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Abstract

Probabilistic Soft Logic (PSL) is a re-
cently developed framework for proba-
bilistic logic. We use PSL to combine
logical and distributional representations
of natural-language meaning, where distri-
butional information is represented in the
form of weighted inference rules. We ap-
ply this framework to the task of Seman-
tic Textual Similarity (STS) (i.e. judg-
ing the semantic similarity of natural-
language sentences), and show that PSL
gives improved results compared to a pre-
vious approach based on Markov Logic
Networks (MLNs) and a purely distribu-
tional approach.

1 Introduction

When will people say that two sentences are sim-
ilar? This question is at the heart of the Semantic
Textual Similarity task (STS)(Agirre et al., 2012).
Certainly, if two sentences contain many of the
same words, or many similar words, that is a good
indication of sentence similarity. But that can be
misleading. A better characterization would be to
say that if two sentences use the same or similar
words in the same or similar relations, then those
two sentences will be judged similar.1 Interest-
ingly, this characterization echoes the principle of
compositionality, which states that the meaning of
a phrase is uniquely determined by the meaning of
its parts and the rules that connect those parts.

Beltagy et al. (2013) proposed a hybrid ap-
proach to sentence similarity: They use a very

1Mitchell and Lapata (2008) give an amusing example of
two sentences that consist of all the same words, but are very
different in their meaning: (a) It was not the sales manager
who hit the bottle that day, but the office worker with the
serious drinking problem. (b) That day the office manager,
who was drinking, hit the problem sales worker with a bottle,
but it was not serious.

deep representation of sentence meaning, ex-
pressed in first-order logic, to capture sentence
structure, but combine it with distributional sim-
ilarity ratings at the word and phrase level. Sen-
tence similarity is then modelled as mutual entail-
ment in a probabilistic logic. This approach is in-
teresting in that it uses a very deep and precise
representation of meaning, which can then be re-
laxed in a controlled fashion using distributional
similarity. But the approach faces large hurdles
in practice, stemming from efficiency issues with
the Markov Logic Networks (MLN) (Richardson
and Domingos, 2006) that they use for performing
probabilistic logical inference.

In this paper, we use the same combined logic-
based and distributional framework as Beltagy et
al., (2013) but replace Markov Logic Networks
with Probabilistic Soft Logic (PSL) (Kimmig et
al., 2012; Bach et al., 2013). PSL is a proba-
bilistic logic framework designed to have efficient
inference. Inference in MLNs is theoretically in-
tractable in the general case, and existing approxi-
mate inference algorithms are computationally ex-
pensive and sometimes inaccurate. Consequently,
the MLN approach of Beltagy et al. (2013) was
unable to scale to long sentences and was only
tested on the relatively short sentences in the Mi-
crosoft video description corpus used for STS
(Agirre et al., 2012). On the other hand, inference
in PSL reduces to a linear programming problem,
which is theoretically and practically much more
efficient. Empirical results on a range of prob-
lems have confirmed that inference in PSL is much
more efficient than in MLNs, and frequently more
accurate (Kimmig et al., 2012; Bach et al., 2013).

We show how to use PSL for STS, and describe
changes to the PSL framework that make it more
effective for STS. For evaluation, we test on three
STS datasets, and compare our PSL system with
the MLN approach of Beltagy et al., (2013) and
with distributional-only baselines. Experimental
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results demonstrate that, overall, PSL models hu-
man similarity judgements more accurately than
these alternative approaches, and is significantly
faster than MLNs.

The rest of the paper is organized as follows:
section 2 presents relevant background material,
section 3 explains how we adapted PSL for the
STS task, section 4 presents the evaluation, and
sections 5 and 6 discuss future work and conclu-
sions, respectively.

2 Background

2.1 Logical Semantics

Logic-based representations of meaning have a
long tradition (Montague, 1970; Kamp and Reyle,
1993). They handle many complex semantic phe-
nomena such as relational propositions, logical
operators, and quantifiers; however, their binary
nature prevents them from capturing the “graded”
aspects of meaning in language. Also, it is difficult
to construct formal ontologies of properties and re-
lations that have broad coverage, and semantically
parsing sentences into logical expressions utilizing
such an ontology is very difficult. Consequently,
current semantic parsers are mostly restricted to
quite limited domains, such as querying a specific
database (Kwiatkowski et al., 2013; Berant et al.,
2013). In contrast, our system is not limited to any
formal ontology and can use a wide-coverage tool
for semantic analysis, as discussed below.

2.2 Distributional Semantics

Distributional models (Turney and Pantel, 2010),
on the other hand, use statistics on contextual
data from large corpora to predict semantic sim-
ilarity of words and phrases (Landauer and Du-
mais, 1997; Mitchell and Lapata, 2010). They are
relatively easier to build than logical representa-
tions, automatically acquire knowledge from “big
data,” and capture the “graded” nature of linguis-
tic meaning, but do not adequately capture logical
structure (Grefenstette, 2013).

Distributional models are motivated by the ob-
servation that semantically similar words occur in
similar contexts, so words can be represented as
vectors in high dimensional spaces generated from
the contexts in which they occur (Landauer and
Dumais, 1997; Lund and Burgess, 1996). Such
models have also been extended to compute vec-
tor representations for larger phrases, e.g. by
adding the vectors for the individual words (Lan-

dauer and Dumais, 1997) or by a component-wise
product of word vectors (Mitchell and Lapata,
2008; Mitchell and Lapata, 2010), or more com-
plex methods that compute phrase vectors from
word vectors and tensors (Baroni and Zamparelli,
2010; Grefenstette and Sadrzadeh, 2011). We use
vector addition (Landauer and Dumais, 1997), and
component-wise product (Mitchell and Lapata,
2008) as baselines for STS. Vector addition was
previously found to be the best performing sim-
ple distributional method for STS (Beltagy et al.,
2013).

2.3 Markov Logic Networks
Markov Logic Networks (MLN) (Richardson and
Domingos, 2006) are a framework for probabilis-
tic logic that employ weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks). Weighting the rules is a way of soft-
ening them compared to hard logical constraints
and thereby allowing situations in which not all
clauses are satisfied. MLNs define a probability
distribution over possible worlds, where a world’s
probability increases exponentially with the to-
tal weight of the logical clauses that it satisfies.
A variety of inference methods for MLNs have
been developed, however, developing a scalable,
general-purpose, accurate inference method for
complex MLNs is an open problem. Beltagy et
al. (2013) use MLNs to represent the meaning of
natural language sentences and judge textual en-
tailment and semantic similarity, but they were un-
able to scale the approach beyond short sentences
due to the complexity of MLN inference.

2.4 Probabilistic Soft Logic
Probabilistic Soft Logic (PSL) is a recently pro-
posed alternative framework for probabilistic logic
(Kimmig et al., 2012; Bach et al., 2013). It uses
logical representations to compactly define large
graphical models with continuous variables, and
includes methods for performing efficient proba-
bilistic inference for the resulting models. A key
distinguishing feature of PSL is that ground atoms
have soft, continuous truth values in the interval
[0, 1] rather than binary truth values as used in
MLNs and most other probabilistic logics. Given
a set of weighted logical formulas, PSL builds a
graphical model defining a probability distribution
over the continuous space of values of the random
variables in the model.

1211



A PSL model is defined using a set of weighted
if-then rules in first-order logic, as in the following
example:

∀x, y, z. friend(x, y) ∧ votesFor(y, z)→
votesFor(x, z) | 0.3 (1)

∀x, y, z. spouse(x, y) ∧ votesFor(y, z)→
votesFor(x, z) | 0.8 (2)

In our notation, we use lower case letters like
x, y, z to represent variables and upper case let-
ters for constants. The first rule states that a per-
son is likely to vote for the same person as his/her
friend. The second rule encodes the same regular-
ity for a person’s spouse. The weights encode the
knowledge that a spouse’s influence is greater than
a friend’s in this regard.

In addition, PSL includes similarity functions.
Similarity functions take two strings or two sets as
input and return a truth value in the interval [0, 1]
denoting the similarity of the inputs. For example,
in our application, we generate inference rules that
incorporate the similarity of two predicates. This
can be represented in PSL as:

∀x. similarity(“predicate1”, “predicate2”) ∧
predicate1(x)→ predicate2(x)

As mentioned above, each ground atom, a,
has a soft truth value in the interval [0, 1],
which is denoted by I(a). To compute soft truth
values for logical formulas, Lukasiewicz’s re-
laxation of conjunctions(∧), disjunctions(∨) and
negations(¬) are used:

I(l1 ∧ l1) = max{0, I(l1) + I(l2)− 1}
I(l1 ∨ l1) = min{I(l1) + I(l2), 1}
I(¬l1) = 1− I(l1)

Then, a given rule r ≡ rbody → rhead, is said to be
satisfied (i.e. I(r) = 1) iff I(rbody) ≤ I(rhead).
Otherwise, PSL defines a distance to satisfaction
d(r) which captures how far a rule r is from being
satisfied: d(r) = max{0, I(rbody) − I(rhead)}.
For example, assume we have the set of evidence:
I(spouse(B,A)) = 1, I(votesFor(A,P )) =
0.9, I(votesFor(B,P )) = 0.3, and that r
is the resulting ground instance of rule (2).
Then I(spouse(B,A) ∧ votesFor(A,P )) =
max{0, 1 + 0.9 − 1} = 0.9, and d(r) =
max{0, 0.9− 0.3} = 0.6.

Using distance to satisfaction, PSL defines a
probability distribution over all possible interpre-
tations I of all ground atoms. The pdf is defined
as follows:

p(I) =
1
Z

exp [−
∑
r∈R

λr(d(r))p]; (3)

Z =
∫

I
exp [−

∑
r∈R

λr(d(r))p]

where Z is the normalization constant, λr is the
weight of rule r, R is the set of all rules, and p ∈
{1, 2} provides two different loss functions. For
our application, we always use p = 1

PSL is primarily designed to support MPE in-
ference (Most Probable Explanation). MPE infer-
ence is the task of finding the overall interpretation
with the maximum probability given a set of evi-
dence. Intuitively, the interpretation with the high-
est probability is the interpretation with the lowest
distance to satisfaction. In other words, it is the
interpretation that tries to satisfy all rules as much
as possible. Formally, from equation 3, the most
probable interpretation, is the one that minimizes∑

r∈R λr(d(r))p. In case of p = 1, and given
that all d(r) are linear equations, then minimizing
the sum requires solving a linear program, which,
compared to inference in other probabilistic logics
such as MLNs, can be done relatively efficiently
using well-established techniques. In case p = 2,
MPE inference can be shown to be a second-order
cone program (SOCP) (Kimmig et al., 2012).

2.5 Semantic Textual Similarity
Semantic Textual Similarity (STS) is the task of
judging the similarity of a pair of sentences on
a scale from 0 to 5, and was recently introduced
as a SemEval task (Agirre et al., 2012). Gold
standard scores are averaged over multiple hu-
man annotations and systems are evaluated using
the Pearson correlation between a system’s out-
put and gold standard scores. The best perform-
ing system in 2012’s competition was by Bär et
al. (2012), a complex ensemble system that inte-
grates many techniques including string similarity,
n-gram overlap, WordNet similarity, vector space
similarity and MT evaluation metrics. Two of the
datasets we use for evaluation are from the 2012
competition. We did not utilize the new datasets
added in the 2013 competition since they did not
contain naturally-occurring, full sentences, which
is the focus of our work.
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2.6 Combining logical and distributional
methods using probabilistic logic

There are a few recent attempts to combine log-
ical and distributional representations in order to
obtain the advantages of both. Lewis and Steed-
man (2013) use distributional information to deter-
mine word senses, but still produce a strictly log-
ical semantic representation that does not address
the “graded” nature of linguistic meaning that is
important to measuring semantic similarity.

Garrette et al. (2011) introduced a framework
for combining logic and distributional models us-
ing probabilistic logic. Distributional similarity
between pairs of words is converted into weighted
inference rules that are added to the logical repre-
sentation, and Markov Logic Networks are used to
perform probabilistic logical inference.

Beltagy et al. (2013) extended this framework
by generating distributional inference rules from
phrase similarity and tailoring the system to the
STS task. STS is treated as computing the prob-
ability of two textual entailments T |= H and
H |= T , where T and H are the two sentences
whose similarity is being judged. These two en-
tailment probabilities are averaged to produce a
measure of similarity. The MLN constructed to
determine the probability of a given entailment
includes the logical forms for both T and H as
well as soft inference rules that are constructed
from distributional information. Given a similar-
ity score for all pairs of sentences in the dataset,
a regressor is trained on the training set to map
the system’s output to the gold standard scores.
The trained regressor is applied to the scores in
the test set before calculating Pearson correlation.
The regression algorithm used is Additive Regres-
sion (Friedman, 2002).

To determine an entailment probability, first,
the two sentences are mapped to logical repre-
sentations using Boxer (Bos, 2008), a tool for
wide-coverage semantic analysis that maps a CCG
(Combinatory Categorial Grammar) parse into a
lexically-based logical form. Boxer uses C&C for
CCG parsing (Clark and Curran, 2004).

Distributional semantic knowledge is then en-
coded as weighted inference rules in the MLN.
A rule’s weight (w) is a function of the cosine
similarity (sim) between its antecedent and con-
sequent. Rules are generated on the fly for each
T and H . Let t and h be the lists of all words
and phrases in T and H respectively. For all

pairs (a, b), where a ∈ t, b ∈ h, it generates
an inference rule: a → b | w, where w =
f(sim(−→a ,−→b )). Both a and b can be words or
phrases. Phrases are defined in terms of Boxer’s
output. A phrase is more than one unary atom
sharing the same variable like “a little kid” which
in logic is little(K) ∧ kid(K). A phrase also can
be two unary atoms connected by a relation like
“a man is driving” which in logic is man(M) ∧
agent(D,M) ∧ drive(D). The similarity func-
tion sim takes two vectors as input. Phrasal vec-
tors are constructed using Vector Addition (Lan-
dauer and Dumais, 1997). The set of generated
inference rules can be regarded as the knowledge
base KB.

Beltagy et al. (2013) found that the logical con-
junction in H is very restrictive for the STS task,
so they relaxed the conjunction by using an aver-
age evidence combiner (Natarajan et al., 2010).
The average combiner results in computationally
complex inference and only works for short sen-
tences. In case inference breaks or times-out, they
back off to a simpler combiner that leads to much
faster inference but loses most of the structure of
the sentence and is therefore less accurate.

Given T , KB and H from the previous
steps, MLN inference is then used to compute
p(H|T,KB), which is then used as a measure of
the degree to which T entails H .

3 PSL for STS

For several reasons, we believe PSL is a more ap-
propriate probabilistic logic for STS than MLNs.
First, it is explicitly designed to support efficient
inference, therefore it scales better to longer sen-
tences with more complex logical forms. Sec-
ond, it was also specifically designed for com-
puting similarity between complex structured ob-
jects rather than determining probabilistic logical
entailment. In fact, the initial version of PSL
(Broecheler et al., 2010) was called Probabilis-
tic Similarity Logic, based on its use of similar-
ity functions. This initial version was shown to be
very effective for measuring the similarity of noisy
database records and performing record linkage
(i.e. identifying database entries referring to the
same entity, such as bibliographic citations refer-
ring to the same paper). Therefore, we have devel-
oped an approach that follows that of Beltagy et
al. (2013), but replaces Markov Logic with PSL.

This section explains how we formulate the STS
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task as a PSL program. PSL does not work very
well “out of the box” for STS, mainly because
Lukasiewicz’s equation for the conjunction is very
restrictive. Therefore, we use a different interpre-
tation for conjunction that uses averaging, which
requires corresponding changes to the optimiza-
tion problem and the grounding technique.

3.1 Representation
Given the logical forms for a pair of sentences,
a text T and a hypothesis H , and given a set of
weighted rules derived from the distributional se-
mantics (as explained in section 2.6) composing
the knowledge base KB, we build a PSL model
that supports determining the truth value of H in
the most probable interpretation (i.e. MPE) given
T and KB.

Consider the pair of sentences is “A man is driv-
ing”, and “A guy is walking”. Parsing into logical
form gives:

T : ∃x, y. man(x) ∧ agent(y, x) ∧ drive(y)
H : ∃x, y. guy(x) ∧ agent(y, x) ∧ walk(y)
The PSL program is constructed as follows:

T : The text is represented in the evidence set. For
the example, after Skolemizing the existential
quantifiers, this contains the ground atoms:
{man(A), agent(B,A), drive(B)}

KB: The knowledge base is a set of lexical and
phrasal rules generated from distributional
semantics, along with a similarity score for
each rule (section 2.6). For the exam-
ple, we generate the rules: ∀x. man(x) ∧
vs sim(“man”, “guy”)→ guy(x) ,
∀x.drive(x)∧vs sim(“drive”, “walk”)→
walk(x)

where vs sim is a similarity function that
calculates the distributional similarity score
between the two lexical predicates. All rules
are assigned the same weight because all
rules are equally important.

H: The hypothesis is represented as H →
result(), and then PSL is queried for the
truth value of the atom result(). For
our example, the rule is: ∀x, y. guy(x) ∧
agent(y, x) ∧ walk(y)→ result().

Priors: A low prior is given to all predicates. This
encourages the truth values of ground atoms

to be zero, unless there is evidence to the con-
trary.

For each STS pair of sentences S1, S2, we run
PSL twice, once where T = S1, H = S2 and
another where T = S2, H = S1, and output the
two scores. To produce a final similarity score, we
train a regressor to learn the mapping between the
two PSL scores and the overall similarity score.
As in Beltagy et al., (2013) we use Additive Re-
gression (Friedman, 2002).

3.2 Changing Conjunction

As mentioned above, Lukasiewicz’s formula for
conjunction is very restrictive and does not work
well for STS. For example, for T: “A man is driv-
ing” and H: “A man is driving a car”, if we use the
standard PSL formula for conjunction, the output
value is zero because there is no evidence for a car
and max(0, X + 0 − 1) = 0 for any truth value
0 ≤ X ≤ 1. However, humans find these sen-
tences to be quite similar.

Therefore, we introduce a new averaging inter-
pretation of conjunction that we use for the hy-
pothesis H . The truth value for a conjunction
is defined as I(p1 ∧ .... ∧ pn) = 1

n

∑n
i=1 I(pi).

This averaging function is linear, and the result is
a valid truth value in the interval [0, 1], therefore
this change is easily incorporated into PSL with-
out changing the complexity of inference which
remains a linear-programming problem.

It would perhaps be even better to use a
weighted average, where weights for different
components are learned from a supervised train-
ing set. This is an important direction for future
work.

3.3 Grounding Process

Grounding is the process of instantiating the vari-
ables in the quantified rules with concrete con-
stants in order to construct the nodes and links in
the final graphical model. In principle, ground-
ing requires instantiating each rule in all possible
ways, substituting every possible constant for each
variable in the rule. However, this is a combinato-
rial process that can easily result in an explosion in
the size of the final network. Therefore, PSL em-
ploys a “lazy” approach to grounding that avoids
the construction of irrelevant groundings. If there
is no evidence for one of the antecedents in a par-
ticular grounding of a rule, then the normal PSL
formula for conjunction guarantees that the rule is
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Algorithm 1 Heuristic Grounding
Input: rbody = a1∧ ....∧an: antecedent of a rule

with average interpretation of conjunction
Input: V : set of variables used in rbody

Input: Ant(vi): subset of antecedents aj con-
taining variable vi

Input: Const(vi): list of possible constants of
variable vi

Input: Gnd(ai): set of ground atoms of ai.
Input: GndConst(a, g, v): takes an atom a,

grounding g for a, and variable v, and returns
the constant that substitutes v in g

Input: gnd limit: limit on the number of
groundings

1: for all vi ∈ V do
2: for all C ∈ Const(vi) do
3: score(C) =

∑
a∈Ant(vi)

(max I(g))
for g ∈ Gnd(a) ∧GndConst(a, g, vi) = C

4: end for
5: sort Const(vi) on scores, descending
6: end for
7: return For all vi ∈ V , take the Cartesian-

product of the sortedConst(vi) and return the
top gnd limit results

trivially satisfied (I(r) = 1) since the truth value
of the antecedent is zero. Therefore, its distance to
satisfaction is also zero, and it can be omitted from
the ground network without impacting the result of
MPE inference.

However, this technique does not work once
we switch to using averaging to interpret conjunc-
tions. For example, given the rule ∀x. p(x) ∧
q(x) → t() and only one piece of evidence p(C)
there are no relevant groundings because there is
no evidence for q(C), and therefore, for normal
PSL, I(p(C) ∧ q(C)) = 0 which does not affect
I(t()). However, when using averaging with the
same evidence, we need to generate the grounding
p(C)∧q(C) because I(p(C)∧q(C)) = 0.5 which
does affect I(t()).

One way to solve this problem is to eliminate
lazy grounding and generate all possible ground-
ings. However, this produces an intractably large
network. Therefore, we developed a heuristic ap-
proximate grounding technique that generates a
subset of the most impactful groundings.

Pseudocode for this heuristic approach is shown
in algorithm 1. Its goal is to find constants that
participate in ground propositions with high truth
value and preferentially use them to construct a

limited number of groundings of each rule.
The algorithm takes the antecedents of a rule

employing averaging conjunction as input. It also
takes the grounding limit which is a threshold on
the number of groundings to be returned. The al-
gorithm uses several subroutines, they are:

• Ant(vi): given a variable vi, it returns the set
of rule antecedent atoms containing vi. E.g,
for the rule: a(x) ∧ b(y) ∧ c(x), Ant(x) re-
turns the set of atoms {a(x), c(x)}.

• Const(vi): given a variable vi, it returns the
list of possible constants that can be used to
instantiate the variable vi.

• Gnd(ai): given an atom ai, it returns the set
of all possible ground atoms generated for ai.

• GndConst(a, g, v): given an atom a and
grounding g for a, and a variable v, it finds
the constant that substitutes for v in g. E.g,
assume there is an atom a = ai(v1, v2), and
the ground atom g = ai(A,B) is one of its
groundings. GndConst(a, g, v2) would re-
turn the constant B since it is the substitution
for the variable v2 in g.

Lines 1-6 loop over all variables in the rule. For
each variable, lines 2-5 construct a list of constants
for that variable and sort it based on a heuristic
score. In line 3, each constant is assigned a score
that indicates the importance of this constant in
terms of its impact on the truth value of the overall
grounding. A constant’s score is the sum, over all
antedents that contain the variable in question, of
the maximum truth value of any grounding of that
antecedent that contains that constant.

Pushing constants with high scores to the top
of each variable’s list will tend to make the over-
all truth value of the top groundings high. Line
7 computes a subset of the Cartesian product of
the sorted lists of constants, selecting constants in
ranked order and limiting the number of results to
the grounding limit.

One point that needs to be clarified about this
approach is how it relies on the truth values of
ground atoms when the goal of inference is to ac-
tually find these values. PSL’s inference is ac-
tually an iterative process where in each itera-
tion a grounding phase is followed by an opti-
mization phase (solving the linear program). This
loop repeats until convergence, i.e. until the truth
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values stop changing. The truth values used in
each grounding phase come from the previous op-
timization phase. The first grounding phase as-
sumes only the propositions in the evidence pro-
vided have non-zero truth values.

4 Evaluation

This section evaluates the performance of PSL on
the STS task.

4.1 Datasets
We evaluate our system on three STS datasets.

• msr-vid: Microsoft Video Paraphrase Cor-
pus from STS 2012. The dataset consists
of 1,500 pairs of short video descriptions
collected using crowdsourcing (Chen and
Dolan, 2011) and subsequently annotated for
the STS task (Agirre et al., 2012). Half of
the dataset is for training, and the second half
is for testing.

• msr-par: Microsoft Paraphrase Corpus from
STS 2012 task. The dataset is 5,801
pairs of sentences collected from news
sources (Dolan et al., 2004). Then, for STS
2012, 1,500 pairs were selected and anno-
tated with similarity scores. Half of the
dataset is for training, and the second half is
for testing.

• SICK: Sentences Involving Compositional
Knowledge is a dataset collected for SemEval
2014. Only the training set is available at this
point, which consists of 5,000 pairs of sen-
tences. Pairs are annotated for RTE and STS,
but we only use the STS data. Training and
testing was done using 10-fold cross valida-
tion.

4.2 Systems Compared
We compare our PSL system with several others.
In all cases, we use the distributional word vec-
tors employed by Beltagy et al. (2013) based on
context windows from Gigaword.

• vec-add: Vector Addition (Landauer and
Dumais, 1997). We compute a vector rep-
resentation for each sentence by adding the
distributional vectors of all of its words and
measure similarity using cosine. This is a
simple yet powerful baseline that uses only
distributional information.

• vec-mul: Component-wise Vector Multipli-
cation (Mitchell and Lapata, 2008). The
same as vec-add except uses component-
wise multiplication to combine word vectors.

• MLN: The system of Beltagy et al. (2013),
which uses Markov logic instead of PSL for
probabilistic inference. MLN inference is
very slow in some cases, so we use a 10
minute timeout. When MLN times out, it
backs off to a simpler sentence representation
as explained in section 2.6.

• PSL: Our proposed PSL system for combin-
ing logical and distributional information.

• PSL-no-DIR: Our PSL system without dis-
tributional inference rules(empty knowledge
base). This system uses PSL to compute sim-
ilarity of logical forms but does not use dis-
tributional information on lexical or phrasal
similarity. It tests the impact of the proba-
bilistic logic only

• PSL+vec-add: PSL ensembled with vec-
add. Ensembling the MLN approach with a
purely distributional approach was found to
improve results (Beltagy et al., 2013), so we
also tried this with PSL. The methods are en-
sembled by using both entailment scores of
both systems as input features to the regres-
sion step that learns to map entailment scores
to STS similarity ratings. This way, the train-
ing data is used to learn how to weight the
contribution of the different components.

• PSL+MLN: PSL ensembled with MLN in
the same manner.

4.3 Experiments
Systems are evaluated on two metrics, Pearson
correlation and average CPU time per pair of sen-
tences.

• Pearson correlation: The Pearson correlation
between the system’s similarity scores and
the human gold-standards.

• CPU time: This metric only applies to MLN
and PSL. The CPU time taken by the infer-
ence step is recorded and averaged over all
pairs in each of the test datasets. In many
cases, MLN inference is very slow, so we
timeout after 10 minutes and report the num-
ber of timed-out pairs on each dataset.
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msr-vid msr-par SICK
vec-add 0.78 0.24 0.65
vec-mul 0.76 0.12 0.62
MLN 0.63 0.16 0.47
PSL-no-DIR 0.74 0.46 0.68
PSL 0.79 0.53 0.70
PSL+vec-add 0.83 0.49 0.71
PSL+MLN 0.79 0.51 0.70
Best Score (Bär
et al., 2012)

0.87 0.68 n/a

Table 1: STS Pearson Correlations

PSL MLN
time time timeouts/total

msr-vid 8s 1m 31s 132/1500
msr-par 30s 11m 49s 1457/1500
SICK 10s 4m 24s 1791/5000

Table 2: Average CPU time per STS pair, and
number of timed-out pairs in MLN with a 10
minute time limit. PSL’s grounding limit is set to
10,000 groundings.

We also evaluated the effect of changing the
grounding limit on both Pearson correlation and
CPU time for the msr-par dataset. Most of the
sentences in msr-par are long, which results is
large number of groundings, and limiting the num-
ber of groundings has a visible effect on the over-
all performance. In the other two datasets, the
sentences are fairly short, and the full number of
groundings is not large; therefore, changing the
grounding limit does not significantly affect the re-
sults.

4.4 Results and Discussion

Table 1 shows the results for Pearson correlation.
PSL out-performs the purely distributional base-
lines (vec-add and vec-mul) because PSL is able
to combine the information available to vec-add
and vec-mul in a better way that takes sentence
structure into account. PSL also outperforms
the unaided probabilistic-logic baseline that does
not use distributional information (PSL-no-DIR).
PSL-no-DIR works fairly well because there is
significant overlap in the exact words and struc-
ture of the paired sentences in the test data, and
PSL combines the evidence from these similari-
ties effectively. In addition, PSL always does sig-
nificantly better than MLN, because of the large

Figure 1: Effect of PSL’s grounding limit on the
correlation score for the msr-par dataset

number of timeouts, and because the conjunction-
averaging in PSL is combining evidence bet-
ter than MLN’s average-combiner, whose perfor-
mance is sensitive to various parameters. These
results further support the claim that using prob-
abilistic logic to integrate logical and distribu-
tional information is a promising approach to
natural-language semantics. More specifically,
they strongly indicate that PSL is a more effective
probabilistic logic for judging semantic similarity
than MLNs.

Like for MLNs (Beltagy et al., 2013), en-
sembling PSL with vector addition improved the
scores a bit, except for msr-par where vec-add’s
performance is particularly low. However, this en-
semble still does not beat the state of the art (Bär et
al., 2012) which is a large ensemble of many dif-
ferent systems. It would be informative to add our
system to their ensemble to see if it could improve
it even further.

Table 2 shows the CPU time for PSL and MLN.
The results clearly demonstrate that PSL is an or-
der of magnitude faster than MLN.

Figures 1 and 2 show the effect of changing the
grounding limit on Pearson correlation and CPU
time. As expected, as the grounding limit is in-
creased, accuracy improves but CPU time also
increases. However, note that the difference in
scores between the smallest and largest grounding
limit tested is not large, suggesting that the heuris-
tic approach to limiting grounding is quite effec-
tive.

5 Future Work

As mentioned in Section 3.2, it would be good
to use a weighted average to compute the truth
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Figure 2: Effect of PSL’s grounding limit on CPU
time for the msr-par dataset

values for conjunctions, weighting some predi-
cates more than others rather than treating them
all equally. Appropriate weights for different com-
ponents could be learned from training data. For
example, such an approach could learn that the
type of an object determined by a noun should be
weighted more than a property specified by an ad-
jective. As a result, “black dog” would be appro-
priately judged more similar to “white dog” than
to “black cat.”

One of the advantages of using a probabilis-
tic logic is that additional sources of knowledge
can easily be incorporated by adding additional
soft inference rules. To complement the soft in-
ference rules capturing distributional lexical and
phrasal similarities, PSL rules could be added that
encode explicit paraphrase rules, such as those
mined from monolingual text (Berant et al., 2011)
or multi-lingual parallel text (Ganitkevitch et al.,
2013).

This paper has focused on STS; however, as
shown by Beltagy et al. (2013), probabilistic logic
is also an effective approach to recognizing tex-
tual entailment (RTE). By using the appropriate
functions to combine truth values for various log-
ical connectives, PSL could also be adapted for
RTE. Although we have shown that PSL outper-
forms MLNs on STS, we hypothesize that MLNs
may still be a better approach for RTE. However, it
would be good to experimentally confirm this in-
tuition. In any case, the high computational com-
plexity of MLN inference could mean that PSL is
still a more practical choice for RTE.

6 Conclusion

This paper has presented an approach that uses
Probabilistic Soft Logic (PSL) to determine Se-
mantic Textual Similarity (STS). The approach
uses PSL to effectively combine logical seman-
tic representations of sentences with soft infer-
ence rules for lexical and phrasal similarities com-
puted from distributional information. The ap-
proach builds upon a previous method that uses
Markov Logic (MLNs) for STS, but replaces the
probabilistic logic with PSL in order to improve
the efficiency and accuracy of probabilistic infer-
ence. The PSL approach was experimentally eval-
uated on three STS datasets and was shown to out-
perform purely distributional baselines as well as
the MLN approach. The PSL approach was also
shown to be much more scalable and efficient than
using MLNs
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