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Abstract

Syntax-based vector spaces are used widely
in lexical semantics and are more versatile
than word-based spaces (Baroni and Lenci,
2010). However, they are also sparse, with
resulting reliability and coverage problems.
We address this problem by derivational
smoothing, which uses knowledge about
derivationally related words (oldish→ old)
to improve semantic similarity estimates.
We develop a set of derivational smoothing
methods and evaluate them on two lexical
semantics tasks in German. Even for mod-
els built from very large corpora, simple
derivational smoothing can improve cover-
age considerably.

1 Introduction

Distributional semantics (Turney and Pantel, 2010)
builds on the assumption that the semantic similar-
ity of words is strongly correlated to the overlap
between their linguistic contexts. This hypothesis
can be used to construct context vectors for words
directly from large text corpora in an unsupervised
manner. Such vector spaces have been applied suc-
cessfully to many problems in NLP (see Turney and
Pantel (2010) or Erk (2012) for current overviews).

Most distributional models in computational lex-
ical semantics are either (a) bag-of-words models,
where the context features are words within a sur-
face window around the target word, or (b) syn-
tactic models, where context features are typically
pairs of dependency relations and context words.

The advantage of syntactic models is that they
incorporate a richer, structured notion of context.
This makes them more versatile; the Distributional
Memory framework by Baroni and Lenci (2010) is
applicable to a wide range of tasks. It is also able –
at least in principle – to capture more fine-grained

types of semantic similarity such as predicate-
argument plausibility (Erk et al., 2010). At the
same time, syntactic spaces are much more prone
to sparsity problems, as their contexts are sparser.
This leads to reliability and coverage problems.

In this paper, we propose a novel strategy
for combating sparsity in syntactic vector spaces,
derivational smoothing. It follows the intuition that
derivationally related words (feed – feeder, blocked
– blockage) are, as a rule, semantically highly simi-
lar. Consequently, knowledge about derivationally
related words can be used as a “back off” for sparse
vectors in syntactic spaces. For example, the pair
oldish – ancient should receive a high semantic
similarity, but in practice, the vector for oldish will
be very sparse, which makes this result uncertain.
Knowing that oldish is derivationally related to old
allows us to use the much less sparse vector for old
as a proxy for oldish.

We present a set of general methods for smooth-
ing vector similarity computations given a resource
that groups words into derivational families (equiv-
alence classes) and evaluate these methods on Ger-
man for two distributional tasks (similarity predic-
tion and synonym choice). We find that even for
syntactic models built from very large corpora, a
simple derivational resource that groups words on
morphological grounds can improve the results.

2 Related Work

Smoothing techniques – either statistical, distribu-
tional, or knowledge-based – are widely applied in
all areas of NLP. Many of the methods were first
applied in Language Modeling to deal with unseen
n-grams (Chen and Goodman, 1999; Dagan et al.,
1999). Query expansion methods in Information
Retrieval are also prominent cases of smoothing
that addresses the lexical mismatch between query
and document (Voorhees, 1994; Gonzalo et al.,
1998; Navigli and Velardi, 2003). In lexical se-
mantics, smoothing is often achieved by backing
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off from words to semantic classes, either adopted
from a resource such as WordNet (Resnik, 1996) or
induced from data (Pantel and Lin, 2002; Wang et
al., 2005; Erk et al., 2010). Similarly, distributional
features support generalization in Named Entity
Recognition (Finkel et al., 2005).

Although distributional information is often used
for smoothing, to our knowledge there is little
work on smoothing distributional models them-
selves. We see two main precursor studies for our
work. Bergsma et al. (2008) build models of se-
lectional preferences that include morphological
features such as capitalization and the presence of
digits. However, their approach is task-specific and
requires a (semi-)supervised setting. Allan and Ku-
maran (2003) make use of morphology by building
language models for stemming-based equivalence
classes. Our approach also uses morphological
processing, albeit more precise than stemming.

3 A Resource for German Derivation

Derivational morphology describes the process of
building new (derived) words from other (basis)
words. Derived words can, but do not have to, share
the part-of-speech (POS) with their basis (oldA→
oldishA vs. warmA→ warmV , warmthN ). Words
can be grouped into derivational families by form-
ing the transitive closure over individual derivation
relations. The words in these families are typically
semantically similar, although the exact degree de-
pends on the type of relation and idiosyncratic fac-
tors (bookN → bookishA, Lieber (2009)).

For German, there are several resources with
derivational information. We use version 1.3
of DERIVBASE (Zeller et al., 2013),1 a freely
available resource that groups over 280,000 verbs,
nouns, and adjectives into more than 17,000 non-
singleton derivational families. It has a precision of
84% and a recall of 71%. Its higher coverage com-
pared to CELEX (Baayen et al., 1996) and IMSLEX

(Fitschen, 2004) makes it particularly suitable for
the use in smoothing, where the resource should
include low-frequency lemmas.

The following example illustrates a family that
covers three POSes as well as a word with a pre-
dominant metaphorical reading (to kneel→ to beg):

knieenV (to kneelV ), beknieenV (to
begV ), KniendeN (kneeling personN ),
kniendA (kneelingA), KnieNn (kneeN )

1Downloadable from: http://goo.gl/7KG2U

Using derivational knowledge for smoothing raises
the question of how semantically similar the lem-
mas within a family really are. Fortunately, DE-
RIVBASE provides information that can be used in
this manner. It was constructed with hand-written
derivation rules, employing string transformation
functions that map basis lemmas onto derived lem-
mas. For example, a suffixation rule using the affix
“heit” generates the derivation dunkel – Dunkel-
heit (darkA – darknessN ). Since derivational fam-
ilies are defined as transitive closures, each pair
of words in a family is connected by a derivation
path. Because the rules do not have a perfect pre-
cision, our confidence in pairs of words decreases
the longer the derivation path between them. To re-
flect this, we assign each pair a confidence of 1/n,
where n is the length of the shortest path between
the lemmas. For example, bekleiden (enrobeV ) is
connected to Verkleidung (disguiseN ) through three
steps via the lemmas kleiden (dressV ) and verklei-
den (disguiseV ) and is assigned the confidence 1/3.

4 Models for Derivational Smoothing

Derivational smoothing exploits the fact that deriva-
tionally related words are also semantically related,
by combining and/or comparing distributional rep-
resentations of derivationally related words. The
definition of a derivational smoothing algorithm
consists of two parts: a trigger and a scheme.

Notation. Given a word w, we use w to denote
its distributional vector and D(w) to denote the set
of vectors for the derivational family of w. We
assume that w ∈ D(w). For words that have no
derivations in DERIVBASE, D(w) is a singleton
set, D(w) = {w}. Let α(w,w′) denote the confi-
dence of the pair (w,w′), as explained in Section 3.

Smoothing trigger. As discussed above, there is
no guarantee for high semantic similarity within a
derivational family. For this reason, smoothing may
also drown out information. In this paper, we report
on two triggers: smooth always always performs
smoothing; smooth if sim=0 smooths only when
the unsmoothed similarity sim(w1,w2) is zero or
unknown (due to w1 or w2 not being in the model).

Smoothing scheme. We present three smoothing
schemes, all of which apply to the level of complete
families. The first two schemes are exemplar-based
schemes, which define the smoothed similarity for
a word pair as a function of the pairwise similarities
between all words of the two derivational families.
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The first one, maxSim, checks for particularly simi-
lar words in the families:

maxSim(w1, w2) = max
w′

1∈D(w1)
w′

2∈D(w2)

sim(w′1,w
′
2)

The second one, avgSim, computes the average
pairwise similarity (N is the number of pairs):

avgSim(w1, w2) =
1

N

∑

w′
1∈D(w1)

w′
2∈D(w2)

sim(w′1,w
′
2)

The third scheme, centSim, is prototype-based. It
computes a centroid vector for each derivational
family, which can be thought of as a representation
for the concept(s) that it expresses:

centSim(w1, w2) = sim
(
c(D(w1)), c(D(w2))

)

where c(D(w)) =∑w′∈D(w) α(w,w
′) ·w′ is the

confidence-weighted centroid vector. centSim is
similar to avgSim. It is more efficient to calculate
and effectively introduces a kind or regularization,
where outliers in either family have less impact on
the overall result.

These models only represents a sample of possi-
ble derivational smoothing methods. We performed
a number of additional experiments (POS-restricted
smoothing, word-based, and pair-based smoothing
triggers), but they did not yield any improvements
over the simpler models we present here.

5 Experimental Evaluation

Syntactic Distributional Model. The syntactic
distributional model that we use represents target
words by pairs of dependency relations and context
words. More specifically, we use the W × LW
matricization of DM.DE, the German version (Padó
and Utt, 2012) of Distributional Memory (Baroni
and Lenci, 2010). DM.DE was created on the basis
of the 884M-token SDEWAC web corpus (Faaß et
al., 2010), lemmatized, tagged, and parsed with the
German MATE toolkit (Bohnet, 2010).

Experiments. We evaluate the impact of smooth-
ing on two standard tasks from lexical semantics.
The first task is predicting semantic similarity. We
lemmatized and POS-tagged the German GUR350
dataset (Zesch et al., 2007), a set of 350 word pairs
with human similarity judgments, created analo-
gously to the well-known Rubenstein and Good-
enough (1965) dataset for English.2 We predict

2Downloadable from: http://goo.gl/bFokI

semantic similarity as cosine similarity. We make
a prediction for a word pair if both words are repre-
sented in the semantic space and their vectors have
a non-zero similarity.

The second task is synonym choice on the Ger-
man version of the Reader’s Digest WordPower
dataset (Wallace and Wallace, 2005).2 This dataset,
which we also lemmatized and POS-tagged, con-
sists of 984 target words with four synonym can-
didates each (including phrases), one of which is
correct. Again, we compute semantic similarity as
the cosine between target and a candidate vector
and pick the highest-similarity candidate as syn-
onym. For phrases, we compute the maximum
pairwise word similarity. We make a prediction for
an item if the target as well as at least one candi-
date are represented in the semantic space and their
vectors have a non-zero similarity.

We expect differences between the two tasks
with regard to derivational smoothing, since the
words within derivational families are generally re-
lated but often not synonymous (cf. the example
in Section 3). Thus, semantic similarity judgments
should profit more easily from derivational smooth-
ing than synonym choice.

Baseline. Our baseline is a standard bag-of-
words vector space (BOW), which represents target
words by the words occurring in their context. We
use standard parameters (±10 word window, 8.000
most frequent verb, noun, and adjective lemmas).
The model was created from the same corpus as
DM.DE. We also applied derivational smoothing
to this model, but did not obtain improvements.

Evaluation. To analyze the impact of smoothing,
we evaluate the coverage of models and the quality
of their predictions separately. In both tasks, cover-
age is the percentage of items for which we make
a prediction. We measure quality of the semantic
similarity task as the Pearson correlation between
the model predictions and the human judgments
for covered items (Zesch et al., 2007). For syn-
onym choice, we follow the method established by
Mohammad et al. (2007), measuring accuracy over
covered items, with partial credit for ties.

Results for Semantic Similarity. Table 1 shows
the results for the first task. The unsmoothed
DM.DE model attains a correlation of r = 0.44
and a coverage of 58.9%. Smoothing increases the
coverage substantially to 88%. Additionally, con-
servative, prototype-based smoothing (if sim = 0)
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Smoothing
trigger

Smoothing
scheme

r Cov
%

DM.DE, unsmoothed .44 58.9

DM.DE,
smooth always

avgSim .30 88.0
maxSim .43 88.0
centSim .44 88.0

DM.DE,
smooth if sim = 0

avgSim .43 88.0
maxSim .42 88.0
centSim .47 88.0

BOW baseline .36 94.9

Table 1: Results on the semantic similarity task
(r: Pearson correlation, Cov: Coverage)

increases correlation somewhat to r = 0.47. The
difference to the unsmoothed model is not signif-
icant at p = 0.05 according to Fisher’s (1925)
method of comparing correlation coefficients.

The bag-of-words baseline (BOW) has a greater
coverage than DM.DE models, but at the cost
of lower correlation across the board. The only
DM.DE model that performs worse than the BOW
baseline is the non-conservative avgSim (average
similarity) scheme. We attribute this weak per-
formance to the presence of many pairwise zero
similarities in the data, which makes the avgSim
predictions unreliable.

To our knowledge, there are no previous pub-
lished papers on distributional approaches to mod-
eling this dataset. The best previous result is a
GermaNet/Wikipedia-based model by Zesch et al.
(2007). It reports a higher correlation (r = 0.59)
but a very low coverage at 33.1%.

Results for Synonym Choice. The results for
the second task are shown in Table 2. The un-
smoothed model achieves an accuracy of 53.7%
and a coverage of 80.8%, as reported by Padó
and Utt (2012). Smoothing increases the cover-
age by almost 6% to 86.6% (for example, a ques-
tion item for inferior becomes covered after back-
ing off from the target to Inferiorität (inferiority)).
All smoothed models show a loss in accuracy, al-
beit small. The best model is again a conservative
smoothing model (sim = 0) with a loss of 1.1% ac-
curacy. Using bootstrap resampling (Efron and Tib-
shirani, 1993), we established that the difference
to the unsmoothed DM.DE model is not signifi-
cant at p < 0.05. This time, the avgSim (average
similarity) smoothing scheme performs best, with
the prototype-based scheme in second place. Thus,
the results for synonym choice are less clear-cut:
derivational smoothing can trade accuracy against

Smoothing
trigger

Smoothing
scheme

Acc
%

Cov
%

DM.DE, unsmoothed (Padó & Utt 2012) 53.7 80.8

DM.DE,
smooth always

avgSim 46.0 86.6
maxSim 50.3 86.6
centSim 49.1 86.6

DM.DE,
smooth if sim = 0

avgSim 52.6 86.6
maxSim 51.2 86.6
centSim 51.3 86.6

BOW “baseline” 56.9 98.5

Table 2: Results on the synonym choice task
(Acc: Accuracy, Cov: Coverage)

coverage but does not lead to a clear improvement.
What is more, the BOW “baseline” significantly
outperforms all syntactic models, smoothed and
unsmoothed, with an almost perfect coverage com-
bined with a higher accuracy.

6 Conclusions and Outlook

In this paper, we have introduced derivational
smoothing, a novel strategy to combating sparsity
in syntactic vector spaces by comparing and com-
bining the vectors of morphologically related lem-
mas. The only information strictly necessary for
the methods we propose is a grouping of lemmas
into derivationally related classes. We have demon-
strated that derivational smoothing improves two
tasks, increasing coverage substantially and also
leading to a numerically higher correlation in the
semantic similarity task, even for vectors created
from a very large corpus. We obtained the best re-
sults for a conservative approach, smoothing only
zero similarities. This also explains our failure
to improve less sparse word-based models, where
very few pairs are assigned a similarity of zero.
A comparison of prototype- and exemplar-based
schemes did not yield a clear winner. The estima-
tion of generic semantic similarity can profit more
from derivational smoothing than the induction of
specific lexical relations.

In future work, we plan to work on other eval-
uation tasks, application to other languages, and
more sophisticated smoothing schemes.
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