
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1375–1384,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A convex and feature-rich discriminative approach to
dependency grammar induction

Édouard Grave
Columbia University

edouard.grave@gmail.com

Noémie Elhadad
Columbia University

noemie.elhadad@columbia.edu

Abstract

In this paper, we introduce a new method
for the problem of unsupervised depen-
dency parsing. Most current approaches
are based on generative models. Learning
the parameters of such models relies on
solving a non-convex optimization prob-
lem, thus making them sensitive to initial-
ization. We propose a new convex formu-
lation to the task of dependency grammar
induction. Our approach is discriminative,
allowing the use of different kinds of fea-
tures. We describe an efficient optimiza-
tion algorithm to learn the parameters of
our model, based on the Frank-Wolfe algo-
rithm. Our method can easily be general-
ized to other unsupervised learning prob-
lems. We evaluate our approach on ten
languages belonging to four different fam-
ilies, showing that our method is competi-
tive with other state-of-the-art methods.

1 Introduction

Grammar induction is an important problem in
computational linguistics. Despite having recently
received a lot of attention, it is still considered to
be an unsolved problem. In this work, we are inter-
ested in unsupervised dependency parsing. More
precisely, our goal is to induce directed depen-
dency trees, which capture binary syntactic rela-
tions between the words of a sentence. Since our
method is unsupervised, it does not have access
to such syntactic structure and only take as in-
put a corpus of words and their associated parts
of speech.

Most recent approaches to unsupervised depen-
dency parsing are based on probabilistic genera-
tive models, such as the dependency model with
valence introduced by Klein and Manning (2004).
Learning the parameters of such models is often

All languages have their own grammar

Figure 1: An example of dependency tree.

done by maximizing the log-likelihood of unla-
beled data, leading to a non-convex optimization
problem. Thus, the performance of those methods
rely heavily on the initialization, and practitioners
have to find good heuristics to initialize their mod-
els.

In this paper, we describe a different approach
to the problem of dependency grammar induction,
inspired by discriminative clustering. We pro-
pose to use a feature-rich discriminative parser,
and to learn the parameters of this parser us-
ing a convex quadratic objective function. In
particular, this approach also allows us to in-
duce non-projective dependency structures. Fol-
lowing the work of Naseem et al. (2010), we
use language-independent rules between pairs of
parts-of-speech to guide our parser. More pre-
cisely, we make the following contributions:

• Our method is based on a feature-rich dis-
criminative parser (section 3);

• Learning the parameters of our parser is
achieved using a convex objective, and is thus
not sensitive to initialization (section 4);

• Our method can produce non-projective de-
pendency structures (section 3.2.2);

• We propose an efficient algorithm to opti-
mize the objective, based on the Frank-Wolfe
method (section 5);

• We evaluate our approach on the universal
treebanks dataset, showing that it is competi-
tive with the state-of-the-art (section 6).

1375

2 Related work

A lot of research has been carried out in the last
decade on dependency grammar induction. We
review the dependency model with valence, on
which most unsupervised dependency parsers are
based, before presenting different extensions and
learning algorithms. Finally, we review discrimi-
native clustering, on which our method is based.

DMV. The dependency model with valence
(DMV), introduced by Klein and Manning (2004),
was the first method to outperform the baseline
consisting in attaching each token to the next one.
The DMV is a generative probabilistic model of
the dependency tree and parts-of-speech of a sen-
tence. It generates the root first, and then recur-
sively generates the tokens down the tree. The
probability of generating a new dependent for a
given token depends on the direction (left or right)
and whether a dependent was already generated in
that direction. Then, the part-of-speech of the new
dependent is generated according to a multinomial
distribution conditioned on the direction and the
head’s POS.

Extensions. Several extensions of the depen-
dency model with valence have been proposed.
Headden III et al. (2009) proposed the lexicalized
extended valence grammar (EVG), in which the
probability of generating a POS also depends on
the valence information. They rely on smooth-
ing to tackle the increased number of parame-
ters. Mareček and Žabokrtskỳ (2012) described
an approach using a n-gram reducibility measure,
which capture which words can be deleted from
a sentence without making it syntactically incor-
rect. Cohen and Smith (2009) introduced a prior,
based on the shared logistic normal distribution.
This prior allowed to tie the grammar parameters
corresponding to different POS belonging to the
same coarse groups, such as all the POS corre-
sponding to verbs. Berg-Kirkpatrick and Klein
(2010) proposed to tie the parameters of grammars
for different languages using a prior based on a
phylogenetic tree. Naseem et al. (2010) proposed
a set of rules between parts-of-speech, encoding
syntactic universals, such as the fact that adjec-
tives are often dependents of nouns. They used
posterior regularization (Ganchev et al., 2010) to
impose that a certain amount of the infered depen-
dencies verifies one of these rules. Also using pos-
terior regularization, Gillenwater et al. (2011) im-

posed a sparsity bias on the infered dependencies,
enforcing a small number of unique dependency
types. Finally, Blunsom and Cohn (2010) refor-
mulated dependency grammar induction using tree
substitution grammars, while Bisk and Hocken-
maier (2013) proposed to use combinatory cate-
gorial grammars.

Learning. Different algorithms have been pro-
posed to improve the learning of the parameters
of the dependency model with valence. Smith
and Eisner (2005) proposed to use constrastive es-
timation to learn the parameters of a log-linear
parametrization of the DMV, while Spitkovsky et
al. (2010b) showed that using Viterbi EM instead
of classic EM leads to higher accuracy. Observing
that learning from shorter sentences is easier (be-
cause less ambiguous), Spitkovsky et al. (2010a)
presented different techniques to learn grammar
from increasingly longer sentences. Gimpel and
Smith (2012) introduced a model inspired by the
IBM1 translation model for grammar induction,
resulting in a concave log-likelihood function.
They show that initializing the DMV with the
output of their model leads to improved depen-
dency accuracies. Hsu et al. (2012) and Parikh
et al. (2014) introduced spectral methods for un-
supervised dependency and constituency parsing.
Finally, Spitkovsky et al. (2013) introduced dif-
ferent heuristics for avoiding local minima while
Gormley and Eisner (2013) proposed a method to
find the global optimum of non-convex problems,
based on branch-and-bound.

Discriminative clustering. Our unsupervised
parser is inspired by discriminative clustering, in-
troduced by Xu et al. (2004). Given a set of points,
the objective of discriminative clustering is to as-
sign labels to these points that can be easily pre-
dicted using a discriminative classifier. Xu et al.
(2004) introduced a formulation using the hinge
loss, Bach and Harchaoui (2007) proposed to use
the squared loss instead, while Joulin et al. (2010)
proposed a formulation based on the logistic loss.
Recently, a formulation based on discriminative
clustering was proposed for the problem of distant
supervision for relation extraction (Grave, 2014)
and for the problem of finding the names of char-
acters in TV series based on the corresponding
scripts (Ramanathan et al., 2014). Closest to our
approach, extensions of discriminative clustering
were used to align sequences of labels or text with

1376

videos (Bojanowski et al., 2014; Bojanowski et al.,
2015) or to co-localize objects in videos (Joulin et
al., 2014).

3 Model

In this section, we describe the parsing model used
in our approach and briefly review the correspond-
ing decoding algorithms. Following McDonald et
al. (2005b), we propose to cast the problem of de-
pendency parsing as a maximum weight spanning
tree problem in directed graphs.

3.1 Edge-based factorization

Let us start by setting up some notations. An
input sentence of length n is represented by an
n−uplet x = (x1, ..., xn). The dependency tree
corresponding to that sentence is represented by a
n × (n + 1) binary matrix y, such that yij = 1 if
and only if the head of the token i is the token j
(and thus, the integer n + 1 represents the root of
the tree).

In this paper, we follow a common approach
by factoring the score of dependency tree as the
sum of the scores of the edges forming that
tree. We assume that each pair of tokens (i, j)
is represented by a high-dimensional feature vec-
tor f(x, i, j) ∈ Rd. Then, the score sij of the
edge (i, j) is obtained using the linear model

sij = w>f(x, i, j),

where w ∈ Rd is a parameter vector. Thus the
score s corresponding to the tree y is equal to

s =
∑

(i,j) s.t. yij=1

sij

=
∑

(i,j) s.t. yij=1

w>f(x, i, j).

Assuming that the parameter vector w is known,
parsing a sentence reduces to finding the tree with
the highest score, which is the maximum weight
spanning tree.

3.2 Maximum spanning trees

Different sets of spanning trees have been consid-
ered in the setting of supervised dependency pars-
ing. We briefly review those sets, and describe
the corresponding algorithms to compute the max-
imum weight spanning tree over those sets.

3.2.1 Projective dependency trees
First, we consider the set of projective spanning
trees. A dependency tree is said to be projective if
the dependencies do not cross when drawn above
the words in linear order. Similarly, this means
that word and all its descendants form a contigu-
ous substring of the sentence. Projective depen-
dency trees are thus strongly related to context free
grammars, and it is possible to obtain the maxi-
mum weight spanning projective tree using a mod-
ified version of the CKY algorithm (Cocke and
Schwartz, 1970; Kasami, 1965; Younger, 1967).
The complexity of this algorithm is O(n5). This
led Eisner (1996) to propose an algorithm for pro-
jective parsing which has a complexity of O(n3).
Similarly to CKY, the Eisner algorithm is based
on dynamic programming, parsing a sentence in
a bottom-up fashion. Finally, it should be noted
that the dependency model with valence, on which
most approaches to dependency grammar induc-
tion are based, produces projective dependency
trees.

3.2.2 Non-projective dependency trees
Second, we consider the set of non-projective
spanning trees. Indeed, many languages, such
as Czech or Dutch, have a significant number of
non-projective edges. In the context of supervised
dependency parsing, McDonald et al. (2005b)
shown that using non-projective trees improves
the accuracy of dependency parsers for those lan-
guages. The maximum weight spanning tree in
a directed graph can be computed using the Chu-
Liu/Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967), which has a complexity of O(n3).
Later, Tarjan (1977) proposed an improved ver-
sion of this algorithm for dense graphs, whose
complexity is O(n2), the same as for undirected
graphs using Prim’s algorithm. Thus a second ad-
vantage of using non-projective dependency trees
is the fact that it leads to more efficient parsers.

4 Learning the parameter vector

In this section, we describe the loss function we
use to learn the parameter vector w from unla-
beled sentences.

4.1 Problem formulation
From now on, y is a vector representing the de-
pendency trees corresponding to the whole corpus.
Thus, each index i corresponds to a potential de-
pendency between two words of a given sentence.

1377

He gave a seminar yesterday about unsupervised dependency parsing

Figure 2: Example of a non-projective dependency tree in english.

Like before, yi = 1 if and only if there is a de-
pendency between those two words, and yi = 0
otherwise. The set of dependencies that form valid
trees is denoted by the set T .

Inspired by the discriminative clustering frame-
work introduced by Xu et al. (2004), our goal is
to jointly find the dependencies represented by the
vector y and the parameter vector w which mini-
mize the regularized empirical risk

min
y∈T

min
w

1
n

n∑
i=1

`(yi,w>xi) + λΩ(w), (1)

where ` is a loss function and Ω is a regularizer.
The intuition is that we want to find the depen-
dency trees y that can be easily predicted by a dis-
criminative parser, whose parameters are w.

Following Bach and Harchaoui (2007), we pro-
pose to use the squared loss ` defined by

`(y, ŷ) =
1
2

(y − ŷ)2

and to use the `2-norm as a regularizer. In that
case, we obtain the objective function:

min
y∈T

min
w

1
2n
‖y −Xw‖22 +

λ

2
‖w‖22. (2)

One of the main advantages of using the squared
loss is the fact that the corresponding objective
function is jointly convex in y and w. Indeed,
the objective is the composition of an affine map-
ping, defined by (y,w) 7→ y −Xw, with a con-
vex function, defined by u 7→ u>u. Thus, the
objective function is convex (see section 3.2.2 of
Boyd and Vandenberghe (2004)). The problem (2)
is thus non-convex only because of the combinato-
rial constraints on the binary vector y, namely that
y should represents valid trees.

4.2 Convex relaxation
The set T of vectors representing valid depen-
dency trees is a finite set of binary vectors. We
can thus take the convex hull of those points and
denote it by Y:

Y = conv(T).

VERB 7→ VERB NOUN 7→ NOUN

VERB 7→ NOUN NOUN 7→ ADJ

VERB 7→ PRON NOUN 7→ DET

VERB 7→ ADV NOUN 7→ NUM

VERB 7→ ADP NOUN 7→ CONJ

ADJ 7→ ADV ADP 7→ NOUN

Table 1: Set of universal rules used in our parser.

By definition, this set is a convex polytope. We
then propose to replace the combinatorial con-
straints on the vector y by the fact that y should
be in the convex polytope Y . We thus obtain a
convex quadratic program, with linear constraints,
as follows:

min
y∈Y

min
w

1
2n
‖y −Xw‖22 +

λ

2
‖w‖22. (3)

We will describe how to compute the optimal so-
lution of this problem in section 5.

4.3 Rounding

Given a continuous solution yc ∈ Y of the relaxed
problem, it is possible to obtain a solution of the
integer problem by finding the tree yd ∈ T which
is closest to yc, by solving the problem

min
yd∈T

‖yd − yc‖22.

The solution of the previous problem can easily
be formulated is a minimum weight spanning tree
problem. Indeed, by developping the previous
expression, and using the fact that for all trees
yd ∈ T , y>d yd = n, where n is the number of
tokens, the previous problem is equivalent to:

min
yd∈T

−y>d yc,

whose solution is obtained using the minimum
weight spanning tree algorithm. It should be noted
that the rounding solution is not necessarily the
optimal solution of the integer problem.

1378

Figure 3: Illustration of a Frank-Wolfe step.

4.4 Prior on y

We now describe how to guide our unsuper-
vised parser, by using universal rules. Following
Naseem et al. (2010), we want a certain percent-
age of the infered dependencies to satisfy one of
the twelve universal syntactic rules, listed in Ta-
ble 1. Let S be the set of indices corresponding
to word pairs that satisfy one of these rules. Then,
imposing that a certain percentage c of dependen-
cies satisfy one of those rules can be obtained by
imposing the constraint:

1
n

∑
i∈S

yi ≥ c.

This linear constraint is equivalent to u>y ≥ c,
where the vector u is defined by

ui =
{

1/n if i ∈ S,
0 otherwise.

Using Lagrangian duality, we can obtain the fol-
lowing equivalent penalized problem:

min
y∈Y

min
w

1
2n
‖y−Xw‖22 +

λ

2
‖w‖22−µ u>y. (4)

The penalized and constrained problems are
equivalent, since for every c, there exists a µ such
that the two problems have the same optimum.
From an optimization point of view, it is easier to
deal with the penalized problem and we will thus
use it in the next section.

5 Optimization

One could use a general purpose quadratic solver
to compute the solution of the previous convex
problem. However, this might be inefficient since

Algorithm 1: Frank-Wolfe algorithm

for t ∈ {1, ..., T} do
Compute the gradient:
gt = ∇f(zt)
Solve the linear program:
st = min

s∈D
s>gt

Take the Frank-Wolfe step:
zt+1 = γtst + (1− γt)zt

end

it does not use the structure of the polytope and,
in particular, the fact that one can easily minimize
a linear function over the tree polytope using the
minimum weight spanning tree algorithm. Instead
we propose to use the Frank-Wolfe algorithm, that
we now describe.

5.1 Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank and Wolfe,
1956; Jaggi, 2013) is used to minimize a convex
differentiable function f over a convex bounded
set D. It is an iterative first-order optimization
method. At each iteration t, the convex function f
is approximated by a linear function defined by its
gradient at the current point zt. Then it finds the
point st that minimizes that linear function, over
the convex set D:

st = min
s
s>∇f(zt) s.t. s ∈ D.

The point zt+1 is then defined as the weighted av-
erage between the solution st and the current point
zt: zt+1 = γt st + (1−γt) zt,where γt is the step
size (such as 2/(t + 2)). Compared to the gradi-
ent descent algorithm, the Frank-Wolfe alogrithm
does not take a step in the direction of the gradi-
ent, but in the direction of the point that minimizes
the linear approximation of the function f over the
convex setD (see Fig 3). In particular, this ensures
that the points zt always stay inside the convex set,
and there is thus no need for a projection step.

To summarize, in order to use the Frank-Wolfe
algorithm, we need to compute the gradient of the
objective function and to minimize a linear func-
tion over our convex set. This is particularly ap-
propriate to our problem, since we can easily min-
imize a linear function over the tree polytopes (us-
ing the minimum weight spanning tree algorithm),
while projecting on those polytopes is more ex-
pensive.

1379

Algorithm 2: Optimization algorithm for our
method.
for t ∈ {1, ..., T} do

Compute the optimal w:

wt = argmin
w

1
2n
‖yt −Xw‖22 +

λ

2
‖w‖22

Compute the gradient w.r.t. y:

gt =
1
n

(yt −Xwt)− µ u

Solve the linear program:
st = min

s∈Y
s>gt

Take the Frank-Wolfe step:
yt+1 = γtst + (1− γt)yt

end

5.2 Application to our problem

We now describe how to use the Frank-Wolfe al-
gorithm to optimize our objective function with re-
spect to y. First, let us introduce the functions f
and h defined by

f(w,y) =
1

2n
‖y −Xw‖22 +

λ

2
‖w‖22 − µ u>y,

h(y) = min
w

f(w,y).

The original problem is equivalent to

min
y∈Y

min
w

f(w,y) = min
y∈Y

h(y).

We will use the Frank-Wolfe algorithm to optimize
the function h.

Minimizing w.r.t w. First, we need to minimize
the function f with respect to w, in order to com-
pute the function h (and its gradient). One must
note that this is an unconstrained quadratic pro-
gram, whose solution can be obtained in closed
form by solving the linear system:(

X>X + λI
)
w = X>y.

However, in case of a very large feature space, this
system might be prohibitively expensive to solve
exactly. We instead propose to approximately
compute the optimal w using stochastic gradient
descent.

Computing the gradient of h. Then, the gradi-
ent of the function h at the point y is equal to

∇h(y) = ∇yf(w∗,y),

POSi × d
POSj × d
POSi × POSj × d
POSi × POSi−1 × POSj × d
POSi × POSi+1 × POSj × d
POSi × POSj × POSj−1 × d
POSi × POSj × POSj+1 × d

Table 2: Features used in our parser to describe the
dependency between tokens i and j, where i is the
head, j the dependent and d = i− j.

where w∗ is equal to

w∗ = argmin
w

f(w,y).

Thus, in order to compute the gradient of h with
respect to y, we start by computing the corre-
sponding optimal value of w. Then, the gradient
with respect to y is equal to

∇h(y) =
1
n

(y −Xw∗)− µ u.

Minimizing a linear function over Y . We fi-
naly need to compute the optimal solution of the
following linear problem

min
s∈Y
∇h(y)>s.

The optimal value of a linear function over a
bounded convex polytope is always attained on at
least one vertex of that polytope. By definition of
our polytope, those vertices correspond to span-
ning trees. Thus, computing an optimal solution
of this problem is obtained by finding a minimum
weight spanning tree.

Discussion. Similarly to the Expectation-
Maximization algorithm, our optimization
method is a two-steps iterative algorithm. In
the first step, the optimal parameter vector w is
estimated based on the previous dependency trees,
while the second step consist in re-estimating the
(relaxed) dependency trees.

6 Experiments

In this section, we report the results of the experi-
ments we have performed to evaluate our approach
to grammar induction.

1380

DMV PR USR OUR

DE 42.6 58.4 53.4 60.2
EN 22.4 57.5 66.2 62.3
ES 31.8 57.3 71.5 68.8
FR 56.0 66.2 54.1 72.3
ID 44.9 21.4 50.3 69.7
IT 33.3 40.4 46.5 64.3
JA 48.0 58.9 58.2 57.5
KO 35.3 50.7 48.8 59.0
PT-BR 49.6 40.7 46.4 68.3
SV 38.9 61.2 64.3 66.2

AVG 40.2 51.3 56.0 64.8

Table 3: Directed dependency accuracy, on
the universal treebanks with universal parts-of-
speech, on sentences of length 10 or less. PR refers
to posterior regularization, USR to universal rules.

6.1 Features

The features used in our unsupervised parser are
based on the parts-of-speech of the head and the
dependent of the corresponding dependency, and
are given in Table 2. Following McDonald et al.
(2005a), we also include features capturing the
context of the head or the dependent. These fea-
tures are trigrams and are formed by the parts-
of-speech of the two tokens of the dependency
and one of the word appearing before/after the
head/dependent. Finally, all the features are con-
joined with the signed distance between the two
words of the dependency.

6.2 Dataset

We use the universal treebanks, version 2.0, intro-
duced by McDonald et al. (2013). This dataset
contains dependency trees for ten languages be-
longing to five different families: Spanish, French,
Italian, Portuguese (Romanic family), English,
German, Swedish (Germanic family), Korean,
Japanese and Indonesian. The tokens of those
treebanks are tagged using the universal part-of-
speech tagset (Petrov et al., 2012). We focus on
inducing dependency grammars using universal
parts-of-speech, and will thus report results where
all methods use (gold) universal POS.

6.3 Comparison with baselines

We will compare our approach to three other un-
supervised parsers. Our first baseline is the DMV
model, introduced by Klein and Manning (2004).

DMV PR USR OUR

7 min 1 h 15 h 2 min

Table 4: Computational times required to learn a
grammar on the English treebank.

Our second baseline is the extended valence gram-
mar model, with posterior sparsity constraints, as
described by Gillenwater et al. (2011). Finally,
our last baseline is the model with universal rules
introduced by Naseem et al. (2010). It should
be noted that these two baselines obtain perfor-
mances that are near state-of-the-art. All methods
are trained and tested on sentences of length 10 or
less, after stripping punctuation.

Parameter selection. All the parameters were
chosen using the English development set. Our
method has two parameters, determined as:
λ = 0.001 and µ = 0.1. We used T = 200
iterations in all the experiments.

Discussion. We report the results in Table 3.
First, we observe that our method performs bet-
ter than the three baselines on seven out of ten
languages. Overall, our approach outperforms the
three baselines, with an absolute improvement of
13 points over the extended valence grammar with
posterior sparsity and 8 points over the model with
universal syntactic rules. We also note that the
inter-language variance is lower for our method
than the baselines (std of 4.6 for our method v.s.
8.3 for USR and 12.7 for PR). For the sake of
completeness, we also compared those methods
using the fine grained POS available in the univer-
sal treebanks. Overall, our method obtains an ac-
curacy of 68.4, while USR and PR achieve accura-
cies of 67.3 and 58.5 respectively. Finally, we re-
port computational times in Table 4, showing that
our approach is much faster than the baselines.

6.4 Non-projective grammar induction
In this section, we investigate non-projective
grammar induction. With our approach, we only
have to replace the Eisner algorithm by Chu-
Liu/Edmonds. We report results in Table 5. First,
we observe that the non-projective results are
slightly worse than projective one. This is not re-
ally surprising since the amount of non-projective
gold dependencies is very small on the considered
data. Moreover, non-projective trees are much
more ambiguous than projective ones, leading to

1381

PROJECTIVE NON-PROJECTIVE

DE 60.2 57.2
EN 62.3 60.5
ES 68.8 66.5
FR 72.3 69.2
ID 69.7 68.4
IT 64.3 63.1
JA 57.5 59.3
KO 59.0 60.0
PT-BR 68.3 67.7
SV 66.2 65.4

AVG 64.8 63.7

Table 5: Comparison between projective and non-
projective unsupervised dependency parsing using
our method.

a harder problem. We still believe those results
are interesting because the difference is small (less
than 1.5 points), while non-projective parsing is
computationaly more efficient.

6.5 Evaluation on longer sentences

We also evaluate our method on longer sentences
(while still training on sentences of length 10 or
less). Directed dependency accuracies are re-
ported in Figure 4. On all sentences, our method
achieve an overall accuracy of 55.8.

6.6 Feature ablation study

In this section, we study the importance of the
different features used in our parser. We report
directed accuracies when different groups of fea-
tures are removed, one at a time, in Table 6. First,
we remove the distance information from the fea-
tures (line DISTANCE). We observe that the per-
formance of our parser is greatly affected by this
ablation, especially for long sentences. Then, we
remove the context features (line CONTEXT) and
the unigram features (line UNIGRAM) from our
model. We observe that the performance decreases
slightly due to this ablations, but the differences
are small.

7 Discussion

In this paper, we introduced a new framework for
the task of unsupervised dependency parsing. Our
method is a based on a feature-rich discrimina-
tive model, whose parameters are learned using a
convex objective function. We demonstrated on

|w| ≤ 10 |w| ≤ ∞
DISTANCE 61.8 48.7
CONTEXT 64.2 55.1
UNIGRAM 64.0 55.3

ALL FEATURES 64.8 55.8

Table 6: Feature ablation study.

the universal treebanks that our approach leads to
competitive results, while being computationaly
very efficient. We now describe some directions
we would like to explore as future work.

Richer feature set. In our experiments, we fo-
cused on assessing the usefulness of our con-
vex, discriminative approach, and thus considered
only relatively simple features based on parts-of-
speech. Inspired by supervised dependency pars-
ing, we would like to explore the use of other fea-
tures such as Brown clusters (Brown et al., 1992)
or distributed word representations (Mikolov et
al., 2013), in order to lexicalize our parser.

Higher-order parsing. So far, our model is
lacking the notion of valency, that has proven very
useful for grammar induction. In future work,
we would thus like to replace our edge-based fac-
torization by a higher-order one, in order to cap-
ture siblings (and grandchilds) interactions. We
would then have to use a higher-order parser, such
as the ones described by McDonald and Pereira
(2006) and Koo and Collins (2010). Another po-
tential approach would be to use the linear pro-
gramming relaxed inference, described by Martins
et al. (2009).

Transfer learning. In this paper, we used uni-
versal syntactic rules, as described by Naseem et
al. (2010) to guide our parser. We would like to
explore the use of weak supervision, such as the
one considered in transfer learning (Hwa et al.,
2005). For example, projected dependencies from
a resource-rich language could be used as con-
straints in our framework.

Code. The code for our method is distributed on
the first author webpage.

Acknowledgments

This work is supported by National Science Foun-
dation award 1344668 and National Institute of
General Medical Sciences award R01 GM090187.

1382

10 15 20 30 all
50

55

60

65

70

75
sv
en
de

10 15 20 30 all
50

55

60

65

70

75
es
fr
pt
it

10 15 20 30 all
50

55

60

65

70

75
id
ko
ja

Figure 4: Directed dependency accuracies on longer sentences for our approach.

References
Francis R Bach and Zaı̈d Harchaoui. 2007. Diffrac: a

discriminative and flexible framework for clustering.
In NIPS.

Taylor Berg-Kirkpatrick and Dan Klein. 2010. Phylo-
genetic grammar induction. In ACL.

Yonatan Bisk and Julia Hockenmaier. 2013. An hdp
model for inducing combinatory categorial gram-
mars. TACL.

Phil Blunsom and Trevor Cohn. 2010. Unsupervised
induction of tree substitution grammars for depen-
dency parsing. In EMNLP.

Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan
Laptev, Jean Ponce, Cordelia Schmid, and Josef
Sivic. 2014. Weakly supervised action labeling in
videos under ordering constraints. In ECCV.

Piotr Bojanowski, Rémi Lagugie, Edouard Grave,
Francis Bach, Ivan Laptev, Jean Ponce, and Cordelia
Schmid. 2015. Weakly-supervised alignment of
video with text. http://arxiv.org/abs/1505.06027.

Stephen Boyd and Lieven Vandenberghe. 2004. Con-
vex optimization. Cambridge university press.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On
shortest arborescence of a directed graph. Scientia
Sinica.

John Cocke and Jacob Schwartz. 1970. Programming
languages and their compilers: Preliminary notes.
Technical report.

Shay B Cohen and Noah A Smith. 2009. Shared lo-
gistic normal distributions for soft parameter tying
in unsupervised grammar induction. In NAACL.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards.

Jason M Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COL-
ING.

Marguerite Frank and Philip Wolfe. 1956. An algo-
rithm for quadratic programming. Naval research
logistics quarterly.

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior regularization for
structured latent variable models. JMLR.

Jennifer Gillenwater, Kuzman Ganchev, João Graça,
Fernando Pereira, and Ben Taskar. 2011. Poste-
rior sparsity in unsupervised dependency parsing.
JMLR.

Kevin Gimpel and Noah A Smith. 2012. Concavity
and initialization for unsupervised dependency pars-
ing. In NAACL.

Matthew R Gormley and Jason Eisner. 2013. Noncon-
vex global optimization for latent-variable models.
In ACL.

Edouard Grave. 2014. A convex relaxation for weakly
supervised relation extraction. In EMNLP.

William P Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In
NAACL.

Daniel Hsu, Percy Liang, and Sham M Kakade. 2012.
Identifiability and unmixing of latent parse trees. In
NIPS.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural language engineering.

Martin Jaggi. 2013. Revisiting frank-wolfe:
Projection-free sparse convex optimization. In
ICML.

1383

Armand Joulin, Jean Ponce, and Francis R Bach. 2010.
Efficient optimization for discriminative latent class
models. In NIPS.

Armand Joulin, Kevin Tang, and Li Fei-Fei. 2014. Ef-
ficient image and video co-localization with frank-
wolfe algorithm. In ECCV.

Tadao Kasami. 1965. An efficient recognition and syn-
tax analysis algorithm for context-free languages.
Technical report.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In ACL.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In ACL.

David Mareček and Zdeněk Žabokrtskỳ. 2012. Ex-
ploiting reducibility in unsupervised dependency
parsing. In EMNLP/CoNLL.

André FT Martins, Noah A Smith, and Eric P Xing.
2009. Polyhedral outer approximations with appli-
cation to natural language parsing. In ICML.

Ryan T McDonald and Fernando CN Pereira. 2006.
Online learning of approximate dependency parsing
algorithms. In EACL.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training of de-
pendency parsers. In ACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In EMNLP.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In ACL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In EMNLP.

Ankur P Parikh, Shay B Cohen, and Eric P Xing.
2014. Spectral unsupervised parsing with additive
tree metrics. In ACL.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. LREC.

Vignesh Ramanathan, Armand Joulin, Percy Liang,
and Li Fei-Fei. 2014. Linking people with ”their”
names using coreference resolution. In ECCV.

Noah A Smith and Jason Eisner. 2005. Guiding un-
supervised grammar induction using contrastive es-
timation. In Proc. of IJCAI Workshop on Grammat-
ical Inference Applications.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010a. From baby steps to leapfrog: How
less is more in unsupervised dependency parsing. In
NAACL.

Valentin I Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher D Manning. 2010b. Viterbi train-
ing improves unsupervised dependency parsing. In
CoNLL.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2013. Breaking out of local optima with
count transforms and model recombination: A study
in grammar induction. In EMNLP.

Robert Endre Tarjan. 1977. Finding optimum branch-
ings. Networks.

Linli Xu, James Neufeld, Bryce Larson, and Dale
Schuurmans. 2004. Maximum margin clustering.
In NIPS.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control.

1384

