature. For picking a subset of l , we 
propose below two statistical measures for 
computing the importance of a certain prefix 
length. 

Information Gain (IG): IG measures the 

quality or importance of a feature f by computing 
the difference between the prior entropy of classes 

C and the posterior entropy, given values V of the 

feature f (Hunt et al., 1966; Quinlan, 1986). For 
our purpose, C is the set of relation types, f is a 

cluster-based feature with a certain prefix length 

such as HM1_WC* where * means the prefix 
length and a value v is the prefix of the bit string 

representation of HM1. More formally, the IG of f 

is computed as follows: 

( ) ( ) log ( )

( ( ) ( | ) log ( | ))

c C

v V c C

IG f p c p c

p v p c v p c v



 

  

 



 
        (1) 

where the first and second terms refer to the prior 

and posterior entropies respectively. 

For each prefix length in the set l , we can 

compute its IG for a type of cluster feature and 
then rank the prefix lengths based on their IGs for 

that cluster feature. For simplicity, we rank the 

prefix lengths for a group of cluster features (a 
group is a row from column 4 in Table 4) by 

collapsing the individual cluster features into a 

single cluster feature. For example, we collapse the 
3 types: HM1_WC, HM2_WC and HM12_WC into 

a single type HM_WC for computing the IG.  

Prefix Coverage (PC): If we use a short prefix 
then the clusters produced correspond to the high 

branches in the word hierarchy and would be very 

general. The cluster features may not provide more 
informative information than the words themselves. 

Similarly, if we use a long prefix such as the length 

of the longest bit string, then maybe only a few of 
the lexical features can be covered by clusters. To 

capture this intuition, we define the PC of a prefix 

length i as below: 
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( )
( )

( )

ic

l

count f
PC i

count f
                         (2) 

where lf  stands for a lexical feature such as HM1 
and

icf  a cluster feature with prefix length i such as 
HM1_WCi, (*)count  is the number of 
occurrences of that feature in training data. 

Similar to IG, we compute PC for a group of 

cluster features, not for each individual feature. 
In our experiments, the top 10 ranked prefix 

lengths based on IG and prefix lengths with PC 

values in the range [0.4, 0.9] were used. 
In addition to the above two statistical measures, 

for comparison, we introduce another two simple 

but extreme measures for the selection of clusters. 
Use All Prefixes (UA): UA produces a cluster 

feature at every available bit length with the hope 

that the underlying supervised system can learn 
proper weights of different cluster features during 

training. For example, if the full bit representation 

of “Apple” is “000”, UA would produce three 
cluster features: prefix1=0, prefix2=00 and 

prefix3=000. Because this method does not need 

validation on the development set, it is the laziest 
but the fastest method for selecting clusters.  

Exhaustive Search (ES): ES works by trying 

every possible combination of the set l and picking 

the one that works the best for the development set. 
This is the most cautious and the slowest method 

for selecting clusters. 

6 Experiments 

In this section, we first present details of our 

unsupervised word clusters, the relation extraction 
data set and its preprocessing. We then present a 

series of experiments coupled with result analyses. 

We used the English portion of the TDT5 
corpora (LDC2006T18) as our unlabeled data for 

inducing word clusters. It contains roughly 83 

million words in 3.4 million sentences with a 
vocabulary size of 450K. We left case intact in the 

corpora. Following previous work, we used 

Liang’s implementation of the Brown clustering 
algorithm (Liang, 2005).  We induced 1,000 word 

clusters for words that appeared at least twice in 

the corpora. The reduced vocabulary contains 
255K unique words. The clusters are available at 

http://www.cs.nyu.edu/~asun/data/TDT5_BrownW

C.tar.gz. 
For relation extraction, we used the benchmark 

ACE 2004 training data. Following most of the 

previous research, we used in experiments the 

nwire (newswire) and bnews (broadcast news) 
genres of the data containing 348 documents and 

4374 relation instances. We extracted an instance 

for every pair of mentions in the same sentence 
which were separated by no more than two other 

mentions. The non-relation instances generated 

were about 8 times more than the relation instances.  
Preprocessing of the ACE documents: We used 

the Stanford parser
6
 for syntactic and dependency 

parsing. We used chunklink
7
 to derive chunking 

information from the Stanford parsing. Because 

some bnews documents are in lower case, we 

recover the case for the head of a mention if its 
type is NAM by making the first character into its 

upper case. This is for better matching between the 

words in ACE and the words in the unsupervised 
word clusters. 

We used the OpenNLP
8

 maximum entropy 

(maxent) package as our machine learning tool. 
We choose to work with maxent because the 

training is fast and it has a good support for multi-

class classification. 

6.1 Baseline Performance 

Following previous work, we did 5-fold cross-

validation on the 348 documents with hand-
annotated entity mentions. Our results are shown in 

Table 5 which also lists the results of another three 

state-of-the-art feature based systems. For this and 
the following experiments, all the results were 

computed at the relation mention level. 

 
System P(%) R(%) F(%) 

Zhou et al. (2007)9 78.2 63.4 70.1 

Zhao and Grishman (2005)10 69.2 71.5 70.4 

Our Baseline 73.4 67.7 70.4 

Jiang and Zhai (2007) 11 72.4 70.2 71.3 
 
Table 5: Performance comparison on the ACE 2004 
data over the 7 relation types. 

                                                        
6 http://nlp.stanford.edu/software/lex-parser.shtml 
7 http://ilk.uvt.nl/team/sabine/chunklink/README.html 
8 http://opennlp.sourceforge.net/ 
9 Zhou et al. (2005) tested their system on the ACE 2003 data; 
Zhou et al. (2007) tested their system on the ACE 2004 data. 

10  The paper gives a recall value of 70.5, which is not 
consistent with the given values of P and F. An examination of 

the correspondence in preparing this paper indicates that the 
correct recall value is 71.5. 
11 The result is from using the All features in Jiang and Zhai 
(2007). It is not quite clear from the paper that whether they 
used the 348 documents or the whole 2004 training data. 
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Note that although all the 4 systems did 5-fold 

cross-validation on the ACE 2004 data, the 
detailed data partition might be different. Also, we 

were doing cross-validation at the document level 

which we believe was more natural than the 
instance level. Nonetheless, we believe our 

baseline system has achieved very competitive 

performance. 

6.2 The Effectiveness of Cluster Selection 

Methods 

We investigated the tradeoff between performance 

and training time of each proposed method in 
selecting clusters. In this experiment, we randomly 

selected 70 documents from the 348 documents as 
test data which roughly equaled the size of 1 fold 

in the baseline in Section 6.1. For the baseline in 

this section, all the rest of the documents were used 
as training data. For the semi-supervised system, 

70 percent of the rest of the documents were 

randomly selected as training data and 30 percent 
as development data. The set of prefix lengths that 

worked the best for the development set was 

chosen to select clusters. We only used the cluster 
feature HM_WC in this experiment.  
 

System F △ Training  Time (in minute) 

Baseline 70.70  1 

UA 71.19 +0.49 1.5 

PC3 71.65 +0.95 30 

PC4 71.72 +1.02 46 

IG3 71.65 +0.95 45 

IG4 71.68 +0.98 78 

ES3 71.66 +0.96 465 

ES4 71.60 +0.90 1678 

 

Table 6: The tradeoff between performance and training 

time of each method in selecting clusters. PC3 means 

using 3 prefixes with the PC method. △ in this paper 

means the difference between a system and the baseline. 

 
Table 6 shows that all the 4 proposed methods 

improved baseline performance, with UA as the 

fastest and ES as the slowest. It was interesting that 
ES did not always outperform the two statistical 

methods which might be because of its overfitting 

to the development set. In general, both PC and IG 
had good balances between performance and 

training time. There was no dramatic difference in 

performance between using 3 and 4 prefix lengths.  

For the rest of this paper, we will only use PC4 

as our method in selecting clusters. 

6.3 The Effectiveness of Cluster Features 

The baseline here is the same one used in Section 

6.1. For the semi-supervised system, each test fold 

was the same one used in the baseline and the other 
4 folds were further split into a training set and a 

development set in a ratio of 7:3 for selecting 

clusters. We first added the cluster features 
individually into the baseline and then added them 

incrementally according to the order specified in 

Table 4. 
 
System F △ 

1 Baseline 70.4  

2 1 + HM_WC 71.5 + 1.1 

3 1 + BagWM_WC 71.0 + 0.6 

4 1 + HC_WC 69.6 - 0.8 

5 1 + BagWC_WC 46.1 - 24.3 

6 2 + BagWM_WC 71.0 + 0.6 

7 6 + HC_WC 70.6 + 0.2 

8 7+ BagWC_WC 50.3 - 20.1 

 

Table 7: Performance 12  of the baseline and using 

different cluster features with PC4 over the 7 types.  
 

We found that adding clusters to the heads of the 

two mentions was the most effective way of 

introducing cluster features. Adding clusters to the 
words of the mentions can also help, though not as 

good as the heads. We were surprised that the 

heads of chunks in context did not help. This might 
be because ACE relations are usually short and the 

limited number of long relations is not sufficient in 

generalizing cluster features. Adding clusters to 
every word in context hurt the performance a lot. 

Because of the behavior of each individual feature, 

it was not surprising that adding them 
incrementally did not give more performance gain.  

For the rest of this paper, we will only use 

HM_WC as cluster features. 

6.4 The Impact of Training Size 

We studied the impact of training data size on 

cluster features as shown in Table 8. The test data 
was always the same as the 5-fold used in the 

baseline in Section 6.1. no matter the size of the 

training data. The training documents for the  
                                                        
12  All the improvements of F in Table 7, 8 and 9 were 
significant at confidence levels >= 95%. 
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# docs F of Relation Classification F of Relation Detection 

Baseline PC4 (△) Prefix10(△) Baseline PC4(△) Prefix10(△) 

50 62.9 63.8(+ 0.9) 63.7(+0.8) 71.4 71.9(+ 0.5) 71.6(+0.2) 

75 62.8 64.6(+ 1.8) 63.9(+1.1) 71.5 72.3(+ 0.8) 72.5(+1.0) 

125 66.1 68.1(+ 2.0) 67.5(+1.4) 74.5 74.8(+ 0.3) 74.3(-0.2) 

175 67.8 69.7(+ 1.9) 69.5(+1.7) 75.2 75.5(+ 0.3) 75.2(0.0) 

225 68.9 70.1(+ 1.2) 69.6(+0.7) 75.6 75.9(+ 0.3) 75.3(-0.3) 

≈280 70.4 71.5(+ 1.1) 70.7(+0.3) 76.4 76.9(+ 0.5) 76.3(-0.1) 

 

Table 8: Performance over the 7 relation types with different sizes of training data. Prefix10 uses the single prefix 

length 10 to generate word clusters as used by Chan and Roth (2010). 

 

Type P R F 

Baseline PC4 (△) Baseline PC4 (△) Baseline PC4 (△) 

EMP-ORG 75.4 77.2(+1.8) 79.8 81.5(+1.7) 77.6 79.3(+1.7) 

PHYS 73.2 71.2(-2.0) 61.6 60.2(-1.4) 66.9 65.3(-1.7) 

GPE-AFF 67.1 69.0(+1.9) 60.0 63.2(+3.2) 63.3 65.9(+2.6) 

PER-SOC 88.2 83.9(-4.3) 58.4 61.0(+2.6) 70.3 70.7(+0.4) 

DISC 79.4 80.6(+1.2) 42.9 46.0(+3.2) 55.7 58.6(+2.9) 

ART 87.9 96.9(+9.0) 63.0 67.4(+4.4) 73.4 79.3(+5.9) 

OTHER-AFF 70.6 80.0(+9.4) 41.4 41.4(0.0) 52.2 54.6(+2.4) 

 
Table 9: Performance of each individual relation type based on 5-fold cross-validation. 

 

current size setup were randomly selected and 

added to the previous size setup (if applicable). For 
example, we randomly selected another 25 

documents and added them to the previous 50 

documents to get 75 documents. We made sure 
that every document participated in this experiment. 

The training documents for each size setup were 

split into a real training set and a development set 
in a ratio of 7:3 for selecting clusters.  

There are some clear trends in Table 8. Under 

each training size, PC4 consistently outperformed 
the baseline and the system Prefix10 for relation 

classification. For PC4, the gain for classification 

was more pronounced than detection. The mixed 
detection results of Prefix10 indicated that only 

using a single prefix may not be stable.   

We did not observe the same trend in the 
reduction of annotation need with cluster-based 

features as in Koo et al. (2008) for dependency 

parsing. PC4 with sizes 50, 125, 175 outperformed 
the baseline with sizes 75, 175, 225 respectively. 

But this was not the case when PC4 was tested 

with sizes 75 and 225.  This might due to the 
complexity of the relation extraction task. 

6.5 Analysis 

There were on average 69 cross-type errors in the 

baseline in Section 6.1 which were reduced to 56 

by using PC4. Table 9 showed that most of the 

improvements involved EMP-ORG, GPE-AFF, 
DISC, ART and OTHER-AFF. The performance 

gain for PER-SOC was not as pronounced as the 

other five types. The five types of relations are 
ambiguous as they share the same entity type GPE 

while the PER-SOC relation only holds between 

PER and PER. This reflects that word clusters can 
help to distinguish between ambiguous relation 

types. 

As mentioned earlier the gain of relation 
detection was not as pronounced as classification 

as shown in Table 8. The unbalanced distribution 

of relation instances and non-relation instances 
remains as an obstacle for pushing the performance 

of relation extraction to the next level. 

7 Conclusion and Future Work 

We have described a semi-supervised relation 

extraction system with large-scale word clustering. 

We have systematically explored the effectiveness 
of different cluster-based features. We have also 

demonstrated that the two proposed statistical 

methods are both effective and efficient in 
selecting clusters at an appropriate level of 

granularity through an extensive experimental 

study. 
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Based on the experimental results, we plan to 

investigate additional ways to improve the 
performance of relation detection. Moreover, 

extending word clustering to phrase clustering (Lin 

and Wu, 2009) and pattern clustering (Sun and 
Grishman, 2010) is worth future investigation for 

relation extraction. 
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