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Abstract

We propose a non-parametric Bayesian model
for unsupervised semantic parsing. Follow-
ing Poon and Domingos (2009), we consider
a semantic parsing setting where the goal is to
(1) decompose the syntactic dependency tree
of a sentence into fragments, (2) assign each
of these fragments to a cluster of semanti-
cally equivalent syntactic structures, and (3)
predict predicate-argument relations between
the fragments. We use hierarchical Pitman-
Yor processes to model statistical dependen-
cies between meaning representations of pred-
icates and those of their arguments, as well
as the clusters of their syntactic realizations.
We develop a modification of the Metropolis-
Hastings split-merge sampler, resulting in an
efficient inference algorithm for the model.
The method is experimentally evaluated by us-
ing the induced semantic representation for
the question answering task in the biomedical
domain.

1 Introduction

Statistical approaches to semantic parsing have re-
cently received considerable attention. While some
methods focus on predicting a complete formal rep-
resentation of meaning (Zettlemoyer and Collins,
2005; Ge and Mooney, 2005; Mooney, 2007), others
consider more shallow forms of representation (Car-
reras and Màrquez, 2005; Liang et al., 2009). How-
ever, most of this research has concentrated on su-
pervised methods requiring large amounts of labeled
data. Such annotated resources are scarce, expensive
to create and even the largest of them tend to have

low coverage (Palmer and Sporleder, 2010), moti-
vating the need for unsupervised or semi-supervised
techniques.

Conversely, research in the closely related task
of relation extraction has focused on unsupervised
or minimally supervised methods (see, for example,
(Lin and Pantel, 2001; Yates and Etzioni, 2009)).
These approaches cluster semantically equivalent
verbalizations of relations, often relying on syn-
tactic fragments as features for relation extraction
and clustering (Lin and Pantel, 2001; Banko et al.,
2007). The success of these methods suggests that
semantic parsing can also be tackled as clustering
of syntactic realizations of predicate-argument rela-
tions. While a similar direction has been previously
explored in (Swier and Stevenson, 2004; Abend et
al., 2009; Lang and Lapata, 2010), the recent work
of (Poon and Domingos, 2009) takes it one step
further by not only predicting predicate-argument
structure of a sentence but also assigning sentence
fragments to clusters of semantically similar expres-
sions. For example, for a pair of sentences on Fig-
ure 1, in addition to inducing predicate-argument
structure, they aim to assign expressions “Steelers”
and “the Pittsburgh team” to the same semantic
class Steelers, and group expressions “defeated”
and “secured the victory over”. Such semantic rep-
resentation can be useful for entailment or question
answering tasks, as an entailment model can ab-
stract away from specifics of syntactic and lexical
realization relying instead on the induced semantic
representation. For example, the two sentences in
Figure 1 have identical semantic representation, and
therefore can be hypothesized to be equivalent.
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Figure 1: An example of two different syntactic trees with a common semantic representation WinPrize(Ravens,
Steelers).

From the statistical modeling point of view, joint
learning of predicate-argument structure and dis-
covery of semantic clusters of expressions can also
be beneficial, because it results in a more compact
model of selectional preference, less prone to the
data-sparsity problem (Zapirain et al., 2010). In this
respect our model is similar to recent LDA-based
models of selectional preference (Ritter et al., 2010;
Séaghdha, 2010), and can even be regarded as their
recursive and non-parametric extension.

In this paper, we adopt the above definition of un-
supervised semantic parsing and propose a Bayesian
non-parametric approach which uses hierarchical
Pitman-Yor (PY) processes (Pitman, 2002) to model
statistical dependencies between predicate and ar-
gument clusters, as well as distributions over syn-
tactic and lexical realizations of each cluster. Our
non-parametric model automatically discovers gran-
ularity of clustering appropriate for the dataset, un-
like the parametric method of (Poon and Domingos,
2009) which have to perform model selection and
use heuristics to penalize more complex models of
semantics. Additional benefits generally expected
from Bayesian modeling include the ability to en-
code prior linguistic knowledge in the form of hy-
perpriors and the potential for more reliable model-
ing of smaller datasets. More detailed discussion of
relation between the Markov Logic Network (MLN)
approach of (Poon and Domingos, 2009) and our
non-parametric method is presented in Section 3.

Hierarchical Pitman-Yor processes (or their spe-
cial case, hierarchical Dirichlet processes) have pre-
viously been used in NLP, for example, in the con-
text of syntactic parsing (Liang et al., 2007; John-
son et al., 2007). However, in all these cases the
effective size of the state space (i.e., the number
of sub-symbols in the infinite PCFG (Liang et al.,
2007), or the number of adapted productions in the
adaptor grammar (Johnson et al., 2007)) was not
very large. In our case, the state space size equals

the total number of distinct semantic clusters, and,
thus, is expected to be exceedingly large even for
moderate datasets: for example, the MLN model in-
duces 18,543 distinct clusters from 18,471 sentences
of the GENIA corpus (Poon and Domingos, 2009).
This suggests that standard inference methods for hi-
erarchical PY processes, such as Gibbs sampling,
Metropolis-Hastings (MH) sampling with uniform
proposals, or the structured mean-field algorithm,
are unlikely to result in efficient inference: for ex-
ample in standard Gibbs sampling all thousands of
alternatives should be considered at each sampling
move. Instead, we use a split-merge MH sampling
algorithm, which is a standard and efficient infer-
ence tool for non-hierarchical PY processes (Jain
and Neal, 2000; Dahl, 2003) but has not previously
been used in hierarchical setting. We extend the
sampler to include composition-decomposition of
syntactic fragments in order to cluster fragments of
variables size, as in the example Figure 1, and also
include the argument role-syntax alignment move
which attempts to improve mapping between seman-
tic roles and syntactic paths for some fixed predicate.

Evaluating unsupervised models is a challenging
task. We evaluate our model both qualitatively, ex-
amining the revealed clustering of syntactic struc-
tures, and quantitatively, on a question answering
task. In both cases, we follow (Poon and Domingos,
2009) in using the corpus of biomedical abstracts.
Our model achieves favorable results significantly
outperforming the baselines, including state-of-the-
art methods for relation extraction, and achieves
scores comparable to those of the MLN model.

The rest of the paper is structured as follows. Sec-
tion 2 begins with a definition of the semantic pars-
ing task. Sections 3 and 4 give background on the
MLN model and the Pitman-Yor processes, respec-
tively. In Sections 5 and 6, we describe our model
and the inference method. Section 7 provides both
qualitative and quantitative evaluation. Finally, ad-
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ditional related work is presented in Section 8.

2 Semantic Parsing

In this section, we briefly define the unsupervised
semantic parsing task and underlying aspects and as-
sumptions relevant to our model.

Unlike (Poon and Domingos, 2009), we do not
use the lambda calculus formalism to define our task
but rather treat it as an instance of frame-semantic
parsing, or a specific type of semantic role label-
ing (Gildea and Jurafsky, 2002). The reason for this
is two-fold: first, the frame semantics view is more
standard in computational linguistics, sufficient to
describe induced semantic representation and conve-
nient to relate our method to the previous work. Sec-
ond, lambda calculus is a considerably more power-
ful formalism than the predicate-argument structure
used in frame semantics, normally supporting quan-
tification and logical connectors (for example, nega-
tion and disjunction), neither of which is modeled
by our model or in (Poon and Domingos, 2009).

In frame semantics, the meaning of a predicate
is conveyed by a frame, a structure of related con-
cepts that describes a situation, its participants and
properties (Fillmore et al., 2003). Each frame is
characterized by a set of semantic roles (frame el-
ements) corresponding to the arguments of the pred-
icate. It is evoked by a frame evoking element (a
predicate). The same frame can be evoked by differ-
ent but semantically similar predicates: for exam-
ple, both verbs “buy” and “purchase” evoke frame
Commerce buy in FrameNet (Fillmore et al., 2003).

The aim of the semantic role labeling task is to
identify all of the frames evoked in a sentence and
label their semantic role fillers. We extend this task
and treat semantic parsing as recursive prediction of
predicate-argument structure and clustering of argu-
ment fillers. Thus, parsing a sentence into this rep-
resentation involves (1) decomposing the sentence
into lexical items (one or more words), (2) assigning
a cluster label (a semantic frame or a cluster of ar-
gument fillers) to every lexical item, and (3) predict-
ing argument-predicate relations between the lexical
items. This process is illustrated in Figure 1. For
the leftmost example, the sentence is decomposed
into three lexical items: “Ravens”, “defeated”
and “Steelers”, and they are assigned to clusters

Ravens, WinPrize and Steelers, respectively.
Then Ravens and Steelers are selected as a
Winner and an Opponent in the WinPrize frame.
In this work, we define a joint model for the label-
ing and argument identification stages. Similarly to
core semantic roles in FrameNet, semantic roles are
treated as frame-specific in our model, as our model
does not try to discover any correspondences be-
tween roles in different frames.

As you can see from the above description, frames
(which groups predicates with similar meaning such
as the WinPrize frame in our example) and clus-
ters of argument fillers (Ravens and Steelers) are
treated in our definition in a similar way. For con-
venience, we will refer to both types of clusters as
semantic classes.1

This definition of semantic parsing is closely re-
lated to a realistic relation extraction setting, as both
clustering of syntactic forms of relations (or extrac-
tion patterns) and clustering of argument fillers for
these relations is crucial for automatic construction
of knowledge bases (Yates and Etzioni, 2009).

In this paper, we make three assumptions. First,
we assume that each lexical item corresponds to a
subtree of the syntactic dependency graph of the
sentence. This assumption is similar to the ad-
jacency assumption in (Zettlemoyer and Collins,
2005), though ours may be more appropriate for lan-
guages with free or semi-free word order, where syn-
tactic structures are inherently non-projective. Sec-
ond, we assume that the semantic arguments are lo-
cal in the dependency tree; that is, one lexical item
can be a semantic argument of another one only if
they are connected by an arc in the dependency tree.
This is a slight simplification of the semantic role
labeling problem but one often made. Thus, the ar-
gument identification and labeling stages consist of
labeling each syntactic arc with a semantic role la-
bel. In comparison, the MLN model does not explic-
itly assume contiguity of lexical items and does not
make this directionality assumption but their clus-
tering algorithm uses initialization and clusterization
moves such that the resulting model also obeys both
of these constraints. Third, as in (Poon and Domin-
gos, 2009), we do not model polysemy as we assume

1Semantic classes correspond to lambda-form clusters in
(Poon and Domingos, 2009) terminology.
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that each syntactic fragment corresponds to a single
semantic class. This is not a model assumption and
is only used at inference as it reduces mixing time of
the Markov chain. It is not likely to be restrictive for
the biomedical domain studied in our experiments.

As in some of the recent work on learning se-
mantic representations (Eisenstein et al., 2009; Poon
and Domingos, 2009), we assume that dependency
structures are provided for every sentence. This as-
sumption allows us to construct models of seman-
tics not Markovian within a sequence of words (see
for an example a model described in (Liang et al.,
2009)), but rather Markovian within a dependency
tree. Though we include generation of the syntac-
tic structure in our model, we would not expect that
this syntactic component would result in an accurate
syntactic model, even if trained in a supervised way,
as the chosen independence assumptions are over-
simplistic. In this way, we can use a simple gener-
ative story and build on top of the recent success in
syntactic parsing.

3 Relation to the MLN Approach

The work of (Poon and Domingos, 2009) models
joint probability of the dependency tree and its latent
semantic representation using Markov Logic Net-
works (MLNs) (Richardson and Domingos, 2006),
selecting parameters (weights of first-order clauses)
to maximize the probability of the observed depen-
dency structures. For each sentence, the MLN in-
duces a Markov network, an undirected graphical
model with nodes corresponding to ground atoms
and cliques corresponding to ground clauses.

The MLN is a powerful formalism and allows for
modeling complex interaction between features of
the input (syntactic trees) and latent output (seman-
tic representation), however, unsupervised learn-
ing of semantics with general MLNs can be pro-
hibitively expensive. The reason for this is that
MLNs are undirected models and when learned to
maximize likelihood of syntactically annotated sen-
tences, they would require marginalization over se-
mantic representation but also over the entire space
of syntactic structures and lexical units. Given the
complexity of the semantic parsing task and the need
to tackle large datasets, even approximate methods
are likely to be infeasible. In order to overcome

this problem, (Poon and Domingos, 2009) group pa-
rameters and impose local normalization constraints
within each group. Given these normalization con-
straints, and additional structural constraints satis-
fied by the model, namely that the clauses should
be engineered in such a way that they induce tree-
structured graphs for every sentence, the parameters
can be estimated by a variant of the EM algorithm.

The class of such restricted MLNs is equivalent
to the class of directed graphical models over the
same set of random variables corresponding to frag-
ments of syntactic and semantic structure. Given
that the above constraints do not directly fit into the
MLN methodology, we believe that it is more nat-
ural to regard their model as a directed model with
an underlying generative story specifying how the
semantic structure is generated and how the syntac-
tic parse is drawn for this semantic structure. This
view would facilitate understanding what kind of
features can easily be integrated into the model, sim-
plify application of non-parametric Bayesian tech-
niques and expedite the use of inference techniques
designed specifically for directed models. Our ap-
proach makes one step in this direction by proposing
a non-parametric version of such generative model.

4 Hierarchical Pitman-Yor Processes

The central component of our non-parametric
Bayesian model are Pitman-Yor (PY) processes,
which are a generalization of the Dirichlet processes
(DPs) (Ferguson, 1973). We use PY processes to
model distributions of semantic classes appearing as
an argument of other semantic classes. We also use
them to model distributions of syntactic realizations
for each semantic class and distributions of syntactic
dependency arcs for argument types. In this section
we present relevant background on PY processes.
For a more detailed consideration we refer the reader
to (Teh et al., 2006).

The Pitman-Yor process over a set S, denoted
PY (α, β,H), is a stochastic process whose samples
G0 constitute probability measures on partitions of
S. In practice, we do not need to draw measures,
as they can be analytically marginalized out. The
conditional distribution of xj+1 given the previous
j draws, with G0 marginalized out, follows (Black-
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well and MacQueen, 1973)

xj+1|x1, . . . xj ∼
K∑
k=1

jk − β
j+α

δφk
+
Kβ + α

j+α
H. (1)

where φ1, . . . , φK are K values assigned to
x1, x2, . . . , xj . The number of times φk was as-
signed is denoted jk, so that j =

∑K
k=1 jk. The

parameter β < 1 controls how heavy the tail of the
distribution is: when it approaches 1, a new value is
assigned to every draw, when β = 0 the PY process
reduces to DP. The expected value of K scales as
O(αnβ) with the number of draws n, while it scales
only logarithmically for DP processes. PY processes
are expected to be more appropriate for many NLP
problems, as they model power-law type distribu-
tions common for natural language (Teh, 2006).

Hierarchical Dirichlet Processes (HDP) or hierar-
chical PY processes are used if the goal is to draw
several related probability measures for the same
set S. For example, they can be used to generate
transition distributions of a Markov model, HDP-
HMM (Teh et al., 2006; Beal et al., 2002). For
such a HMM, the top-level state proportions are
drawn from the top-level stick breaking construction
γ ∼ GEM(α, β), and then the individual transi-
tion distributions for every state z = 1, 2, . . . φz are
drawn from PY (γ, α′, β′). The parameters α′ and
β′ control how similar the individual transition dis-
tributions φz are to the top-level state proportions γ,
or, equivalently, how similar the transition distribu-
tions are to each other.

5 A Model for Semantic Parsing

Our model of semantics associates with each seman-
tic class a set of distributions which govern the gen-
eration of corresponding syntactic realizations2 and
the selection of semantic classes for its arguments.
Each sentence is generated starting from the root of
its dependency tree, recursively drawing a seman-
tic class, its syntactic realization, arguments and se-
mantic classes for the arguments. Below we de-
scribe the model by first defining the set of the model
parameters and then explaining the generation of in-

2Syntactic realizations are syntactic tree fragments, and
therefore they correspond both to syntactic and lexical varia-
tions.

dividual sentences. The generative story is formally
presented in Figure 2.

We associate with each semantic class c, c =
1, 2, . . . , a distribution of its syntactic realizations
φc. For example, for the frame WinPrize illus-
trated in Figure 1 this distribution would concen-
trate at syntactic fragments corresponding to lexical
items “defeated”, “secured the victory” and “won”.
The distribution is drawn from DP (w(C), H(C)),
where H(C) is a base measure over syntactic sub-
trees. We use a simple generative process to define
the probability of a subtree, the underlying model is
similar to the base measures used in the Bayesian
tree-substitution grammars (Cohn et al., 2009). We
start by generating a word w uniformly from the
treebank distribution, then we decide on the num-
ber of dependents of w using the geometric distribu-
tion Geom(q(C)). For every dependent we generate
a dependency relation r and a lexical form w′ from
P (r|w)P (w′|r), where probabilities P are based on
add-0.1 smoothed treebank counts. The process is
continued recursively. The smaller the parameter
q(C), the lower is the probability assigned to larger
sub-trees.

Parameters ψc,t and ψ+
c,t, t = 1, . . . , T , de-

fine a distribution over vectors (m1,m2, . . . ,mT )
where mt is the number of times an argument of
type t appears for a given semantic frame occur-
rence3. For the frame WinPrize these parameters
would enforce that there exists exactly one Winner
and exactly one Opponent for each occurrence of
WinPrize. The parameter ψc,t defines the probabil-
ity of having at least one argument of type t. If 0 is
drawn from ψc,t then mt = 0, otherwise the number
of additional arguments of type t (mt − 1) is drawn
from the geometric distribution Geom(ψ+

c,t). This
generative story is flexible enough to accommodate
both argument types which appear at most once per
semantic class occurrence (e.g., agents), and argu-
ment types which frequently appear multiple times
per semantic class occurrence (e.g., arguments cor-
responding to descriptors).

Parameters φc,t, t = 1, . . . , T , define the dis-

3For simplicity, we assume that each semantic class has T
associated argument types, note that this is not a restrictive as-
sumption as some of the argument types can remain unused,
and T can be selected to be sufficiently large to accommodate
all important arguments.
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Parameters:

γ ∼ GEM(α0, β0) [top-level proportions of classes]
θroot ∼ PY (αroot, βroot, γ) [distrib of sem classes at root]
for each sem class c = 1, 2, . . . :
φc ∼ DP (w(C), H(C)) [distribs of synt realizations]
for each arg type t = 1, 2, . . . T :
ψc,t ∼ Beta(η0, η1) [first argument generation]
ψ+

c,t ∼ Beta(η+
0 , η

+
1 ) [geom distr for more args]

φc,t ∼ DP (w(A), H(A)) [distribs of synt paths]
θc,t ∼ PY (α, β, γ) [distrib of arg fillers]

Data Generation:

for each sentence:
croot ∼ θroot [choose sem class for root]
GenSemClass(croot)

GenSemClass(c):
s ∼ φc [draw synt realization]
for each arg type t = 1, . . . , T :

if [n ∼ ψc,t] = 1: [at least one arg appears]
GenArgument(c, t) [draw one arg]
while [n ∼ ψ+

c,t] = 1: [continue generation]
GenArgument(c, t) [draw more args]

GenArgument(c, t):
ac,t ∼ φc,t [draw synt relation]
c′c,t ∼ θc,t [draw sem class for arg]
GenSemClass(c′c,t) [recurse]

Figure 2: The generative story for the Bayesian model for
unsupervised semantic parsing.

tributions over syntactic paths for the argument
type t. In our example, for argument type
Opponent, this distribution would associate most
of the probability mass with relations pp over, dobj
and pp against. These distributions are drawn from
DP (w(A), H(A)). In this paper we only consider
paths consisting of a single relation, therefore the
base probability distributionH(A) is just normalized
frequencies of dependency relations in the treebank.

The crucial part of the model are the selection-
preference parameters θc,t, the distributions of se-
mantic classes c′ for each argument type t of class
c. For arguments Winner and Opponent of the
frame WinPrize these distributions would assign
most of the probability mass to semantic classes de-
noting teams or players. Distributions θc,t are drawn
from a hierarchical PY process: first, top-level pro-
portions of classes γ are drawn fromGEM(α0, β0),
and then the individual distributions θc,t over c′ are
chosen from PY (α, β, γ).

For each sentence, we first generate a class corre-

sponding to the root of the dependency tree from the
root-specific distribution of semantic classes θroot.
Then we recursively generate classes for the entire
sentence. For a class c, we generate the syntactic
realization s and for each of the T types, decide
how many arguments of that type to generate (see
GenSemClass in Figure 2). Then we generate each
of the arguments (see GenArgument) by first gen-
erating a syntactic arc ac,t, choosing a class as its
filler c′

c,t and, finally, recursing.

6 Inference

In our model, latent states, modeled with hierarchi-
cal PY processes, correspond to distinct semantic
classes and, therefore, their number is expected to
be very large for any reasonable model of semantics.
As a result, many standard inference techniques,
such as Gibbs sampling, or the structured mean-field
method are unlikely to result in tractable inference.
One of the standard and most efficient samplers for
non-hierarchical PY processes are split-merge MH
samplers (Jain and Neal, 2000; Dahl, 2003). In this
section we explain how split-merge samplers can be
applied to our model.

6.1 Split and Merge Moves

On each move, split-merge samplers decide either
to merge two states into one (in our case, merge two
semantic classes), or split one state into two. These
moves can be computed efficiently for our model of
semantics. Note that for any reasonable model of
semantics only a small subset of the entire set of se-
mantic classes can be used as an argument for some
fixed semantic class due to selectional preferences
exhibited by predicates. For instance, only teams or
players can fill arguments of the frame WinPrize

in our running example. As a result, only a small
number of terms in the joint distribution has to be
evaluated on every move we may consider.

When estimating the model, we start with assign-
ing each distinct word (or, more precisely, a tuple
of a word’s stem and its part-of-speech tag) to an
individual semantic class. Then, we would iterate
by selecting a random pair of class occurrences, and
decide, at random, whether we attempt to perform a
split-merge move or a compose-decompose move.
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6.2 Compose and Decompose Moves

The compose-decompose operations modify syntac-
tic fragments assigned to semantic classes, com-
posing two neighboring dependency sub-trees or
decomposing a dependency sub-tree. If the two
randomly-selected syntactic fragments s and s′ cor-
respond to different classes, c and c′, we attempt
to compose them into ŝ and create a new semantic
class ĉ. All occurrences of ŝ are assigned to this new
class ĉ. For example, if two randomly-selected oc-
currences have syntactic realizations “secure” and
“victory” they can be composed to obtain the syn-

tactic fragment “secure
dobj−−→ victory”. This frag-

ment will be assigned to a new semantic class which
can later be merged with other classes, such as the
ones containing syntactic realizations “defeat” or
“win”.

Conversely, if both randomly-selected syntactic
fragments are already composed in the correspond-
ing class, we attempt to split them.

6.3 Role-Syntax Alignment Move

Merge, compose and decompose moves require re-
computation of mapping between argument types
(semantic roles) and syntactic fragments. Comput-
ing the best statistical mapping is infeasible and
proposing a random mapping will result in many
attempted moves being rejected. Instead we use
a greedy randomized search method called Gibbs
scan (Dahl, 2003). Though it is a part of the above 3
moves, this alignment move is also used on its own
to induce semantic arguments for classes (frames)
with a single syntactic realization.

The Gibbs scan procedure is also used during the
split move to select one of the newly introduced
classes for each considered syntactic fragment.

6.4 Informed Proposals

Since the number of classes is very large, selecting
examples at random would result in a relatively low
proportion of moves getting accepted, and, conse-
quently, in a slow-mixing Markov chain. Instead of
selecting both class occurrences uniformly, we se-
lect the first occurrence from a uniform distribution
and then use a simple but effective proposal distri-
bution for selecting the second class occurrence.

Let us denote the class corresponding to the first

occurrence as c1 and its syntactic realization as s1
with a head word w1. We begin by selecting uni-
formly randomly whether to attempt a compose-
decompose or a split-merge move.

If we chose a compose-decompose move, we look
for words (children) which can be attached below
the syntactic fragment s1. We use the normalized
counts of these words conditioned on the parent s1 to
select the second word w2. We then select a random
occurrence of w2; if it is a part of syntactic realiza-
tion of c1 then a decompose move is attempted. Oth-
erwise, we try to compose the corresponding clus-
ters together.

If we selected a split-merge move, we use a dis-
tribution based on the cosine similarity of lexical
contexts of the words. The context is represented
as a vector of counts of all pairs of the form (head
word, dependency type) and (dependent, depen-
dency type). So, instead of selecting a word occur-
rence uniformly, each occurrence of every word w2

is weighted by its similarity to w1, where the simi-
larity is based on the cosine distance.

As the moves are dependent only on syntactic rep-
resentations, all the proposal distributions can be
computed once at the initialization stage.4

7 Empirical Evaluation

We induced a semantic representation over a collec-
tion of texts and evaluated it by answering questions
about the knowledge contained in the corpus. We
used the GENIA corpus (Kim et al., 2003), a dataset
of 1999 biomedical abstracts, and a set of questions
produced by (Poon and Domingos, 2009). A exam-
ple question is shown in Figure 3.

All model hyperpriors were set to maximize the
posterior, except for w(A) and w(C), which were set
to 1.e−10 and 1.e−35, respectively. Inference was
run for around 300,000 sampling iterations until the
percentage of accepted split-merge moves became
lower than 0.05%.

Let us examine some of the induced semantic
classes (Table 1) before turning to the question an-
swering task. Almost all of the clustered syntactic

4In order to minimize memory usage, we used frequency
cut-off of 10. For split-merge moves, we select words based
on the cosine distance if the distance is below 0.95 and sample
the remaining words uniformly. This also reduces the required
memory usage.
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Class Variations
1 motif, sequence, regulatory element, response ele-

ment, element, dna sequence
2 donor, individual, subject
3 important, essential, critical
4 dose, concentration
5 activation, transcriptional activation, transactiva-

tion
6 b cell, t lymphocyte, thymocyte, b lymphocyte, t

cell, t-cell line, human lymphocyte, t-lymphocyte
7 indicate, reveal, document, suggest, demonstrate
8 augment, abolish, inhibit, convert, cause, abrogate,

modulate, block, decrease, reduce, diminish, sup-
press, up-regulate, impair, reverse, enhance

9 confirm, assess, examine, study, evaluate, test, re-
solve, determine, investigate

10 nf-kappab, nf-kappa b, nfkappab, nf-kb
11 antiserum, antibody, monoclonal antibody, ab, an-

tisera, mab
12 tnfalpha, tnf-alpha, il-6, tnf

Table 1: Examples of the induced semantic classes.

realizations have a clear semantic connection. Clus-
ter 6, for example, clusters lymphocytes with the ex-
ception of thymocyte, a type of cell which gener-
ates T cells. Cluster 8 contains verbs roughly corre-
sponding to Cause change of position on a

scale frame in FrameNet. Verbs in class 9 are used
in the context of providing support for a finding or
an action, and many of them are listed as evoking
elements for the Evidence frame in FrameNet.

Argument types of the induced classes also show
a tendency to correspond to semantic roles. For ex-
ample, an argument type of class 2 is modeled as
a distribution over two argument parts, prep of and
prep from. The corresponding arguments define the
origin of the cells (transgenic mouse, smoker, volun-
teer, donor, . . . ).

We now turn to the QA task and compare our
model (USP-BAYES) with the results of baselines
considered in (Poon and Domingos, 2009). The first
set of baselines looks for answers by attempting to
match a verb and its argument in the question with
the input text. The first version (KW) simply re-
turns the rest of the sentence on the other side of the
verb, while the second (KW-SYN) uses syntactic in-
formation to extract the subject or the object of the
verb.

Other baselines are based on state-of-the-art re-
lation extraction systems. When the extracted rela-
tion and one of the arguments match those in a given

Total Correct Accuracy
KW 150 67 45%
KW-SYN 87 67 77%
TR-EXACT 29 23 79%
TR-SUB 152 81 53%
RS-EXACT 53 24 45%
RS-SUB 196 81 41%
DIRT 159 94 59%
USP-MLN 334 295 88%
USP-BAYES 325 259 80%

Table 2: Performance on the QA task.

question, the second argument is returned as an an-
swer. The systems include TextRunner (TR) (Banko
et al., 2007), RESOLVER (RS) (Yates and Etzioni,
2009) and DIRT (Lin and Pantel, 2001). The EX-
ACT versions of the methods return answers when
they match the question argument exactly, and the
SUB versions produce answers containing the ques-
tion argument as a substring.

Similarly to the MLN system (USP-MLN), we
generate answers as follows. We use our trained
model to parse a question, i.e. recursively decom-
pose it into lexical items and assign them to seman-
tic classes induced at training. Using this semantic
representation, we look for the type of an argument
missing in the question, which, if found, is reported
as an answer. It is clear that overly coarse clusters
of argument fillers or clustering of semantically re-
lated but not equivalent relations can hurt precision
for this evaluation method.

Each system is evaluated by counting the answers
it generates, and computing the accuracy of those
answers.5 Table 2 summarizes the results. First,
both USP models significantly outperform all other
baselines: even though the accuracy of KW-SYN
and TR-EXACT are comparable with our accuracy,
the number of correct answers returned by USP-
Bayes is 4 and 11 times smaller than those of KW-
SYN and TR-EXACT, respectively. While we are
not beating the MLN baseline, the difference is not
significant. The effective number of questions is rel-
atively small (less than 80 different questions are an-
swered by any of the models). More than 50% of
USP-BAYES mistakes were due to wrong interpre-
tation of only 5 different questions. From another
point of view, most of the mistakes are explained

5The true recall is not known, as computing it would require
exhaustive annotation of the entire corpus.
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Question: What does cyclosporin A suppress?
Answer: expression of EGR-2
Sentence: As with EGR-3 , expression of EGR-2 was blocked
by cyclosporin A .

Question: What inhibits tnf-alpha?
Answer: IL -10
Sentence: Our previous studies in human monocytes have
demonstrated that interleukin ( IL ) -10 inhibits lipopolysac-
charide ( LPS ) -stimulated production of inflammatory cy-
tokines , IL-1 beta , IL-6 , IL-8 , and tumor necrosis factor (
TNF ) -alpha by blocking gene transcription .

Figure 3: An example of questions, answers by our model
and the corresponding sentences from the dataset.

by overly coarse clustering corresponding to just 3
classes, namely, 30%, 25% and 20% of errors are
due to the clusters 6, 8 and 12 (Figure 1), respec-
tively. Though all these clusters have clear semantic
interpretation (white blood cells, predicates corre-
sponding to changes and cykotines associated with
cancer progression, respectively), they appear to be
too coarse for the QA method we use in our exper-
iments. Though it is likely that tuning and differ-
ent heuristics may result in better scores, we chose
not to perform excessive tuning, as the evaluation
dataset is fairly small.

8 Related Work

There is a growing body of work on statistical learn-
ing for different versions of the semantic parsing
problem (e.g., (Gildea and Jurafsky, 2002; Zettle-
moyer and Collins, 2005; Ge and Mooney, 2005;
Mooney, 2007)), however, most of these methods
rely on human annotation, or some weaker forms of
supervision (Kate and Mooney, 2007; Liang et al.,
2009; Titov and Kozhevnikov, 2010; Clarke et al.,
2010) and very little research has considered the un-
supervised setting.

In addition to the MLN model (Poon and Domin-
gos, 2009), another unsupervised method has been
proposed in (Goldwasser et al., 2011). In that work,
the task is to predict a logical formula, and the only
supervision used is a lexicon providing a small num-
ber of examples for every logical symbol. A form of
self-training is then used to bootstrap the model.

Unsupervised semantic role labeling with a gen-
erative model has also been considered (Grenager
and Manning, 2006), however, they do not attempt
to discover frames and deal only with isolated pred-

icates. Another generative model for SRL has been
proposed in (Thompson et al., 2003), but the param-
eters were estimated from fully annotated data.

The unsupervised setting has also been consid-
ering for the related problem of learning narrative
schemas (Chambers and Jurafsky, 2009). However,
their approach is quite different from our Bayesian
model as it relies on similarity functions.

Though in this work we focus solely on the un-
supervised setting, there has been some success-
ful work on semi-supervised semantic-role label-
ing, including the Framenet version of the prob-
lem (Fürstenau and Lapata, 2009). Their method
exploits graph alignments between labeled and un-
labeled examples, and, therefore, crucially relies on
the availability of labeled examples.

9 Conclusions and Future Work

In this work, we introduced a non-parametric
Bayesian model for the semantic parsing problem
based on the hierarchical Pitman-Yor process. The
model defines a generative story for recursive gener-
ation of lexical items, syntactic and semantic struc-
tures. We extend the split-merge MH sampling algo-
rithm to include composition-decomposition moves,
and exploit the properties of our task to make it effi-
cient in the hierarchical setting we consider.

We plan to explore at least two directions in our
future work. First, we would like to relax some of
unrealistic assumptions made in our model: for ex-
ample, proper modeling of alterations requires joint
generation of syntactic realizations for predicate-
argument relations (Grenager and Manning, 2006;
Lang and Lapata, 2010), similarly, proper model-
ing of nominalization implies support of arguments
not immediately local in the syntactic structure. The
second general direction is the use of the unsuper-
vised methods we propose to expand the coverage of
existing semantic resources, which typically require
substantial human effort to produce.
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