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Abstract

We reduce phrase-based parsing to depen-
dency parsing. Our reduction is grounded
on a new intermediate representation,
“head-ordered dependency trees,” shown
to be isomorphic to constituent trees. By
encoding order information in the depen-
dency labels, we show that any off-the-
shelf, trainable dependency parser can be
used to produce constituents. When this
parser is non-projective, we can perform
discontinuous parsing in a very natural
manner. Despite the simplicity of our ap-
proach, experiments show that the result-
ing parsers are on par with strong base-
lines, such as the Berkeley parser for En-
glish and the best non-reranking system
in the SPMRL-2014 shared task. Results
are particularly striking for discontinuous
parsing of German, where we surpass the
current state of the art by a wide margin.

1 Introduction

Constituent parsing is a central problem in
NLP—one at which statistical models trained on
treebanks have excelled (Charniak, 1996; Klein
and Manning, 2003; Petrov and Klein, 2007).
However, most existing parsers are slow, since
they need to deal with a heavy grammar con-
stant. Dependency parsers are generally faster, but
less informative, since they do not produce con-
stituents, which are often required by downstream
applications (Johansson and Nugues, 2008; Wu et
al., 2009; Berg-Kirkpatrick et al., 2011; Elming et
al., 2013). How to get the best of both worlds?

Coarse-to-fine decoding (Charniak and John-
son, 2005) and shift-reduce parsing (Sagae and
Lavie, 2005; Zhu et al., 2013) were a step forward

∗This research was carried out during an internship at
Priberam Labs.

to accelerate constituent parsing, but typical run-
times still lag those of dependency parsers. This
is only made worse if discontinuous constituents
are allowed—such discontinuities are convenient
to represent wh-movement, scrambling, extrapo-
sition, and other linguistic phenomena common in
free word order languages. While non-projective
dependency parsers, which are able to model such
phenomena, have been widely developed in the
last decade (Nivre et al., 2007; McDonald et al.,
2006; Martins et al., 2013), discontinuous con-
stituent parsing is still taking its first steps (Maier
and Søgaard, 2008; Kallmeyer and Maier, 2013).

In this paper, we show that an off-the-shelf,
trainable, dependency parser is enough to build
a highly-competitive constituent parser. This (sur-
prising) result is based on a reduction1 of con-
stituent to dependency parsing, followed by a sim-
ple post-processing procedure to recover unaries.
Unlike other constituent parsers, ours does not
require estimating a grammar, nor binarizing the
treebank. Moreover, when the dependency parser
is non-projective, our method can perform discon-
tinuous constituent parsing in a very natural way.

Key to our approach is the notion of head-
ordered dependency trees (shown in Figure 1):
by endowing dependency trees with this additional
layer of structure, we show that they become iso-
morphic to constituent trees. We encode this struc-
ture as part of the dependency labels, enabling
a dependency-to-constituent conversion. A re-
lated conversion was attempted by Hall and Nivre
(2008) to parse German, but their complex encod-
ing scheme blows up the number of arc labels, af-
fecting the final parser’s quality. By contrast, our
light encoding achieves a 10-fold decrease in the
label alphabet, leading to more accurate parsing.

While simple, our reduction-based parsers are
on par with the Berkeley parser for English (Petrov

1The title of this paper is inspired by the seminal paper of
Pereira and Warren (1983) “Parsing as Deduction.”
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and Klein, 2007), and with the best single system
in the recent SPMRL shared task (Seddah et al.,
2014), for eight morphologically rich languages.
For discontinuous parsing, we surpass the current
state of the art by a wide margin on two German
datasets (TIGER and NEGRA), while achieving fast
parsing speeds. We provide a free distribution of
our parsers along with this paper, as part of the
TurboParser toolkit.2

2 Background

We start by reviewing constituent and dependency
representations, and setting up the notation. Fol-
lowing Kong and Smith (2014), we use c-/d- pre-
fixes for convenience (e.g., we write c-parser for
constituent parser and d-tree for dependency tree).

2.1 Constituent Trees

Constituent-based representations are commonly
seen as derivations according to a context-free
grammar (CFG). Here, we focus on properties
of the c-trees, rather than of the grammars used
to generate them. We consider a broad scenario
that permits c-trees with discontinuities, such as
the ones derived with linear context-free rewrit-
ing systems (LCFRS; Vijay-Shanker et al. (1987)).
We also assume that the c-trees are lexicalized.

Formally, let w1w2 . . . wL be a sentence, where
wi denotes the word in the ith position. A c-
tree is a rooted tree whose leaves are the words
{wi}Li=1, and whose internal nodes (constituents)
are represented as a tuple 〈Z, h, I〉, where Z
is a non-terminal symbol, h ∈ {1, . . . , L} in-
dicates the lexical head, and I ⊆ {1, . . . , L}
is the node’s yield. Each word’s parent is a
pre-terminal unary node of the form 〈pi, i, {i}〉,
where pi denotes the word’s part-of-speech (POS)
tag. The yields and lexical heads are defined so
that for every constituent 〈Z, h, I〉 with children
{〈Xk,mk,Jk〉}Kk=1, (i) we have I =

⋃K
k=1 Jk;

and (ii) there is a unique k such that h = mk. This
kth node (called the head-child node) is commonly
chosen applying a handwritten set of head rules
(Collins, 1999; Yamada and Matsumoto, 2003).

A c-tree is continuous if all nodes 〈Z, h, I〉
have a contiguous yield I, and discontinuous oth-
erwise. Trees derived by a CFG are always con-
tinuous; those derived by a LCFRS may have dis-
continuities, the yield of a node being a union of
spans, possibly with gaps in the middle. Figure 1

2http://www.ark.cs.cmu.edu/TurboParser

shows an example of a continuous and a discontin-
uous c-tree. Discontinuous c-trees have crossing
branches, if the leaves are drawn in left-to-right
surface order. An internal node which is not a pre-
terminal is called a proper node. A node is called
unary if it has exactly one child. A c-tree with-
out unary proper nodes is called unaryless. If all
proper nodes have exactly two children then it is
called a binary c-tree. Continuous binary trees
may be regarded as having been generated by a
CFG in Chomsky normal form.

Prior work. There has been a long string of
work in statistical c-parsing, shifting from sim-
ple models (Charniak, 1996) to more sophisticated
ones using structural annotation (Johnson, 1998;
Klein and Manning, 2003), latent grammars (Mat-
suzaki et al., 2005; Petrov and Klein, 2007), and
lexicalization (Eisner, 1996; Collins, 1999). An
orthogonal line of work uses ensemble or rerank-
ing strategies to further improve accuracy (Char-
niak and Johnson, 2005; Huang, 2008; Björkelund
et al., 2014). Discontinuous c-parsing is con-
sidered a much harder problem, involving mildly
context-sensitive formalisms such as LCFRS or
range concatenation grammars, with treebank-
derived c-parsers exhibiting near-exponential run-
time (Kallmeyer and Maier, 2013, Figure 27).
To speed up decoding, prior work has consid-
ered restrictons, such as bounding the fan-out
(Maier et al., 2012) and requiring well-nestedness
(Kuhlmann and Nivre, 2006; Gómez-Rodrı́guez et
al., 2010). Other approaches eliminate the dis-
continuities via tree transformations (Boyd, 2007;
Kübler et al., 2008), sometimes as a pruning step
in a coarse-to-fine parsing approach (van Cranen-
burgh and Bod, 2013). However, reported run-
times are still superior to 10 seconds per sentence,
which is not practical. Recently, Versley (2014a)
proposed an easy-first approach that leads to con-
siderable speed-ups, but is less accurate. In this
paper, we design fast discontinuous c-parsers that
outperform all the ones above by a wide margin,
with similar runtimes as Versley (2014a).

2.2 Dependency Trees

In this paper, we use d-parsers as a black box to
parse constituents. Given a sentence w1 . . . wL,
a d-tree is a directed tree spanning all the words
in the sentence.3 Each arc in this tree is a tuple

3We assume throughout that dependency trees have a sin-
gle root among {w1, . . . , wL}. Therefore, there is no need to
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Figure 1: Top: a continuous (left) and a discontinuous (right) c-tree, taken from English PTB §22 and German NEGRA,
respectively. Head-child nodes are in bold. Bottom: corresponding head-ordered d-trees. The indices #1, #2, etc. denote the
order of attachment events for each head. Note that the English unary nodes ADVP and ADJP are dropped in the conversion.
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Figure 2: Three different c-structures for the VP “really needs
caution.” All are consistent with the d-structure at the top left.

〈h,m, `〉, expressing a typed dependency relation
` between the head word wh and the modifier wm.

A d-tree is projective if for every arc 〈h,m, `〉
there is a directed path from h to all words that lie
between h and m in the surface string (Kahane et
al., 1998). Projective d-trees can be obtained from
continuous c-trees by reading off the lexical heads
and dropping the internal nodes (Gaifman, 1965).
However, this relation is many-to-one: as shown
in Figure 2, several c-trees may project onto the
same d-tree, differing on their flatness and on left
or right-branching decisions. In the next section,
we introduce the concept of head-ordered d-trees
and express one-to-one mappings between these
two representations.

Prior work. There has been a considerable
amount of work developing rich-feature d-parsers.
While projective d-parsers can use dynamic pro-
gramming (Eisner and Satta, 1999; Koo and

consider an extra root symbol, as often done in the literature.

Collins, 2010), non-projective d-parsers typically
rely on approximate decoders, since the underly-
ing problem is NP-hard beyond arc-factored mod-
els (McDonald and Satta, 2007). An alternative
are transition-based d-parsers (Nivre et al., 2006;
Zhang and Nivre, 2011), which achieve observed
linear time. Since d-parsing algorithms do not
have a grammar constant, typical implementations
are significantly faster than c-parsers (Rush and
Petrov, 2012; Martins et al., 2013). The key con-
tribution of this paper is to reduce c-parsing to d-
parsing, allowing to bring these runtimes closer.

3 Head-Ordered Dependency Trees

We next endow d-trees with another layer of struc-
ture, namely order information. In this frame-
work, not all modifiers of a head are “born equal.”
Instead, their attachment to the head occurs as
a sequence of “events,” which reflect the head’s
preference for attaching some modifiers before
others. As we will see, this additional structure
will undo the ambiguity expressed in Figure 2.

3.1 Strictly Ordered Dependency Trees

Let us start with the simpler case where the attach-
ment order is strict. For each head word h with
modifiers Mh = {m1, . . . ,mK}, we endow Mh

with a strict order relation ≺h, so we can or-
ganize all the modifiers of h as a chain, mi1 ≺h

mi2 ≺h . . . ≺h miK . We regard this chain as
reflecting the order by which words are attached
(i.e., if mi ≺h mj this means that “mi is attached
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Figure 3: Transformation of a strictly-ordered d-tree into a
binary c-tree. Each node is split into a linked list forming a
spine, to which modifiers are attached in order.

Figure 4: Two discontinuous constructions caused by a non-
nested order (top) and a non-projective d-tree (bottom). In
both cases node A has a non-contiguous yield.

to h before mj”). We represent this graphically
by decorating d-arcs with indices (#1,#2, . . .) to
denote the order of events, as we do in Figure 1.

A d-tree endowed with a strict order for each
head is called a strictly ordered d-tree. We es-
tablish below a correspondence between strictly
ordered d-trees and binary c-trees. Before doing
so, we need a few more definitions about c-trees.
For each word position h ∈ {1, . . . , L}, we define
ψ(h) as the node higher in the c-tree whose lexi-
cal head is h. We call the path from ψ(h) down to
the pre-terminal ph the spine of h. We may regard
a c-tree as a set of L spines, one per word, which
attach to each other to form a tree (Carreras et al.,
2008). We then have the following

Proposition 1. Binary c-trees and strictly-ordered
d-trees are isomorphic, i.e., there is a one-to-one
correspondence between the two sets, where the
number of symbols is preserved.

Proof. We use the construction in Figure 3. A for-
mal proof is given as supplementary material.

3.2 Weakly Ordered Dependency Trees
Next, we relax the strict order assumption, restrict-
ing the modifier sets Mh = {m1, . . . ,mK} to be
only weakly ordered. This means that we can par-
tition the K modifiers into J equivalence classes,
Mh =

⋃J
j=1 M̄

j
h, and define a strict order ≺h on

the quotient set: M̄1
h ≺h . . . ≺h M̄

J
h . Intuitively,

there is still a sequence of events (1 to J), but now
at each event j it may happen that multiple mod-
ifiers (the ones in the equivalence set M̄ j

h) are si-

Algorithm 1 Conversion from c-tree to d-tree

Input: c-tree C.
Output: head-ordered d-tree D.
1: Nodes := GETPOSTORDERTRAVERSAL(C).
2: Set j(h) := 1 for every h = 1, . . . , L.
3: for v := 〈Z, h, I〉 ∈ Nodes do
4: for every u := 〈X,m,J 〉 which is a child of v do
5: if m 6= h then
6: Add toD an arc 〈h,m,Z〉, and put it in M̄ j(h)

h .
7: end if
8: end for
9: Set j(h) := j(h) + 1.

10: end for

multaneously attached to h. A weakly ordered
d-tree is a d-tree endowed with a weak order for
each head and such that any pairm,m′ in the same
equivalence class (written m ≡h m′) receive the
same dependency label `.

We now show that Proposition 1 can be gener-
alized to weakly ordered d-trees.

Proposition 2. Unaryless c-trees and weakly-
ordered d-trees are isomorphic.

Proof. This is a simple extension of Proposition 1.
The construction is the same as in Figure 3, but
now we can collapse some of the nodes in the
linked list, originating multiple modifiers attach-
ing to the same position of the spine—this is only
possible for sibling arcs with the same index and
arc label. Note, however, that if we start with a
c-tree with unary nodes and apply the inverse pro-
cedure to obtain a d-tree, the unary nodes will be
lost, since they do not involve attachment of mod-
ifiers. In a chain of unary nodes, only the last node
is recovered in the inverse transformation.

We emphasize that Propositions 1–2 hold with-
out blowing up the number of symbols. That is,
the dependency label alphabet is exactly the same
as the set of phrasal symbols in the constituent
representations. Algorithms 1–2 convert back and
forth between the two formalisms, performing the
construction of Figure 3. Both algorithms run in
linear time with respect to the size of the sentence.

3.3 Continuous and Projective Trees

What about the more restricted class of projective
d-trees? Can we find an equivalence relation with
continuous c-trees? In this section, we give a pre-
cise answer to this question. It turns out that we
need an additional property, illustrated in Figure 4.

We say that ≺h has the nesting property iff
closer words in the same direction are always at-
tached first, i.e., iff h < mi < mj or h > mi >
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Algorithm 2 Conversion from d-tree to c-tree

Input: head-ordered d-tree D.
Output: c-tree C.
1: Nodes := GETPOSTORDERTRAVERSAL(D).
2: for h ∈ Nodes do
3: Create v := 〈ph, h, {h}〉 and set ψ(h) := v.
4: Sort Mh(D), yielding M̄1

h ≺h M̄
2
h ≺h . . . ≺h M̄

J
h .

5: for j = 1, . . . , J do
6: Let Z be the label in {〈h,m,Z〉 | m ∈ M̄ j

h}.
7: Obtain c-nodes ψ(h) = 〈X,h, I〉 and ψ(m) =

〈Ym,m,Jm〉 for all m ∈ M̄ j
h.

8: Add c-node v := 〈Z, h, I ∪⋃
m∈M̄

j
h
Jm〉 to C.

9: Set ψ(h) and {ψ(m) |m ∈ M̄ j
h} as children of v.

10: Set ψ(h) := v.
11: end for
12: end for

mj implies that either mi ≡h mj or mi ≺h mj .
A weakly-ordered d-tree which is projective and
whose orders ≺h have the nesting property for ev-
ery h is called a nested-weakly ordered projec-
tive d-tree. We then have the following result.
Proposition 3. Continuous unaryless c-trees and
nested-weakly ordered projective d-trees are iso-
morphic.

Proof. See the supplementary material.

Together, Propositions 1–3 have as corollary
that nested-strictly ordered projective d-trees are
in a one-to-one correspondence with binary con-
tinuous c-trees. The intuition is simple: if ≺h has
the nesting property, then, at each point in time, all
one needs to decide about the next event is whether
to attach the closest available modifier on the left
or on the right. This corresponds to choosing
between left-branching or right-branching in a c-
tree. While this is potentially interesting for most
continuous c-parsers, which work with binarized
c-trees when running the CKY algorithm, our c-
parsers (to be described in §4) do not require any
binarization since they work with weakly-ordered
d-trees, using Proposition 2.

4 Reduction-Based Constituent Parsers

We now invoke the equivalence results established
in §3 to build c-parsers when only a trainable d-
parser is available. Given a c-treebank provided as
input, our procedure is outlined as follows:

1. Convert the c-treebank to dependencies (Algo-
rithm 1).

2. Train a labeled d-parser on this treebank.

3. For each test sentence, run the labeled d-parser
and convert the predicted d-tree into a c-tree
without unary nodes (Algorithm 2).

4. Do post-processing to recover unaries.

The next subsections describe each of these steps
in detail. Along the way, we illustrate with exper-
iments using the English Penn Treebank (Marcus
et al., 1993), which we lexicalized by applying the
head rules of Collins (1999).4

4.1 Dependency Encoding

The first step is to convert the c-treebank to head-
ordered dependencies, which we do using Algo-
rithm 1. If the original treebank has discontinu-
ous c-trees, we end up with non-projective d-trees
or with violations of the nested property, as estab-
lished in Proposition 3. We handle this gracefully
by training a non-projective d-parser in the sub-
sequent stage (see §4.2). Note also that this con-
version drops the unary nodes (a consequence of
Proposition 2). These nodes will be recovered in
the last stage, as described in §4.4.

Since in this paper we are assuming that only
an off-the-shelf d-parser is available, we need to
convert head-ordered d-trees to plain d-trees. We
do so by encoding the order information in the de-
pendency labels. We tried two different strategies.
The first one, direct encoding, just appends suf-
fixes #1, #2, etc., as in Figure 1. A disadvantage is
that the number of labels grows unbounded with
the treebank size, as we may encounter complex
substructures where the event sequences are long.
The second strategy is a delta-encoding scheme
where, rather than writing the absolute indices in
the dependency label, we write the differences be-
tween consecutive ones.5 We used this strategy
for the continuous treebanks only, whose d-trees
are guaranteed to satisfy the nested property.

For comparison, we also implemented a repli-
cation of the encoding proposed by Hall and Nivre
(2008), which we call H&N-encoding. This strat-
egy concatenates all the c-nodes’ symbols in the
modifier’s spine with the attachment position in
the head’s spine (e.g., in Figure 3, if the modi-
fier m2 has a spine with nodes X1, X2, X3, the
generated d-label would be X1|X2|X3#2; our direct
encoding scheme generates Z2#2 instead). Since
their strategy encodes the entire spines into com-

4We train on §02–21, use §22 for validation, and test on
§23. We predict automatic POS tags with TurboTagger (Mar-
tins et al., 2013), with 10-fold jackknifing on the training set.

5For example, if #1,#3,#4 and #2,#3,#3,#5 are
respectively the sequence of indices from the head to the left
and to the right, we encode these sequences as #1,#2,#1
and #2,#1,#0,#2 (using 3 distinct indices instead of 5).
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plex arc labels, many such labels will be gener-
ated, leading to slower runtimes and poorer gener-
alization, as we will see.

For the training portion of the English PTB,
which has 27 non-terminal symbols, the direct en-
coding strategy yields 75 labels, while delta en-
coding yields 69 labels (2.6 indices per symbol).
By contrast, the H&N-encoding procedure yields
731 labels, more than 10 times as many. We later
show (in Tables 1–2) that delta-encoding leads to a
slightly higher c-parsing accuracy than direct en-
coding, and that both strategies are considerably
more accurate than H&N-encoding.

4.2 Training the Labeled Dependency Parser

The next step is to train a labeled d-parser on the
converted treebank. If we are doing continuous c-
parsing, we train a projective d-parser; otherwise
we train a non-projective one.

In our experiments, we found it advantageous to
perform labeled d-parsing in two stages, as done
by McDonald et al. (2006): first, train an unla-
beled d-parser; then, train a dependency labeler.6

Table 1 compares this approach against a one-
shot strategy, experimenting with various off-the-
shelf d-parsers: MaltParser (Nivre et al., 2007),
MSTParser (McDonald et al., 2005), ZPar (Zhang
and Nivre, 2011), and TurboParser (Martins et
al., 2013), all with the default settings. For Tur-
boParser, we used basic, standard and full models.

Our separate d-labeler receives as input a back-
bone d-structure and predicts a label for each arc.
For each head h, we predict the modifiers’ labels
using a simple sequence model, with features of
the form φ(h,m, `) and φ(h,m,m′, `, `′), where
m and m′ are two consecutive modifiers (possi-
bly on opposite sides of the head) and ` and `′ are
their labels. We use the same arc label features
φ(h,m, `) as TurboParser. For φ(h,m,m′, `, `′),
we use the POS triplet 〈ph, pm, pm′〉, plus unilex-
ical features where each of the three POS is re-
placed by the word form. Both features are con-
joined with the label pair ` and `′. Decoding un-
der this model can be done by running the Viterbi
algorithm independently for each head. The run-
time is almost negligible compared with the time
to parse: it took 2.1 seconds to process PTB §22,

6The reason why a two-stage approach is preferable is
that one-shot d-parsers, for efficiency reasons, use label fea-
tures parsimoniously. However, for our reduction approach,
d-labels are crucial and strongly interdependent, since they
jointly encode the c-structure.

Dependency Parser UAS LAS F1 # toks/s.
MaltParser 90.93 88.95 86.87 5,392
MSTParser 92.17 89.86 87.93 363
ZPar 92.93 91.28 89.50 1,022
TP-Basic 92.13 90.23 87.63 2,585
TP-Standard 93.55 91.58 90.41 1,658
TP-Full 93.70 91.70 90.53 959
TP-Full + Lab., H&N enc. 93.80 87.86 89.39 871
TP-Full + Lab, direct enc. 93.80 91.99 90.89 912
TP-Full + Lab., delta enc. 93.80 92.00 90.94 912

Table 1: Results on English PTB §22 achieved by various d-
parsers and encoding strategies. For dependencies, we report
unlabeled/labeled attachment scores (UAS/LAS), excluding
punctuation. For constituents, we show F1-scores (without
punctuation and root nodes), as provided by EVALB (Black
et al., 1992). We report total parsing speeds in tokens per sec-
ond (including time spent on pruning, decoding, and feature
evaluation), measured on a Intel Xeon processor @2.30GHz.

direct enc. delta enc.

# labels F1 # labels F1

Basque 26 85.04 17 85.17
French 61 79.93 56 80.05
German 66 83.44 59 83.39
Hebrew 62 83.26 43 83.29
Hungarian 24 86.54 15 86.67
Korean 44 79.79 16 79.97
Polish 47 92.39 34 92.64
Swedish 29 77.02 25 77.19

Table 2: Impact of direct and delta encodings on the dev sets
of the SPMRL14 shared task. Reported are the number of
labels and the F1-scores yielded by each encoding technique.

a fraction of about 5% of the total runtime.

4.3 Decoding into Unaryless Constituents

After training the labeled d-parser, we can run it
on the test data. Then, we need to convert the pre-
dicted d-tree into a c-tree without unaries.

To accomplish this step, we first need to recover,
for each head h, the weak order of its modifiers
Mh. We do this by looking at the predicted depen-
dency labels, extracting the event indices j, and
using them to build and sort the equivalent classes
{M̄ j

h}Jj=1. If two modifiers have the same index
j, we force them to have consistent labels (by al-
ways choosing the label of the modifier which is
the closest to the head). For continuous c-parsing,
we also decrease the index j of the modifier closer
to the head as much as necessary to make sure that
the nesting property holds. In PTB §22, these cor-
rections were necessary only for 0.6% of the to-
kens. Having done this, we use Algorithm 2 to
obtain a predicted c-tree without unary nodes.
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4.4 Recovery of Unary Nodes
The last stage is to recover the unary nodes. Given
a unaryless c-tree as input, we predict unaries by
running independent classifiers at each node in the
tree (a simple unstructured task). Each class is
either NULL (in which case no unary node is ap-
pended to the current node) or a concatenation of
unary node labels (e.g., S->ADJP for a node JJ).
We obtained 64 classes by processing the training
sections of the PTB, the fraction of unary nodes
being about 11% of the total number of nodes. To
reduce complexity, for each node symbol we only
consider classes that have been observed with that
symbol in the training data. In PTB §22, this yields
an average of 9.9 candidates per node occurrence.

The classifiers are trained on the original c-
treebank, stripping off unary nodes and trained to
recover those nodes. We used the following fea-
tures (conjoined with the class and with a flag in-
dicating if the node is a pre-terminal):

• The production rules above and beneath the
node (e.g., S->NP VP and NP->DT NN);

• The node’s label, alone and conjoined with the
parent’s label or the left/right sibling’s label;

• The leftmost and rightmost word/lemma/POS
tag/morpho-syntactic tags in the node’s yield;

• If the left/right node is a pre-terminal, the
word/lemma/morpho-syntactic tags beneath.

This is a relatively easy task: when gold unaryless
c-trees are provided as input, we obtain an EVALB
F1-score of 99.43%. This large figure is due to the
small amount of unary nodes, making this mod-
ule have less impact on the final parser than the
d-parser. Being a lightweight unstructured task,
this step took only 0.7 seconds to run on PTB §22,
a tiny fraction (less than 2%) of the total runtime.

Table 1 shows the accuracies obtained with the
d-parser followed by the unary predictor. Since
two-stage TP-Full with delta-encoding is the best
strategy, we use this configuration in the sequel.
To further explore the impact of delta encoding,
we report in Table 2 the scores obtained by direct
and delta encodings on eight other treebanks (see
§5.2 for details on these datasets). With the ex-
ception of German, in all cases the delta encoding
yielded better EVALB F1-scores with fewer labels.

5 Experiments

To evaluate the performance of our reduction-
based parsers, we conduct experiments in a variety

Parser LR LP F1 #Toks/s.
Charniak (2000) 89.5 89.9 89.5 –
Klein and Manning (2003) 85.3 86.5 85.9 143
Petrov and Klein (2007) 90.0 90.3 90.1 169
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Hall et al. (2014) 88.4 88.8 88.6 12
This work 89.9 90.4 90.2 957
Charniak and Johnson (2005)∗ 91.2 91.8 91.5 84
Socher et al. (2013)∗ 89.1 89.7 89.4 70
Zhu et al. (2013)∗ 91.1 91.5 91.3 –

Table 3: Results on the English PTB §23. All systems report-
ing runtimes were run on the same machine. Marked as ∗ are
reranking and semi-supervised c-parsers.

of treebanks, both continuous and discontinuous.

5.1 Results on the English PTB

Table 3 shows the accuracies and speeds achieved
by our system on the English PTB §23, in compar-
ison to state-of-the-art c-parsers. We can see that
our simple reduction-based c-parser surpasses the
three Stanford parsers (Klein and Manning, 2003;
Socher et al., 2013, and Stanford Shift-Reduce),
and is on par with the Berkeley parser (Petrov and
Klein, 2007), while being more than 5 times faster.

The best supervised competitor is the recent
shift-reduce parser of Zhu et al. (2013), which
achieves similar, but slightly better, accuracy and
speed. Our technique has the advantage of being
flexible: since the time for d-parsing is the domi-
nating factor (see §4.4), plugging a faster d-parser
automatically yields a faster c-parser. While
reranking and semi-supervised systems achieve
higher accuracies, this aspect is orthogonal, since
the same techniques can be applied to our parser.

5.2 Results on the SPMRL Datasets

We experimented with datasets for eight lan-
guages, from the SPMRL14 shared task (Seddah
et al., 2014). We used the official training, de-
velopment and test sets with the provided pre-
dicted POS tags. For French and German, we
used the lexicalization rules detailed in Dybro-
Johansen (2004) and Rehbein (2009), respectively.
For Basque, Hungarian and Korean, we always
took the rightmost modifier as head-child node.
For Hebrew and Polish we used the leftmost mod-
ifier instead. For Swedish we induced head rules
from the provided dependency treebank, as de-
scribed in Versley (2014b). These choices were
based on dev-set experiments.

Table 4 shows the results. For all languages ex-
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cept French, our system outperforms the Berke-
ley parser (Petrov and Klein, 2007), with or with-
out prescribed POS tags. Our average F1-scores
are superior to the best non-reranking system par-
ticipating in the shared task (Crabbé and Seddah,
2014) and to the c-parser of Hall et al. (2014),
achieving the best results for 4 out of 8 languages.

5.3 Results on the Discontinuous Treebanks

Finally, we experimented on two widely-used dis-
continuous German treebanks: TIGER (Brants et
al., 2002) and NEGRA (Skut et al., 1997). For
the former, we used two different splits: TIGER-
SPMRL, provided in the SPMRL14 shared task;
and TIGER-H&N, used by Hall and Nivre (2008).
For NEGRA, we used the standard splits. In these
experiments, we skipped the unary recovery stage,
since very few unary nodes exist in the data.7 We
ran TurboTagger to predict POS tags for TIGER-
H&N and NEGRA, while in TIGER-SPMRL we used
the predicted POS tags provided in the shared task.
All treebanks were lexicalized using the head-rule
sets of Rehbein (2009). For comparison to related
work, sentence length cut-offs of 30, 40 and 70
were applied during the evaluation.

Table 5 shows the results. We observe that
our approach outperforms all the competitors con-
siderably, achieving state-of-the-art accuracies for
both datasets. The best competitor, van Cranen-
burgh and Bod (2013), is more than 3 points be-
hind, both in TIGER-H&N and in NEGRA. Our
reduction-based parsers are also much faster: van
Cranenburgh and Bod (2013) report 3 hours to
parse NEGRA with L ≤ 40. Our system parses
all NEGRA sentences (regardless of length) in 27.1
seconds in a single core, which corresponds to a
rate of 618 tokens per second. This approaches the
speed of the easy-first system of Versley (2014a),
who reports runtimes in the range 670–920 tokens
per second, but is much less accurate.

6 Related Work

Conversions between constituents and dependen-
cies have been considered by De Marneffe et al.
(2006) in one direction, and by Collins et al.
(1999) and Xia and Palmer (2001) in the other, to-
ward multi-representational treebanks (Xia et al.,
2008). This prior work aimed at linguistically
sound conversions, involving grammar-specific

7NEGRA has no unaries; for the TIGER-SPMRL and H&N
dev-sets, the fraction of unaries is 1.45% and 1.01%.

TIGER-SPMRL L ≤ 70 all
V14b, gold 76.46 / 41.05 76.11 / 40.94
Ours, gold 80.98 / 43.44 80.62 / 43.32
V14b, pred 73.90 / 37.00 – / –
Ours, pred 77.72 / 38.75 77.32 / 38.64

TIGER-H&N L ≤ 40 all
HN08, gold 79.93 / 37.78 – / –
V14a, gold 74.23 / 37.32 – / –
Ours, gold 85.53 / 51.21 84.22 / 49.63

HN08, pred 75.33 / 32.63 – / –
CB13, pred 78.8– / 40.8– – / –
Ours, pred 82.57 / 45.93 81.12 / 44.48

NEGRA L ≤ 30 L ≤ 40 all
M12, gold 74.5– / – – / – – / –
C12, gold – / – 72.33 / 33.16 71.08 / 32.10

KM13, gold 75.75 / – – / – – / –
CB13, gold – / – 76.8– / 40.5– – / –
Ours, gold 82.56 / 52.13 81.08 / 48.04 80.52 / 46.70
CB13, pred – / – 74.8– / 38.7– – / –
Ours, pred 79.63 / 48.43 77.93 / 44.83 76.95 / 43.50

Table 5: F1 / exact match scores on TIGER and NEGRA test
sets, with gold and predicted POS tags. These scores are com-
puted by the DISCO-DOP evaluator ignoring root nodes and,
for TIGER-H&N and NEGRA, punctuation tokens. The base-
lines are published results by Hall and Nivre 2008 (HN08),
Maier et al. 2012 (M12), van Cranenburgh 2012 (C12),
Kallmeyer and Maier 2013 (KM13), van Cranenburgh and
Bod 2013 (CB13), and Versley 2014a, 2014b (V14a, V14b).

transformation rules to handle the kind of ambigu-
ities expressed in Figure 2. Our work differs in that
we are not concerned about the linguistic plausi-
bility of our conversions, but only with the formal
aspects that underlie the two representations.

The work most related to ours is Hall and Nivre
(2008), who also convert dependencies to con-
stituents to prototype a c-parser for German. Their
encoding strategy is compared to ours in §4.1: they
encode the entire spines into the dependency la-
bels, which become rather complex and numer-
ous. A similar strategy has been used by Vers-
ley (2014a) for discontinuous c-parsing. Both are
largely outperformed by our system, as shown in
§5.3. The crucial difference is that we encode only
the top node’s label and its position in the spine—
besides being a much lighter representation, ours
has an interpretation as a weak ordering, leading to
the isomorphisms expressed in Propositions 1–3.

Joint constituent and dependency parsing have
been tackled by Carreras et al. (2008) and Rush
et al. (2010), but the resulting parsers, while ac-
curate, are more expensive than a single c-parser.
Very recently, Kong et al. (2015) proposed a much
cheaper pipeline in which d-parsing is performed
first, followed by a c-parser constrained to be con-
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Parser Basque French German Hebrew Hungar. Korean Polish Swedish Avg.
Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72

Table 4: F1-scores on eight treebanks of the SPMRL14 shared task, computed with the provided EVALB SPMRL tool, which
takes into account all tokens except root nodes. Berkeley Tagged is a version of Petrov and Klein (2007) using the predicted POS
tags provided by the organizers. Crabbé and Seddah (2014) is the best non-reranking system in the shared task, and Björkelund
et al. (2014) the ensemble and reranking-based system which won the official task. We report their published scores.

sistent with the predicted d-structure. Our work
differs in which we do not need to run a c-parser
in the second stage—instead, the d-parser already
stores constituent information in the arc labels,
and the only necessary post-processing is to re-
cover unary nodes. Another advantage of our
method is that it can be readily used for discon-
tinuous parsing, while their constrained CKY al-
gorithm can only produce continuous parses.

7 Conclusion

We proposed a reduction technique that allows
to implement a c-parser when only a d-parser is
given. The technique is applicable to any d-parser,
regardless of its nature or kind. This reduction was
accomplished by endowing d-trees with a weak or-
der relation, and showing that the resulting class of
head-ordered d-trees is isomorphic to constituent
trees. We showed empirically that the our re-
duction leads to highly-competitive c-parsers for
English and for eight morphologically rich lan-
guages; and that it outperforms the current state
of the art in discontinuous parsing of German.
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