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Abstract

This paper presents the first
computationally-derived scalar mea-
surement of metaphoricity. Each input
sentence is given a value between 0
and 1 which represents how metaphoric
that sentence is. This measure achieves
a correlation of 0.450 (Pearson’s R, p
<0.01) with an experimental measure of
metaphoricity involving human partici-
pants. While far from perfect, this scalar
measure of metaphoricity allows different
thresholds for metaphoricity so that
metaphor identification can be fitted for
specific tasks and datasets. When reduced
to a binary classification evaluation using
the VU Amsterdam Metaphor Corpus,
the system achieves an F-Measure of
0.608, slightly lower than the comparable
binary classification system’s 0.638 and
competitive with existing approaches.

1 Introduction

Metaphor is a cognitive phenomenon (Lakoff &
Johnson, 1980, 1999) which has a significant im-
pact on human reasoning abilities (Casasanto &
Jasmin, 2012; Johansson Falk & Gibbs, 2012)
and which, as a result, commonly appears in lan-
guage in the form of metaphoric expressions (e.g.,
Deignan, 2005). The most comprehensive non-
computational study of metaphoric expressions in
large corpora (Steen, et al., 2010) found that up
to 18.5% of words in the British National Cor-
pus were used metaphorically. This means that
metaphorically used words not only have very dif-
ferent interpretations than literally used words, but
they are also common enough to pose a significant
challenge for computational linguistics.

Starting with Wilks (1978), the problem of
metaphor has been approached as an identifica-

tion task: first identify or detect metaphoric ex-
pressions and then (1) prevent them from inter-
fering with computational treatments of literal ex-
pressions and (2) use them to gain additional in-
sight about a text (e.g., Carbonell, 1980; Neuman
& Nave, 2009). The identification or detection
task has been approached as a binary classification
problem: for a given unit of language (e.g., word,
phrase, sentence) decide whether it is metaphoric
or non-metaphoric. Wilks (1978) used selectional
restrictions for this purpose; Mason (2004) used
hand-crafted knowledge resources to detect sim-
ilar selectional mismatches; another approach is
to detect selectional mismatches using statistically
created resources (e.g., Shutova, et al. 2013;
Shutova & Sun, 2013). A second general approach
to the binary classification problem has been to use
mismatches in properties like abstractness (Gandy,
et al., 2013; Assaf, et al., 2013; Tsvetkov, et al.,
2013; Turney, et al., 2011), semantic similarity
(Li & Sporleder, 2010; Sporleder & Li, 2010),
and domain membership (Dunn, 2013a, 2013b) to
identify metaphoric units of language. A third ap-
proach has been to use forms of topic modelling
to identify linguistic units which represent both a
metaphoric topic and a literal topic (Strzalkowski,
2013; Bracewell, et al, 2013; Mohler, et al., 2013).

The single constant across all of these ap-
proaches is that the task is viewed as a binary clas-
sification problem of distinguishing metaphoric
language from non-metaphoric language. This
binary distinction assumes a clear boundary be-
tween the two; in other words, it assumes that
metaphoricity is a discrete property. However,
three strands of theoretical research show that
metaphoricity is not a discrete property. First,
psycholinguistic studies of metaphor processing
show that there is no difference between the pro-
cessing of metaphoric and non-metaphoric lan-
guage (Coulson & Matlock, 2001; Gibbs, 2002;
Evans, 2010). The most plausible interpretation
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of this psycholinguistic evidence is that most lin-
guistic units fall somewhere between metaphoric
and literal, so that metaphoricity is a scalar value
which influences processing gradually (and is dif-
ficult to uncover because of related factors like
salience; Giora, 2002). Second, linguistic stud-
ies of metaphor have found that the metaphoric-
ity of a linguistic unit can be predicted given
certain factors (Dunn, 2011, 2013c). Third, the
high frequency of metaphorically used language
implies that it is hard to set a boundary beyond
which a word is used metaphorically. In other
words, it seems clear that 18.5% of the BNC is not
highly metaphoric, but rather is the sort of slightly
metaphoric language that speakers are not con-
sciously aware of because it is used so frequently.

This paper introduces a system for produc-
ing a scalar measurement of metaphoricity which
places sentences anywhere between 0 (literal) and
1 (highly metaphoric). The goal is to produce a
computationally derived measurement that mod-
els the gradient nature of metaphoricity, with the
result that metaphors which are clearly and con-
sciously seen as metaphors score closer to 1 and
metaphors which are not realized by speakers to
be metaphoric score further from 1. This scalar
measurement approach has two advantages: (1) it
adheres more closely to the current theoretical un-
derstanding of metaphor, thus being more cogni-
tively accurate; (2) it allows applications to control
the threshold of metaphoricity when identifying
metaphor, thus allowing the treatment of metaphor
to be optimized for a given task.

2 Measuring Gradient Metaphoricity

An experiment was conducted to set a standard for
evaluating scalar measurements of metaphoricity.
A corpus of 60 sentences of varying metaphoric-
ity, drawn equally from four top-level domains
(PHYSICAL, MENTAL, SOCIAL, and ABSTRACT),
was created using the Corpus of Contemporary
American English. Each domain was represented
by five verbs and each verb by three sentences:
one literal, one slightly metaphoric, and one very
metaphoric (as judged by the author).

The selection of various domains, verbs, and
hypothesized metaphoricity levels helps to control
for other factors, like abstractness, which might be
only indirectly related to metaphoricity. It also en-
sures that the experiment covers a wide-range of
metaphors. It should be noted that the purpose

of the experiment is not to (1) test a three-way
distinction between metaphoricity levels (which is
simply used to ensure a representative selection
of metaphors) or (2) test the author’s intuitions
of metaphoricity. Rather, the purpose is to have
a representative selection of metaphors rated for
metaphoricity against which to test scalar mea-
surements of metaphoricity.

Three survey tasks were used. The first
tested speakers’ ability to consistently separate
metaphoric and non-metaphoric sentences. Partic-
ipants were given a sentence and asked to iden-
tify it as “Literal” or “Metaphoric.” The second
task tested speakers’ ability to consistently label
a given sentence as “Not Metaphoric”, “Slightly
Metaphoric”, and “Very Metaphoric.” The addi-
tional label was added in order to provide partic-
ipants with a middle ground between metaphoric
and literal. The third task tested speakers’ ability
to consistently rank three sentences according to
their metaphoricity. In order to ensure comparabil-
ity, each set of three sentences contained a literal, a
slightly metaphoric, and a very metaphoric use of
a single verb (e.g., three uses of “butcher”). The
purpose of this task was to allow participants to
directly compare different uses of the same verb.

The surveys were conducted using the Mechan-
icalTurk platform. Each participant took a particu-
lar survey only once and the sentences to be rated
were drawn randomly from the corpus. Partici-
pants were given eight questions for the identifica-
tion and labeling tasks and four questions for the
ranking task. This was done in order to keep the
survey short and prevent participants from losing
interest. All participants were asked if they had at-
tended a primary or elementary school conducted
in English in order to ensure consistent language
ability. Further, a test question was positioned part
way through the survey to ensure that participants
read the prompts correctly. Only answers valid ac-
cording to these two tests are considered in the fol-
lowing results. Each task had 100 unique partici-
pants who gave valid answers, for a total of 300
participants. Participants did not see any domain
information for the sentence prompts.

For the first task, the binary identification task,
the metaphoricity of a sentence was computed by
taking the percentage of participants who iden-
tified it as metaphoric. Thus, if all participants
agreed that a sentence was metaphoric, then it re-
ceives a 1, while if half of the participants agreed,
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then it receives a 0.5. The idea here is that high
metaphoricity is consciously available to partici-
pants, so that the more agreement there is about
metaphor the more the participants are aware of
the sentence’s metaphoricity and thus the higher
its metaphoricity value should be. The results of
this first experiment are summarized in Table 1
with the mean, standard deviation, and range of
the metaphoricity measurements. The results are
strong on the low end of the scale, with every
domain having sentences with either 0 values or
close to 0 values. The high end is more problem-
atic, with the highest values in each domain be-
ing below 0.9. This is a result of not having per-
fect agreement across all participants. However,
in spite of this, the measure makes a good distinc-
tion between utterances. For example, it assigns
the metaphoricity value of 0.833 to the sentence
in (1), but a metaphoricity value of only 0.153 to
the sentence in (2). This reflects a distinction in
metaphoricity, although the extreme top and bot-
tom of the scale are problematic.

(1) “A lady on high heels clacked along, the type
my mother says invests all of her brainpower in her
looks.”

(2) “The banks and the corporations in America
today have lots of money that they can invest right
now.”

Domain Mean Std. Dev. Range
Abstract 0.373 0.282 0.065–0.833
Mental 0.289 0.278 0.000–0.888
Physical 0.417 0.331 0.000–0.846
Social 0.389 0.351 0.000–0.812
All 0.367 0.316 0.000–0.888

Table 1: Metaphoricity by identification.

The second experiment asks participants to
label metaphoricity, this time including a dis-
tinction between slightly metaphoric and highly
metaphoric sentences. The purpose of this is not
to test a three-way distinction in metaphoricity
values, but rather to improve the scale by mov-
ing intermediate sentences out of the Literal or
Metaphoric categories. The metaphoricity values
for this experiment were calculated in the same
way: the percentage of participants who rated a
sentence as highly metaphoric. Thus, this mea-
surement also is based on the idea that more
participants will be consciously aware of highly
metaphoric sentences, with a third category avail-

able to allow an extra distinction to be made. This
measurement, summarized in Table 2, is more ac-
curate at the lower end of the scale, with many
sentences receiving a 0 because participants were
able to choose a category other than metaphoric.
At the same time, the values tend to be further
from 1 at the upper end of the scale. The sentence
in (2) above, for example, received a 0; however,
the sentence in (1) above received only a 0.571,
which, while high given the range of values, is still
far from 1. Thus, while the measurement makes
distinctions at the top of the scale, it does not ap-
proach 1.

Domain Mean Std. Dev. Range
Abstract 0.170 0.165 0.000–0.571
Mental 0.096 0.119 0.000–0.455
Physical 0.220 0.248 0.000–0.778
Social 0.258 0.281 0.000–0.769
All 0.186 0.222 0.000–0.778

Table 2: Metaphoricity by labelling.

The third task gathered ordering information by
presenting participants with three sentences, all of
which contained the same main verb. The par-
ticipants were asked to order the sentences from
the least metaphoric to the most metaphoric. The
purpose of this experiment was to give partici-
pants context in the form of other uses of a given
verb against which to make their judgments. The
metaphoricity value was computed by taking the
percentage of participants who identified a sen-
tence as the most metaphoric of the three given
sentences. This measurement, shown in Table 3,
has similar averages across domains, unlike the
previous measurements. It tends to be better than
the previous measures on the upper bound, likely
because of the contextual comparison it allows.
However, because sentences with the same main
verb were forced into a three-way ordering, par-
ticipants could not, for example, label two of the
sentences as equally metaphoric. Thus, it is possi-
ble that some of this advantage on the upper bound
is a result of the task itself.

Given these three experiments for measuring
the metaphoricity of sentences, Table 4 shows the
correlations between each measure using Pear-
son’s R. Each correlation is significant at the 0.01
level (2-tailed). The highest correlation is between
the first and second tasks, at 0.819. The lowest
is between the first and third (which differ in the
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Domain Mean Std. Dev. Range
Abstract 0.333 0.211 0.056–0.773
Mental 0.331 0.175 0.071–0.632
Physical 0.331 0.235 0.050–0.941
Social 0.327 0.280 0.050–0.783
All 0.331 0.227 0.050–0.941

Table 3: Metaphoricity by ordering.

number of distinctions allowed) at 0.699. How-
ever, this is still a high correlation.

Task Identify Label Order
Identify – 0.819 0.699
Label 0.819 – 0.702
Order 0.699 0.702 –

Table 4: Correlation between measurements.

This section has put forward a robust series of
scalar measurements of metaphoricity. Each ex-
periment had 100 participants and operationalized
the task of rating metaphoricity in different ways
across a representative section of domains, verbs,
and metaphoricity levels. The resulting highly cor-
related measures show that we have a good stan-
dard of metaphoricity against which to evaluate
computational models which produce scalar mea-
surements of metaphoricity. The next section in-
troduces such a system.

3 Description of the System

We approach the problem by starting with an exist-
ing binary identification system and converting it
to a scalar system. In principle any of the property-
based systems listed above could be converted in
this way. We have chosen to start with the do-
main interaction system (Dunn, 2013a, 2013b),
which performed competitively in an evaluation
with other systems (Dunn, 2013b). The original
system uses the properties of domain-membership
and event-status of concepts to identify metaphors
at the sentence-level using a logistic regression
classifier. The scalar version of the system will
have to evaluate the features in a different way.

The first step is to increase the robustness of the
system’s representation of sentences by adding ad-
ditional properties. We split the original system’s
domain membership feature into two: the domain
of a word’s referent and the domain of a word’s
sense. The idea is to capture cases like MINISTER,

in which a physical object (a human) is defined by
its social role (being a minister). The event-status
property is unchanged.

Several additional properties are added; these
properties were not used in the original system.
First, animacy-status allows a distinction to be
made between inanimate objects like rocks and
stones and animate or human objects. Second,
the fact-status property allows a distinction to be
made between objects which exist as such in-
dependently of humans (e.g., rocks and stones)
and those which exist to some degree dependent
on human consciousness (e.g., laws and ideas).
Third, the function-status property allows a dis-
tinction to be made between objects which en-
code a function (e.g., a screwdriver is specifically
an object meant to turn screws) and those which
do not encode a function (e.g., rocks are simply
objects). A finer distinction within the function-
status property distinguishes social functions (e.g.,
laws) from physical-use functions (e.g., screw-
drivers).

Following the original system, these properties
are taken from a knowledge-base and used to cre-
ate feature vectors. The text is first processed us-
ing Apache OpenNLP for tokenization, named en-
tity recognition, and part of speech tagging. Mor-
pha (Minnen, et al., 2001) is used for lemmati-
zation. At this point word sense disambiguation
is performed using SenseRelate (Pedersen & Kol-
hatkar, 2009), mapping the lexical words to the
corresponding WordNet senses. These WordNet
senses are first mapped to SynSets and then to con-
cepts in the SUMO ontology, using existing map-
pings (Niles & Pease, 2001, 2003).

Thus, each sentence is represented by the SUMO

concepts which it contains and each concept is
represented by its six concept properties. The fea-
tures used are computed as follows: First, the rela-
tive frequency of each value of each concept prop-
erty in the sentence is determined; Second, the
number of instances of the most common value for
each property is determined, as well as the number
of instances of all other values (both relativized to
the number of concepts present in the sentence).
Third, the number of types of values for each con-
cept property is determined, relative to the number
of possible types. This gives a total of 41 features
for each sentence.

These features were computed for each of
the sentences used in the experiments and then
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the correlation between the features and the
metaphoricity measurements were computed us-
ing Pearson’s R. Those features which had a sig-
nificant positive relationship with the experimen-
tal results, shown in Table 5, were added to-
gether to create a rough computational measure of
metaphoricity and then converted so that they fall
between 0 and 1. The resulting computationally-
derived measure correlates significantly with each
of the experiments: 0.450, 0.416, and 0.337.

Properties Values
Domain of the Referent Mental
Domain of the Referent Other / Concepts
Event-Status State
Animacy-Status Undetermined
Animacy-Status Other / Concepts
Fact-Status Physical
Function-Status None
Domain of the Referent Types / Possible
Event-Status Types / Possible
Animacy-Status Types / Possible
Function-Status (negative) Types / Possible

Table 5: Predictive features.

4 Evaluation

A scalar measurement of metaphoricity allows
the threshold for metaphor in metaphor identifi-
cation tasks to be fitted for specific purposes and
datasets. The scalar system was evaluated on the
VU Amsterdam Metaphor Corpus (Steen, et al.,
2010) which consists of 200,000 words from the
British National Corpus divided into four gen-
res (academic, news, fiction, and spoken; per-
formance on the spoken genre was not evaluated
for this task because it consists of many short
fragmentary utterances) and manually annotated
for metaphor by five raters. Previous evaluations
using this corpus (Dunn, 2013b) concluded that
prepositions annotated as metaphoric in the cor-
pus should not be considered metaphoric for com-
putational purposes. Thus, metaphorically used
prepositions have been untagged as metaphoric.
Further, we have also untagged the ambiguously
metaphoric sentences. Sentences with an insuffi-
ciently robust conceptual representation were re-
moved (e.g., fragments). The evaluation dataset
thus consists of 6,893 sentences, distributed as
shown in Table 6.

For the purposes of this evaluation, the thresh-

Subset Literal Metaphor Total
Academic 759 1,550 2,309
Fiction 1,215 1,389 2,604
News 366 1,614 1,980
Total 2,340 4,553 6,893

Table 6: Size of evaluation dataset in sentences.

old for metaphor was set independently for each
genre and tied to the number of sentences con-
taining metaphorically used words, as rated by
the annotators of the corpus. Thus, for the num-
ber x of metaphors in the genre, the x sentences
with the top metaphoricity values were identified
as metaphoric. This illustrates the flexibility of
such a scalar approach to metaphor identification.
The baseline results are taken from a binary classi-
fication evaluation of the corpus using the full set
of 41 features produced by the system and eval-
uated using the logistic regression algorithm with
100-fold cross-validation.

System Subset Prec. Recall F-Meas.
Scalar Acad. 0.578 0.686 0.578
Binary Acad. 0.649 0.682 0.623
Scalar News 0.712 0.822 0.712
Binary News 0.750 0.812 0.748
Scalar Fict. 0.554 0.582 0.554
Binary Fict. 0.632 0.633 0.630
Scalar All 0.608 0.703 0.608
Binary All 0.663 0.685 0.638

Table 7: Evaluation results.

The binary classification system, with access to
the full range of features, out-performs the scalar
measurement in most cases. It is important to note,
however, that the binary classification system re-
quires labelled training data and is restricted to a
single threshold of metaphoricity, in this case the
threshold embedded in the corpus by the raters.
The scalar system, however, was trained only on
the experimental data and was not influenced by
the evaluation corpus (except, of course, that it
had access to the number of metaphoric sentences
in the dataset, which is a parameter and not part
of the model itself). Further, it can be applied
to any English text without the need for labelled
training data. Thus, the scalar approach performs
competitively on a binary task (0.608 vs. 0.638
F-Measure) but can also produce scalar identifica-
tions, which binary systems cannot produce.
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