
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 1052–1061,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

A Provably Correct Learning Algorithm for Latent-Variable PCFGs
Shay B. Cohen

School of Informatics
University of Edinburgh

scohen@inf.ed.ac.uk

Michael Collins
Department of Computer Science

Columbia University
mcollins@cs.columbia.edu

Abstract

We introduce a provably correct learning
algorithm for latent-variable PCFGs. The
algorithm relies on two steps: first, the use
of a matrix-decomposition algorithm ap-
plied to a co-occurrence matrix estimated
from the parse trees in a training sample;
second, the use of EM applied to a convex
objective derived from the training sam-
ples in combination with the output from
the matrix decomposition. Experiments on
parsing and a language modeling problem
show that the algorithm is efficient and ef-
fective in practice.

1 Introduction
Latent-variable PCFGs (L-PCFGs) (Matsuzaki et
al., 2005; Petrov et al., 2006) give state-of-the-art
performance on parsing problems. The standard
approach to parameter estimation in L-PCFGs is
the EM algorithm (Dempster et al., 1977), which
has the usual problems with local optima. Re-
cent work (Cohen et al., 2012) has introduced an
alternative algorithm, based on spectral methods,
which has provable guarantees. Unfortunately this
algorithm does not return parameter estimates for
the underlying L-PCFG, instead returning the pa-
rameter values up to an (unknown) linear trans-
form. In practice, this is a limitation.

We describe an algorithm that, like EM, re-
turns estimates of the original parameters of an L-
PCFG, but, unlike EM, does not suffer from prob-
lems of local optima. The algorithm relies on two
key ideas:

1) A matrix decomposition algorithm (sec-
tion 5) which is applicable to matrices Q of the
form Qf,g =

∑
h p(h)p(f | h)p(g | h) where

p(h), p(f | h) and p(g | h) are multinomial dis-
tributions. This matrix form has clear relevance
to latent variable models. We apply the matrix
decomposition algorithm to a co-occurrence ma-
trix that can be estimated directly from a training
set consisting of parse trees without latent anno-

tations. The resulting parameter estimates give us
significant leverage over the learning problem.

2) Optimization of a convex objective function
using EM. We show that once the matrix decom-
position step has been applied, parameter estima-
tion of the L-PCFG can be reduced to a convex
optimization problem that is easily solved by EM.

The algorithm provably learns the parameters of
an L-PCFG (theorem 1), under an assumption that
each latent state has at least one “pivot” feature.
This assumption is similar to the “pivot word” as-
sumption used by Arora et al. (2013) and Arora et
al. (2012) in the context of learning topic models.

We describe experiments on learning of L-
PCFGs, and also on learning of the latent-variable
language model of Saul and Pereira (1997). A hy-
brid method, which uses our algorithm as an ini-
tializer for EM, performs at the same accuracy as
EM, but requires significantly fewer iterations for
convergence: for example in our L-PCFG exper-
iments, it typically requires 2 EM iterations for
convergence, as opposed to 20-40 EM iterations
for initializers used in previous work.

While this paper’s focus is on L-PCFGs, the
techniques we describe are likely to be applicable
to many other latent-variable models used in NLP.

2 Related Work
Recently a number of researchers have developed
provably correct algorithms for parameter esti-
mation in latent variable models such as hidden
Markov models, topic models, directed graphical
models with latent variables, and so on (Hsu et
al., 2009; Bailly et al., 2010; Siddiqi et al., 2010;
Parikh et al., 2011; Balle et al., 2011; Arora et
al., 2013; Dhillon et al., 2012; Anandkumar et
al., 2012; Arora et al., 2012; Arora et al., 2013).
Many of these algorithms have their roots in spec-
tral methods such as canonical correlation analy-
sis (CCA) (Hotelling, 1936), or higher-order ten-
sor decompositions. Previous work (Cohen et al.,
2012; Cohen et al., 2013) has developed a spec-
tral method for learning of L-PCFGs; this method
learns parameters of the model up to an unknown

1052

linear transformation, which cancels in the inside-
outside calculations for marginalization over la-
tent states in the L-PCFG. The lack of direct pa-
rameter estimates from this method leads to prob-
lems with negative or unnormalized probablities;
the method does not give parameters that are in-
terpretable, or that can be used in conjunction with
other algorithms, for example as an initializer for
EM steps that refine the model.

Our work is most directly related to the algo-
rithm for parameter estimation in topic models de-
scribed by Arora et al. (2013). This algorithm
forms the core of the matrix decomposition algo-
rithm described in section 5.

3 Background
This section gives definitions and notation for L-
PCFGs, taken from (Cohen et al., 2012).

3.1 L-PCFGs: Basic Definitions
An L-PCFG is an 8-tuple (N , I,P,m, n, π, t, q)
where: N is the set of non-terminal symbols in the
grammar. I ⊂ N is a finite set of in-terminals.
P ⊂ N is a finite set of pre-terminals. We as-
sume that N = I ∪ P , and I ∩ P = ∅. Hence
we have partitioned the set of non-terminals into
two subsets. [m] is the set of possible hidden
states.1 [n] is the set of possible words. For
all (a, b, c) ∈ I × N × N , and (h1, h2, h3) ∈
[m] × [m] × [m], we have a context-free rule
a(h1) → b(h2) c(h3). The rule has an associ-
ated parameter t(a→ b c, h2, h3 | a, h1). For all
a ∈ P , h ∈ [m], x ∈ [n], we have a context-free
rule a(h)→ x. The rule has an associated param-
eter q(a → x | a, h). For all a ∈ I, h ∈ [m],
π(a, h) is a parameter specifying the probability
of a(h) being at the root of a tree.

A skeletal tree (s-tree) is a sequence of rules
r1 . . . rN where each ri is either of the form a →
b c or a → x. The rule sequence forms a
top-down, left-most derivation under a CFG with
skeletal rules.

A full tree consists of an s-tree r1 . . . rN , to-
gether with values h1 . . . hN . Each hi is the value
for the hidden variable for the left-hand-side of
rule ri. Each hi can take any value in [m].

For a given skeletal tree r1 . . . rN , define ai to
be the non-terminal on the left-hand-side of rule
ri. For any i ∈ [N] such that ri is of the form
a→ b c, define h(2)

i and h(3)
i as the hidden state

1For any integer n, we use [n] to denote the set
{1, 2, . . . n}.

value of the left and right child respectively. The
model then defines a distribution as

p(r1 . . . rN , h1 . . . hN) =

π(a1, h1)
∏

i:ai∈I
t(ri, h

(2)
i , h

(3)
i | ai, hi)

∏
i:ai∈P

q(ri | ai, hi)

The distribution over skeletal trees is
p(r1 . . . rN) =

∑
h1...hN

p(r1 . . . rN , h1 . . . hN).

3.2 Definition of Random Variables

Throughout this paper we will make reference
to random variables derived from the distribution
over full trees from an L-PCFG. These random
variables are defined as follows. First, we select
a random internal node, from a random tree, as
follows: 1) Sample a full tree r1 . . . rN , h1 . . . hN
from the PMF p(r1 . . . rN , h1 . . . hN); 2) Choose
a node i uniformly at random from [N]. We then
give the following definition:

Definition 1 (Random Variables). If the rule ri for
the node i is of the form a→ b c, we define ran-
dom variables as follows: R1 is equal to the rule ri
(e.g., NP→ D N). A,B,C are the labels for node i,
the left child of node i, and the right child of node
i respectively. (E.g., A = NP, B = D, C = N.) T1

is the inside tree rooted at node i. T2 is the inside
tree rooted at the left child of node i, and T3 is the
inside tree rooted at the right child of node i. O is
the outside tree at node i. H1, H2, H3 are the hid-
den variables associated with node i, the left child
of node i, and the right child of node i respectively.
E is equal to 1 if node i is at the root of the tree
(i.e., i = 1), 0 otherwise.

If the rule ri for the selected node i is
of the form a → x, we have random vari-
ables R1, T1, H1, A1, O,E as defined above, but
H2, H3, T2, T3, B, and C are not defined.

4 The Learning Algorithm for L-PCFGs
Our goal is to design a learning algorithm for L-
PCFGs. The input to the algorithm will be a train-
ing set consisting of skeletal trees, assumed to be
sampled from some underlying L-PCFG. The out-
put of the algorithm will be estimates for the π,
t, and q parameters. The training set does not
include values for the latent variables; this is the
main challenge in learning.

This section focuses on an algorithm for recov-
ery of the t parameters. A description of the al-
gorithms for recovery of the π and q parameters
is deferred until section 6.1 of this paper; these

1053

steps are straightforward once we have derived the
method for the t parameters.

We describe an algorithm that correctly recov-
ers the parameters of an L-PCFG as the size of the
training set goes to infinity (this statement is made
more precise in section 4.2). The algorithm relies
on an assumption—the “pivot” assumption—that
we now describe.

4.1 Features, and the Pivot Assumption
We assume a function τ from inside trees to a fi-
nite set F , and a function ρ that maps outside trees
to a finite set G. The function τ(t) (ρ(o)) can be
thought of as a function that maps an inside tree
t (outside tree o) to an underlying feature. As
one example, the function τ(t) might return the
context-free rule at the root of the inside tree t;
in this case the set F would be equal to the set
of all context-free rules in the grammar. As an-
other example, the function ρ(o) might return the
context-free rule at the foot of the outside tree o.

In the more general case, we might have K sep-
arate functions τ (k)(t) for k = 1 . . .K mapping
inside trees to K separate features, and similarly
we might have multiple features for outside trees.
Cohen et al. (2013) describe one such feature def-
inition, where features track single context-free
rules as well as larger fragments such as two or
three-level sub-trees. For simplicity of presenta-
tion we describe the case of single features τ(t)
and ρ(o) for the majority of this paper. The exten-
sion to multiple features is straightforward, and is
discussed in section 6.2; the flexibility allowed by
multiple features is important, and we use multiple
features in our experiments.

Given functions τ and ρ, we define additional
random variables: F = τ(T1), F2 = τ(T2), F3 =
τ(T3), and G = ρ(O).

We can now give the following assumption:

Assumption 1 (The Pivot Assumption). Under
the L-PCFG being learned, there exist values α >
0 and β > 0 such that for each non-terminal a,
for each hidden state h ∈ [m], the following state-
ments are true: 1) ∃f ∈ F such that P (F =
f | H1 = h,A = a) > α and for all h′ 6= h,
P (F = f | H1 = h′, A = a) = 0; 2) ∃g ∈ G
such that P (G = g | H1 = h,A = a) > β and
for all h′ 6= h, P (G = g | H1 = h′, A = a) = 0.

This assumption is very similar to the assump-
tion made by Arora et al. (2012) in the con-
text of learning topic models. It implies that for
each (a, h) pair, there are inside and outside tree

features—which following Arora et al. (2012) we
refer to as pivot features—that occur only2 in the
presence of latent-state value h. As in (Arora et
al., 2012), the pivot features will give us consider-
able leverage in learning of the model.

4.2 The Learning Algorithm
Figure 1 shows the learning algorithm for L-
PCFGs. The algorithm consists of the following
steps:

Step 0: Calculate estimates p̂(a→ b c | a),
p̂(g, f2, f3 | a→ b c) and p̂(f, g | a). These
estimates are easily calculated using counts taken
from the training examples.

Step 1: Calculate values r̂(f | h, a) and ŝ(g |
h, a); these are estimates of p(f | h1, a) and
p(g | h1, a) respectively. This step is achieved us-
ing a matrix decomposition algorithm, described
in section 5 of this paper, on the matrix Q̂a with
entries [Q̂a]f,g = p̂(f, g | a).

Step 2: Use the EM algorithm to find t̂ values
that maximize the objective function in Eq. 1 (see
figure 1). Crucially, this is a convex optimization
problem, and the EM algorithm will converge to
the global maximum of this likelihood function.

Step 3: Rule estimates are calculated using an
application of the laws of probability.

Before giving a theorem concerning correctness
of the algorithm we introduce two assumptions:
Assumption 2 (Strict Convexity). If we have the
equalities ŝ(g | h1, a) = P (G = g | H1 =
h1, A = a), r̂(f2 | h2, b) = P (F2 = f2 | H2 =
h2, B = b) and r̂(f3 | h3, c) = P (F3 = f3 |
H2 = h3, C = c), then the function in Eq. 1 (fig-
ure 1) is strictly concave.

The function in Eq. 1 is always concave; this
assumption adds the restriction that the function
must be strictly concave—that is, it has a unique
global maximum—in the case that the r̂ and ŝ es-
timates are exact estimates.
Assumption 3 (Infinite Data). After running Step
0 of the algorithm we have

p̂(a→ b c | a) = p(a→ b c | a)
p̂(g, f2, f3 | a→ b c) = p(g, f2, f3 | a→ b c)

p̂(f, g | a) = p(f, g | a)
where p(. . .) is the probability under the underly-
ing L-PCFG.

2The requirements P (F = f | H1 = h′, A = a) = 0
and P (G = g | H1 = h′, A = a) = 0 are almost certainly
overly strict; in theory and practice these probabilities should
be able to take small but strictly positive values.

1054

We use the term “infinite data” because under
standard arguments, p̂(. . .) converges to p(. . .) as
M goes to∞.

The theorem is then as follows:

Theorem 1. Consider the algorithm in figure 1.
Assume that assumptions 1-3 (the pivot, strong
convexity, and infinite data assumptions) hold for
the underlying L-PCFG. Then there is some per-
mutation σ : [m] → [m] such that for all
a→ b c, h1, h2, h3,

t̂(a→ b c, h2, h3 | a→ b c, h1)
= t(a→ b c, σ(h2), σ(h3) | a→ b c, σ(h1))

where t̂ are the parameters in the output, and t are
the parameters of the underlying L-PCFG.

This theorem states that under assumptions 1-
3, the algorithm correctly learns the t parameters
of an L-PCFG, up to a permutation over the la-
tent states defined by σ. Given the assumptions we
have made, it is not possible to do better than re-
covering the correct parameter values up to a per-
mutation, due to symmetries in the model. As-
suming that the π and q parameters are recovered
in addition to the t parameters (see section 6.1),
the resulting model will define exactly the same
distribution over full trees as the underlying L-
PCFG up to this permutation, and will define ex-
actly the same distribution over skeletal trees, so
in this sense the permutation is benign.

Proof of theorem 1: Under the assumptions of
the theorem, Q̂af,g = p(f, g | a) =

∑
h p(h |

a)p(f | h, a)p(g | h, a). Under the pivot assump-
tion, and theorem 2 of section 5, step 1 (the matrix
decomposition step) will therefore recover values
r̂ and ŝ such that r̂(f | h, a) = p(f | σ(h), a) and
ŝ(g | h, a) = p(g | σ(h), a) for some permuta-
tion σ : [m] → [m]. For simplicity, assume that
σ(j) = j for all j ∈ [m] (the argument for other
permutations involves a straightforward extension
of the following argument). Under the assump-
tions of the theorem, p̂(g, f2, f3 | a→ b c) =
p(g, f2, f3 | a→ b c), hence the function being
optimized in Eq. 1 is equal to∑

g,f2,f3

p(g, f2, f3 | a→ b c) log κ(g, f2, f3)

where

κ(g, f2, f3) =
∑

h1,h2,h3

(
t̂(h1, h2, h3 | a→ b c)

×p(g | h1, a)p(f2 | h2, b)p(f3 | h3, c))

Now consider the optimization problem in Eq. 1.
By standard results for cross entropy, the maxi-
mum of the function∑
g,f2,f3

p(g, f2, f3 | a→ b c) log q(g, f2, f3 | a→ b c)

with respect to the q values is achieved at
q(g, f2, f3 | a→ b c) = p(g, f2, f3 | a→ b c). In
addition, under the assumptions of the L-PCFG,

p(g, f2, f3 | a→ b c)

=
∑

h1,h2,h3

(p(h1, h2, h3 | a→ b c)

×p(g | h1, a)p(f2 | h2, b)p(f3 | h3, c))

Hence the maximum of Eq. 1 is achieved at

t̂(h1, h2, h3 | a→ b c) = p(h1, h2, h3 | a→ b c)
(2)

because this gives κ(g, f2, f3) = p(g, f2, f3 |
a→ b c). Under the strict convexity assump-
tion the maximum of Eq. 1 is unique, hence the
t̂ values must satisfy Eq. 2. Finally, it follows
from Eq. 2, and the equality p̂(a→ b c | a) =
p(a→ b c | a), that Step 3 of the algorithm gives
t̂(a→ b c, h2, h3 | a, h1) = t(a→ b c, h2, h3 |
a, h1).

We can now see how the strict convexity as-
sumption is needed. Without this assumption,
there may be multiple settings for t̂ that achieve
κ(g, f2, f3) = p(g, f2, f3 | a→ b c); the values
t̂(h1, h2, h3 | a→ b c) = p(h1, h2, h3 | a→ b c)
will be included in this set of solutions, but other,
inconsistent solutions will also be included.

As an extreme example of the failure of the
strict convexity assumption, consider a feature-
vector definition with |F| = |G| = 1. In
this case the function in Eq. 1 reduces to
log
∑

h1,h2,h3
t̂(h1, h2, h3 | a→ b c). This func-

tion has a maximum value of 0, achieved at all val-
ues of t̂. Intuitively, this definition of inside and
outside tree features loses all information about
the latent states, and does not allow successful
learning of the underlying L-PCFG. More gener-
ally, it is clear that the strict convexity assumption
will depend directly on the choice of feature func-
tions τ(t) and ρ(o).

Remark: The infinite data assumption, and
sample complexity. The infinite data assump-
tion deserves more discussion. It is clearly a
strong assumption that there is sufficient data for

1055

Input: A set ofM skeletal trees sampled from some underlying L-PCFG. The count[. . .] function counts the number of times
that event . . . occurs in the training sample. For example, count[A = a] is the number of times random variableA takes value
a in the training sample.

Step 0: Calculate the following estimates from the training samples:

• p̂(a→ b c | a) = count[R1 = a→ b c]/count[A = a]

• p̂(g, f2, f3 | a→ b c) = count[G = g, F2 = f2, F3 = f3, R1 = a→ b c]/count[R1 = a→ b c]

• p̂(f, g | a) = count[F = f,G = g,A = a]/count[A = a]

• ∀a ∈ I, define a matrix Q̂a ∈ Rd×d′
where d = |F| and d′ = |G| as [Q̂a]f,g = p̂(f, g | a).

Step 1: ∀a ∈ I, use the algorithm in figure 2 with input Q̂a to derive estimates r̂(f | h, a) and ŝ(g | h, a).

Remark: These quantities are estimates of P (F1 = f | H1 = h,A = a) and P (G = g | H = h,A = a) respectively. Note
that under the independence assumptions of the L-PCFG,
P (F1 = f | H1 = h,A = a) = P (F2 = f | H2 = h,A2 = a) = P (F3 = f | H3 = h,A3 = a).

Step 2: For each rule a→ b c, find t̂(h1, h2, h3 | a→ b c) values that maximize∑
g,f2,f3

p̂(g, f2, f3 | a→ b c) log
∑

h1,h2,h3

t̂(h1, h2, h3 | a→ b c)ŝ(g | h1, a)r̂(f2 | h2, b)r̂(f3 | h3, c) (1)

under the constraints t̂(h1, h2, h3 | a→ b c) ≥ 0, and
∑

h1,h2,h3
t̂(h1, h2, h3 | a→ b c) = 1.

Remark: the function in Eq. 1 is concave in the values t̂ being optimized over. We use the EM algorithm, which converges to
a global optimum.

Step 3: ∀a→ b c, h1, h2, h3, calculate rule parameters as follows:

t̂(a→ b c, h2, h3 | a, h1) = t̂(a→ b c, h1, h2, h3 | a)/
∑

b,c,h2,h3

t̂(a→ b c, h1, h2, h3 | a)

where t̂(a→ b c, h1, h2, h3 | a) = p̂(a→ b c | a)× t̂(h1, h2, h3 | a→ b c).

Output: Parameter estimates t̂(a→ b c, h2, h3 | a, h1) for all rules a→ b c, for all (h1, h2, h3) ∈ [m]× [m]× [m].

Figure 1: The learning algorithm for the t(a→ b c, h1, h2, h3 | a) parameters of an L-PCFG.

the estimates p̂ in assumption 3 to have converged
to the correct underlying values. A more detailed
analysis of the algorithm would derive sample
complexity results, giving guarantees on the sam-
ple size M required to reach a level of accuracy
ε in the estimates, with probability at least 1 − δ,
as a function of ε, δ, and other relevant quantities
such as n, d, d′,m, α, β and so on.

In spite of the strength of the infinite data as-
sumption, we stress the importance of this result
as a guarantee for the algorithm. First, a guar-
antee of correct parameter values in the limit of
infinite data is typically the starting point for a
sample complexity result (see for example (Hsu
et al., 2009; Anandkumar et al., 2012)). Sec-
ond, our sense is that a sample complexity result
can be derived for our algorithm using standard
methods: specifically, the analysis in (Arora et

al., 2012) gives one set of guarantees; the remain-
ing optimization problems we solve are convex
maximum-likelihood problems, which are also
relatively easy to analyze. Note that several pieces
of previous work on spectral methods for latent-
variable models focus on algorithms that are cor-
rect under the infinite data assumption.

5 The Matrix Decomposition Algorithm

This section describes the matrix decomposition
algorithm used in Step 1 of the learning algorithm.

5.1 Problem Setting
Our goal will be to solve the following matrix de-
composition problem:

Matrix Decomposition Problem (MDP) 1. De-
sign an algorithm with the following inputs, as-
sumptions, and outputs:

1056

Inputs: Integers m, d and d′, and a matrix Q ∈
Rd×d′ such that Qf,g =

∑m
h=1 π(h)r(f | h)s(g |

h) for some unknown parameters π(h), r(f | h)
and s(g | h) satisfying:
1) π(h) ≥ 0,

∑m
h=1 π(h) = 1;

2) r(f | h) ≥ 0,
∑d

f=1 r(f | h) = 1;

3) s(g | h) ≥ 0,
∑d′

g=1 s(g | h) = 1.
Assumptions: There are values α > 0 and β >
0 such that the r parameters of the model are α-
separable, and the s parameters of the model are
β-separable.
Outputs: Estimates π̂(h), r̂(f | h) and ŝ(g | h)
such that there is some permutation σ : [m]→ [m]
such that ∀h, π̂(h) = π(σ(h)), ∀f, h, r̂(f |
h) = r(f | σ(h)), and ∀g, h, ŝ(g | h) = s(g |
σ(h)).

The definition of α-separability is as follows (β-
separability for s(g | h) is analogous):

Definition 2 (α-separability). The parameters
r(f | h) are α-separable if for all h ∈ [m], there
is some j ∈ [d] such that: 1) r(j | h) ≥ α; and 2)
r(j | h′) = 0 for h′ 6= h.

This matrix decomposition problem has clear
relevance to problems in learning of latent-
variable models, and in particular is a core step of
the algorithm in figure 1. When given a matrix Q̂a

with entries Q̂af,g =
∑

h p(h | a)p(f | h, a)p(g |
h, a), where p(. . .) refers to a distribution derived
from an underlying L-PCFG which satisfies the
pivot assumption, the method will recover the val-
ues for p(h | a), p(f | h, a) and p(g | h, a) up to a
permutation over the latent states.

5.2 The Algorithm of Arora et al. (2013)
This section describes a variant of the algorithm of
Arora et al. (2013), which is used as a component
of our algorithm for MDP 1. One of the proper-
ties of this algorithm is that it solves the following
problem:

Matrix Decomposition Problem (MDP) 2. De-
sign an algorithm with the following inputs, as-
sumptions, and outputs:
Inputs: Same as matrix decomposition problem 1.
Assumptions: The parameters r(f | h) of the
model are α-separable for some value α > 0.
Outputs: Estimates π̂(h) and r̂(f | h) such that
∃σ : [m] → [m] such that ∀h, π̂(h) = π(σ(h)),
∀f, h, r̂(f | h) = r(f | σ(h)).

This is identical to Matrix Decomposition Prob-
lem 1, but without the requirement that the values

s(g | h) are returned by the algorithm. Thus an
algorithm that solves MDP 2 in some sense solves
“one half” of MDP 1.

For completeness we give a sketch of the algo-
rithm that we use; it is inspired by the algorithm
of Arora et al. (2012), but has some important dif-
ferences. The algorithm is as follows:

Step 1: Derive a function φ : [d′] → Rl that
maps each integer g ∈ [d′] to a representation
φ(g) ∈ Rl. The integer l is typically much smaller
than d′, implying that the representation is of low
dimension. Arora et al. (2012) derive φ as a ran-
dom projection with a carefully chosen dimension
l. In our experiments, we use canonical correlation
analysis (CCA) on the matrixQ to give a represen-
tation φ(g) ∈ Rl where l = m.

Step 2: For each f ∈ [d], calculate

vf = E[φ(g) | f] =
d′∑
g=1

p(g | f)φ(g)

where p(g | f) = Qf,g/
∑

g Qf,g. It follows that

vf =
d′∑
g=1

m∑
h=1

p(h | f)p(g | h)φ(g) =
m∑
h=1

p(h | f)wh

where wh ∈ Rl is equal to
∑d′

g=1 p(g | h)φ(g).
Hence the vf vectors lie in the convex hull of a

set of vectors w1 . . . wm ∈ Rl. Crucially, for any
pivot word f for latent state h, we have p(h | f) =
1, hence vf = wh. Thus by the pivot assump-
tion, the set of points v1 . . . vd includes the ver-
tices of the convex hull. Each point vj is a convex
combination of the vertices w1 . . . wm, where the
weights in this combination are equal to p(h | j).

Step 3: Use the FastAnchorWords algo-
rithm of (Arora et al., 2012) to identify m vectors
vs1 , vs2 , . . . vsm . The FastAnchorWords algo-
rithm has the guarantee that there is a permutation
σ : [m]→ [m] such that vsi = wσ(i) for all i. This
algorithm recovers the vertices of the convex hull
described in step 2, using a method that greedily
picks points that are as far as possible from the
subspace spanned by previously picked points.

Step 4: For each f ∈ [d] solve the problem

arg min
γ1,γ2,...,γm

||
∑
h

γhvsh
− vf ||2

subject to γh ≥ 0 and
∑

h γh = 1. We use the
algorithm of (Frank and Wolfe, 1956; Clarkson,
2010) for this purpose. Set q(h | f) = γh.

1057

Return the final quantities:

π̂(h) =
∑
f

p(f)q(h|f) r̂(f |h) =
p(f)q(h|f)∑
f p(f)q(h|f)

where p(f) =
∑

g Qf,g.

5.3 An Algorithm for MDP 1

Figure 2 shows an algorithm that solves MDP 1.
In steps 1 and 2 of the algorithm, the algorithm
of section 5.2 is used to recover estimates r̂(f |
h) and ŝ(g | h). These distributions are equal to
p(f | h) and p(g | h) up to permutations σ and
σ′ of the latent states respectively; unfortunately
there is no guarantee that σ and σ′ are the same
permutation. Step 3 estimates parameters t(h′ |
h) that effectively map the permutation implied by
r̂(f | h) to the permutation implied by ŝ(g | h);
the latter distribution is recalculated as

∑
h′ t̂(h

′ |
h)ŝ(g | h′).

We now state the following theorem:

Theorem 2. The algorithm in figure 2 solves Ma-
trix Decomposition Problem 1.

Proof: See the supplementary material.
Remark: A natural alternative to the algorithm

presented would be to run Step 1 of the original
algorithm, but to replace steps 2 and 3 with a step
that finds ŝ(g | h) values that maximize∑

f,g

Qf,g log
∑
h

r̂(h | f)ŝ(g | h)

This is again a convex optimization problem. We
may explore this algorithm in future work.

6 Additional Details of the Algorithm

6.1 Recovery of the π and q Parameters

The recovery of the π and q parameters relies on
the following additional (but benign) assumptions
on the functions τ and ρ:

1) For any inside tree t such that t is a unary
rule of the form a → x, the function τ is defined
as τ(t) = t.3

2) The set of outside tree features G contains a
special symbol 2, and g(o) = 2 if and only if the
outside tree o is derived from a non-terminal node
at the root of a skeletal tree.

3Note that if other features on unary rules are desired,
we can use multiple feature functions τ1(t) . . . τK(t), where
τ1(t) = t for inside trees, and the functions τ2(t) . . . τK(t)
define other features.

Inputs: As in Matrix Decomposition Problem 1.

Assumptions: As in Matrix Decomposition Problem 1.

Algorithm:

Step 1. Run the algorithm of section 5.2 on the matrix Q
to derive estimates r̂(f | h) and π̂(h). Note that under
the guarantees of the algorithm, there is some permutation
σ such that r̂(f | h) = r(f | σ(h)). Define

r̂(h | f) =
r̂(f | h)π̂(h)∑
h r̂(f | h)π̂(h)

Step 2. Run the algorithm of section 5.2 on the matrix Q>

to derive estimates ŝ(g | h). Under the guarantees of the
algorithm, there is some permutation σ′ such that ŝ(g | h) =
s(g | σ′(h)). Note however that it is not necessarily the case
that σ = σ′.

Step 3. Find t̂(h′ | h) for all h, h′ ∈ [m] that maximize∑
f,g

Qf,g log
∑
h,h′

r̂(h | f)t̂(h′ | h)ŝ(g | h′) (3)

subject to t̂(h′ | h) ≥ 0, and ∀h, ∑h′ t̂(h
′ | h) = 1.

Remark: the function in Eq. 3 is concave in the t̂ parame-
ters. We use the EM algorithm to find a global optimum.

Step 4. Return the following values:

• π̂(h) for all h, as an estimate of π(σ(h)) for some
permutation σ.

• r̂(f | h) for all f, h as an estimate of r(f | σ(h)) for
the same permutation σ.

• ∑
h′ t̂(h

′ | h)ŝ(g | h′) as an estimate of s(f | σ(h))
for the same permutation σ.

Figure 2: The algorithm for Matrix Decomposition Problem 1

Under these assumptions, the algorithm in fig-
ure 1 recovers estimates π̂(a, h) and q̂(a → x |
a, h). Simply set

q̂(a→ x | a, h) = r̂(f | h, a) where f = a→ x

and π̂(a, h) = p̂(2, h, a)/
∑

h,a p̂(2, h, a) where
p̂(2, h, a) = ĝ(2 | h, a)p̂(h | a)p̂(a). Note that
p̂(h | a) can be derived from the matrix decompo-
sition step when applied to Q̂a, and p̂(a) is easily
recovered from the training examples.

6.2 Extension to Include Multiple Features

We now describe an extension to allowK separate
functions τ (k)(t) for k = 1 . . .K mapping inside
trees to features, and L feature functions ρ(l)(o)
for l = 1 . . . L over outside trees.

The algorithm in figure 1 can be extended as
follows. First, Step 1 of the algorithm (the matrix

1058

decomposition step) can be extended to provide
estimates r̂(k)(f (k) | h, a) and ŝ(l)(g(l) | h, a).
In brief, this involves running CCA on a matrix
E[φ(T)(ψ(O))> | A = a] where φ and ψ are in-
side and outside binary feature vectors derived di-
rectly from the inside and outside features, using
a one-hot representation. CCA results in a low-
dimensional representation that can be used in the
steps described in section 5.2; the remainder of the
algorithm is the same. In practice, the addition of
multiple features may lead to better CCA repre-
sentations.

Next, we modify the objective function in Eq. 1
to be the following:∑

i,j,k

∑
gi,fj

2 ,f
k
3

p(gi, f j2 , f
k
3 | a→ b c) log κi,j,k(gi, f j2 , f

k
3)

where
κi,j,k(gi, f j2 , f

k
3)

=
∑

h1,h2,h3

(
t̂(h1, h2, h3 | a→ b c)

×ŝi(gi | h1, a)r̂j(f
j
2 | h2, b)r̂k(fk3 | h3, c)

)
Thus the new objective function consists of a sum
ofL×M2 terms, each corresponding to a different
combination of inside and outside features. The
function remains concave.

6.3 Use as an Initializer for EM
The learning algorithm for L-PCFGs can be used
as an initializer for the EM algorithm for L-
PCFGs. Two-step estimation methods such as
these are well known in statistics; there are guar-
antees for example that if the first estimator is con-
sistent, and the second step finds the closest local
maxima of the likelihood function, then the result-
ing estimator is both consistent and efficient (in
terms of number of samples required). See for
example page 453 or Theorem 4.3 (page 454) of
(Lehmann and Casella, 1998).

7 Experiments on Parsing
This section describes parsing experiments using
the learning algorithm for L-PCFGs. We use the
Penn WSJ treebank (Marcus et al., 1993) for our
experiments. Sections 2–21 were used as training
data, and sections 0 and 22 were used as develop-
ment data. Section 23 was used as the test set.

The experimental setup is the same as described
by Cohen et al. (2013). The trees are bina-
rized (Petrov et al., 2006) and for the EM algo-
rithm we use the initialization method described

sec. 22 sec. 23
m 8 16 24 32

EM 86.69
40

88.32
30

88.35
30

88.56
20 87.76

Spectral 85.60 87.77 88.53 88.82 88.05
Pivot 83.56 86.00 86.87 86.40 85.83

Pivot+EM 86.83
2

88.14
6

88.64
2

88.55
2 88.03

Table 1: Results on the development data (section 22) and
test data (section 23) for various learning algorithms for L-
PCFGs. For EM and pivot+EM experiments, the second line
denotes the number of iterations required to reach the given
optimal performance on development data. Results for sec-
tion 23 are used with the best model for section 22 in the cor-
responding row. The results for EM and spectral are reported
from Cohen et al. (2013).

in Matsuzaki et al. (2005). For the pivot algo-
rithm we use multiple features τ1(t) . . . τK(t) and
ρ1(o) . . . ρL(o) over inside and outside trees, us-
ing the features described by Cohen et al. (2013).

Table 1 gives the F1 accuracy on the develop-
ment and test sets for the following methods:

EM: The EM algorithm as used by Matsuzaki et
al. (2005) and Petrov et al. (2006).

Spectral: The spectral algorithm of Cohen et al.
(2012) and Cohen et al. (2013).

Pivot: The algorithm described in this paper.
Pivot+EM: The algorithm described in this pa-

per, followed by 1 or more iterations of the
EM algorithm with parameters initialized by the
pivot algorithm. (See section 6.3.)

For the EM and Pivot+EM algorithms, we give
the number of iterations of EM required to reach
optimal performance on the development data.

The results show that the EM, Spectral, and
Pivot+EM algorithms all perform at a very similar
level of accuracy. The Pivot+EM results show that
very few EM iterations—just 2 iterations in most
conditions—are required to reach optimal perfor-
mance when the Pivot model is used as an ini-
tializer for EM. The Pivot results lag behind the
Pivot+EM results by around 2-3%, but they are
close enough to optimality to require very few EM
iterations when used as an initializer.

8 Experiments on the Saul and Pereira
(1997) Model for Language Modeling

We now describe a second set of experiments, on
the Saul and Pereira (1997) model for language
modeling. Define V to be the set of words in the
vocabulary. For any w1, w2 ∈ V , the Saul and
Pereira (1997) model then defines p(w2 | w1) =∑m

h=1 r(h | w1)s(w2 | h) where r(h | w1) and

1059

Brown NYT
m 2 4 8 16 32 128 256 test 2 4 8 16 32 128 256 test

EM 737
14

599
14

488
19

468
12

430
10

388
9

365
8 364 926

36
733
39

562
42

420
33

361
38

284
35

265
32 267

bi-KN +int. 408 415 271 279
tri-KN+int. 386 394 150 158
pivot 852 718 605 559 537 426 597 560 1227 1264 896 717 738 782 886 715

pivot+EM 758
2

582
3

502
2

425
1

374
1

310
1

327
1 357 898

20
754
14

553
13

441
15

394
10

279
19

292
12 281

Table 2: Language model perplexity with the Brown corpus and the Gigaword corpus (New York Times portion) for the second
half of the development set, and the test set. With EM and Pivot+EM, the number of iterations for EM to reach convergence is
given below the perplexity. The best result for each column (for each m value) is in bold. The “test” column gives perplexity
results on the test set. Each perplexity calculation on the test set is done using the best model on the development set. bi-KN+int
and tri-KN+int are bigram and trigram Kneser-Ney interpolated models (Kneser and Ney, 1995), using the SRILM toolkit.

s(w2 | h) are parameters of the approach. The
conventional approach to estimation of the param-
eters r(h | w1) and s(w2 | h) from a corpus is
to use the EM algorithm. In this section we com-
pare the EM algorithm to a pivot-based method.
It is straightforward to represent this model as an
L-PCFG, and hence to use our implementation for
estimation.

In this special case, the L-PCFG learning al-
gorithm is equivalent to a simple algorithm, with
the following steps: 1) define the matrix Q
with entries Qw1,w2 = count(w1, w2)/N where
count(w1, w2) is the number of times that bi-
gram (w1, w2) is seen in the data, and N =∑

w1,w2
count(w1, w2). Run the algorithm of sec-

tion 5.2 on Q to recover estimates ŝ(w2 | h); 2)
estimate r̂(h | w1) using the EM algorithm to op-
timize the function

∑
w1,w2

Qw1,w2 log
∑

h r̂(h |
w1)ŝ(w2 | h) with respect to the r̂ parameters;
this function is concave in these parameters.

We performed the language modeling experi-
ments for a number of reasons. First, because in
this case the L-PCFG algorithm reduces to a sim-
ple algorithm, it allows us to evaluate the core
ideas in the method very directly. Second, it al-
lows us to test the pivot method on the very large
datasets that are available for language modeling.

We use two corpora for our experiments. The
first is the Brown corpus, as used by Bengio et
al. (2006) in language modeling experiments. Fol-
lowing Bengio et al. (2006), we use the first 800K
words for training (and replace all words that ap-
pear once with an UNK token), the next 200K
words for development, and the remaining data
(165,171 tokens) as a test set. The size of the
vocabulary is 24,488 words. The second corpus
we use is the New York Times portion of the Gi-
gaword corpus. Here, the training set consists of
1.31 billion tokens. We use 159 million tokens for
development set and 156 million tokens for test.
All words that appeared less than 20 times in the

training set were replaced with the UNK token.
The size of the vocabulary is 235,223 words. Un-
known words in test data are ignored when calcu-
lating perplexity (this is the standard set-up in the
SRILM toolkit).

In our experiments we use the first half of each
development set to optimize the number of itera-
tions of the EM or Pivot+EM algorithms. As be-
fore, Pivot+EM uses 1 or more EM steps with pa-
rameter initialization from the Pivot method.

Table 2 gives perplexity results for the differ-
ent algorithms. As in the parsing experiments, the
Pivot method alone performs worse than EM, but
the Pivot+EM method gives results that are com-
petitive with EM. The Pivot+EM method requires
fewer iterations of EM than the EM algorithm.
On the Brown corpus the difference is quite dra-
matic, with only 1 or 2 iterations required, as op-
posed to 10 or more for EM. For the NYT cor-
pus the Pivot+EM method requires more iterations
(around 10 or 20), but still requires significantly
fewer iterations than the EM algorithm.

On the Gigaword corpus, with m = 256, EM
takes 12h57m (32 iterations at 24m18s per itera-
tion) compared to 1h50m for the Pivot method. On
Brown, EM takes 1m47s (8 iterations) compared
to 5m44s for the Pivot method. Both the EM and
pivot algorithm implementations were highly op-
timized, and written in Matlab. Results at other
values of m are similar. From these results the
Pivot method appears to become more competitive
speed-wise as the data size increases (the Giga-
word corpus is more than 1,300 times larger than
the Brown corpus).

9 Conclusion
We have described a new algorithm for parameter
estimation in L-PCFGs. The algorithm is provably
correct, and performs well in practice when used
in conjunction with EM.

1060

References
A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and

M. Telgarsky. 2012. Tensor decompositions for
learning latent-variable models. arXiv:1210.7559.

S. Arora, R. Ge, and A. Moitra. 2012. Learning
topic models–going beyond SVD. In Proceedings
of FOCS.

S. Arora, R. Ge, Y. Halpern, D. M. Mimno, A. Moitra,
D. Sontag, Y. Wu, and M. Zhu. 2013. A practical
algorithm for topic modeling with provable guaran-
tees. In Proceedings of ICML.

R. Bailly, A. Habrar, and F. Denis. 2010. A spectral
approach for probabilistic grammatical inference on
trees. In Proceedings of ALT.

B. Balle, A. Quattoni, and X. Carreras. 2011. A spec-
tral learning algorithm for finite state transducers. In
Proceedings of ECML.

Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and
J.-L. Gauvain. 2006. Neural probabilistic language
models. In Innovations in Machine Learning, pages
137–186. Springer.

K. L. Clarkson. 2010. Coresets, sparse greedy ap-
proximation, and the Frank-Wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):63.

S. B. Cohen, K. Stratos, M. Collins, D. F. Foster, and
L. Ungar. 2012. Spectral learning of latent-variable
PCFGs. In Proceedings of ACL.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and
L. Ungar. 2013. Experiments with spectral learn-
ing of latent-variable PCFGs. In Proceedings of
NAACL.

A. Dempster, N. Laird, and D. Rubin. 1977. Maxi-
mum likelihood estimation from incomplete data via
the EM algorithm. Journal of the Royal Statistical
Society B, 39:1–38.

P. Dhillon, J. Rodu, M. Collins, D. P. Foster, and L. H.
Ungar. 2012. Spectral dependency parsing with la-
tent variables. In Proceedings of EMNLP.

M. Frank and P. Wolfe. 1956. An algorithm for
quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110.

H. Hotelling. 1936. Relations between two sets of
variates. Biometrika, 28(3/4):321–377.

D. Hsu, S. M. Kakade, and T. Zhang. 2009. A spectral
algorithm for learning hidden Markov models. In
Proceedings of COLT.

R. Kneser and H. Ney. 1995. Improved backing-off
for m-gram language modeling. In Proceedings of
ICASSP.

E. L. Lehmann and G. Casella. 1998. Theory of Point
Estimation (Second edition). Springer.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn treebank. Computational Linguis-
tics, 19:313–330.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic CFG with latent annotations. In Proceedings
of ACL.

A. Parikh, L. Song, and E. P. Xing. 2011. A spectral
algorithm for latent tree graphical models. In Pro-
ceedings of ICML.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree
annotation. In Proceedings of COLING-ACL.

L. Saul and F. Pereira. 1997. Aggregate and mixed-
order markov models for statistical language pro-
cessing. In Proceedings of EMNLP.

S. Siddiqi, B. Boots, and G. Gordon. 2010. Reduced-
rank hidden markov models. Journal of Machine
Learning Research, 9:741–748.

1061

