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Abstract

Broad domain question answering is of-
ten difficult in the absence of structured
knowledge bases, and can benefit from
shallow lexical methods (broad coverage)
and logical reasoning (high precision).
We propose an approach for incorporating
both of these signals in a unified frame-
work based on natural logic. We extend
the breadth of inferences afforded by nat-
ural logic to include relational entailment
(e.g., buy → own) and meronymy (e.g.,
a person born in a city is born the city’s
country). Furthermore, we train an eval-
uation function – akin to gameplaying –
to evaluate the expected truth of candidate
premises on the fly. We evaluate our ap-
proach on answering multiple choice sci-
ence questions, achieving strong results on
the dataset.

1 Introduction

Question answering is an important task in NLP,
and becomes both more important and more diffi-
cult when the answers are not supported by hand-
curated knowledge bases. In these cases, view-
ing question answering as textual entailment over
a very large premise set can offer a means of gen-
eralizing reliably to open domain questions.

A natural approach to textual entailment is to
treat it as a logical entailment problem. How-
ever, this high-precision approach is not feasible in
cases where a formal proof is difficult or impossi-
ble. For example, consider the following hypothe-
sis (H) and its supporting premise (P) for the ques-
tion Which part of a plant produces the seeds?:

P: Ovaries are the female part of the flower, which pro-
duces eggs that are needed for making seeds.

H: A flower produces the seeds.

This requires a relatively large amount of infer-
ence: the most natural atomic fact in the sentence
is that ovaries produce eggs. These inferences are
feasible in a limited domain, but become difficult
the more open-domain reasoning they require. In
contrast, even a simple lexical overlap classifier
could correctly predict the entailment. In fact,
such a bag-of-words entailment model has been
shown to be surprisingly effective on the Recog-
nizing Textual Entailment (RTE) challenges (Mac-
Cartney, 2009). On the other hand, such methods
are also notorious for ignoring even trivial cases of
nonentailment that are easy for natural logic, e.g.,
recognizing negation in the example below:

P: Eating candy for dinner is an example of a poor
health habit.

H: Eating candy is an example of a good health habit.

We present an approach to leverage the bene-
fits of both methods. Natural logic – a proof the-
ory over the syntax of natural language – offers a
framework for logical inference which is already
familiar to lexical methods. As an inference sys-
tem searches for a valid premise, the candidates it
explores can be evaluated on their similarity to a
premise by a conventional lexical classifier.

We therefore extend a natural logic inference
engine in two key ways: first, we handle rela-
tional entailment and meronymy, increasing the
total number of inferences that can be made. We
further implement an evaluation function which
quickly provides an estimate for how likely a can-
didate premise is to be supported by the knowl-
edge base, without running the full search. This
can then more easily match a known premise de-
spite still not matching exactly.

We present the following contributions: (1) we
extend the classes of inferences NaturalLI can per-
form on real-world sentences by incorporating re-
lational entailment and meronymy, and by operat-
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ing over dependency trees; (2) we augment Nat-
uralLI with an evaluation function to provide an
estimate of entailment for any query; and (3) we
run our system over the Aristo science questions
corpus, achieving the strong results.

2 Background

We briefly review natural logic and NaturalLI –
the existing inference engine we use. Much of
this paper will extend this system, with additional
inferences (Section 3) and a soft lexical classifier
(Section 4).

2.1 Natural Logic
Natural logic is a formal proof theory that aims to
capture a subset of logical inferences by appeal-
ing directly to the structure of language, without
needing either an abstract logical language (e.g.,
Markov Logic Networks; Richardson and Domin-
gos (2006)) or denotations (e.g., semantic pars-
ing; Liang and Potts (2015)). We use the logic in-
troduced by the NatLog system (MacCartney and
Manning, 2007; 2008; 2009), which was in turn
based on earlier theoretical work on Monotonicity
Calculus (van Benthem, 1986; Sánchez Valencia,
1991). We adopt the precise semantics of Icard
and Moss (2014); we refer the reader to this paper
for a more thorough introduction to the formalism.

At a high level, natural logic proofs operate by
mutating spans of text to ensure that the mutated
sentence follows from the original – each step is
much like a syllogistic inference. Each mutation
in the proof follows three steps:

1. An atomic lexical relation is induced by ei-
ther inserting, deleting or mutating a span in
the sentence. For example, in Figure 1, mu-
tating The to No induces the f relation; mu-
tating cat to carnivore induces thev relation.
The relations ≡ and v are variants of entail-
ment; f and �� are variants of negation.

2. This lexical relation between words is pro-
jected up to yield a relation between sen-
tences, based on the polarity of the token. For
instance, The cat eats animals v some carni-
vores eat animals. We explain this in more
detail below.

3. These sentence level relations are joined
together to produce a relation between a
premise, and a hypothesis multiple mutations
away. For example in Figure 1, if we join v,
≡, v, and f, we get negation (��).

The notion of projecting a relation from a lexi-
cal item to a sentence is important to understand.1

To illustrate, cat v animal, and some cat meows
v some animal meows (recall, v denotes entail-
ment), but no cat barks 6v no animal barks. De-
spite differing by the same lexical relation, the
sentence-level relation is different in the two cases.

We appeal to two important concepts: mono-
tonicity – a property of arguments to natural lan-
guage operators; and polarity – a property of to-
kens. From the example above, some is monotone
in its first argument (i.e., cat or animal), and no is
antitone in its first argument. This means that the
first argument to some is allowed to mutate up the
specified hierarchy (e.g., hypernymy), whereas the
first argument to no is allowed to mutate down.

Polarity is a property of tokens in a sentence de-
termined by the operators acting on it. All lexical
items have upward polarity by default; monotone
operators – like some, several, or a few – preserve
polarity. Antitone operators – like no, not, and all
(in its first argument) – reverse polarity. For ex-
ample, mice in no cats eat mice has downward po-
larity, whereas mice in no cats don’t eat mice has
upward polarity (it is in the scope of two down-
ward monotone operators).

As a final note, although we refer to the mono-
tonicity calculus described above as natural logic,
this formalism is only one of many possible nat-
ural logics. For example, McAllester and Gi-
van (1992) introduce a syntax for first order logic
which they call Montagovian syntax. This syntax
has two key advantages over first order logic: first,
the “quantifier-free” version of the syntax (roughly
equivalent to the monotonicity calculus we use)
is computationally efficient while still handling
limited quantification. Second, the syntax more
closely mirrors that of natural language.

2.2 NaturalLI
We build our extensions within the framework
of NaturalLI, introduced by Angeli and Manning
(2014). NaturalLI casts inference as a search prob-
lem: given a hypothesis and an arbitrarily large
corpus of text, it searches through the space of lex-
ical mutations (e.g., cat → carnivore), with asso-
ciated costs, until a premise is found.

An example search using NaturalLI is given in
Figure 1. The relations along the edges denote re-

1For clarity we describe a simplified semantics here; Nat-
uralLI implements the semantics described in Icard and Moss
(2014).
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No carnivores
eat animals?

The carnivores
eat animals

The cat
eats animals

The cat
ate an animal

The cat
ate a mouse

w

≡

w

f

No animals
eat animals

No animals
eat things

w
. . .

w
. . .

Figure 1: An illustration of NaturalLI searching
for a candidate premise to support the hypothesis
at the root of the tree. We are searching from a
hypothesis no carnivores eat animals, and find a
contradicting premise the cat ate a mouse. The
edge labels denote Natural Logic inference steps.

lations between the associated sentences – i.e., the
projected lexical relations from Section 2.2. Im-
portantly, and in contrast with traditional entail-
ment systems, NaturalLI searches over an arbitrar-
ily large knowledge base of textual premises rather
than a single premise/hypothesis pair.

3 Improving Inference in NaturalLI

We extend NaturalLI in three ways to improve its
coverage. We adapt the search algorithm to oper-
ate over dependency trees rather than the surface
forms (Section 3.1). We enrich the class of in-
ferences warranted by natural logic beyond hyper-
nymy and operator rewording to also encompass
meronymy and relational entailment (Section 3.2).
Lastly, we handle token insertions during search
more elegantly (Section 3.3).

The general search algorithm in NaturalLI is
parametrized as follows: First, an order is cho-
sen to traverse the tokens in a sentence. For ex-
ample, the original paper traverses tokens left-to-
right. At each token, one of three operations can
be performed: deleting a token (corresponding to
inserting a word in the proof derivation), mutating
a token, and inserting a token (corresponding to
deleting a token in the proof derivation).

3.1 Natural logic over Dependency Trees

Operating over dependency trees rather than a to-
ken sequence requires reworking (1) the semantics
of deleting a token during search, and (2) the order
in which the sentence is traversed.

We recently defined a mapping from Stanford
Dependency relations to the associated lexical re-
lation deleting the dependent subtree would in-
duce (Angeli et al., 2015). We adapt this mapping
to yield the relation induced by inserting a given
dependency edge, corresponding to our deletions
in search; we also convert the mapping to use Uni-
versal Dependencies (de Marneffe et al., 2014).
This now lends a natural deletion operation: at a
given node, the subtree rooted at that node can be
deleted to induce the associated natural logic rela-
tion.

For example, we can infer that all truly notori-
ous villains have lairs from the premise all villains
have lairs by observing that deleting an amod arc
induces the relation w, which in the downward
polarity context of villains↓ projects to v (entail-
ment):

All↑ truly↓ notorious↓ villains↓ have↑ lairs↑.

operator

nsubjamodadvmod dobj

An admittedly rare but interesting subtlety in
the order we chose to traverse the tokens in the
sentence is the effect mutating an operator has on
the polarity of its arguments. For example, mu-
tating some to all changes the polarity of its first
argument. There are cases where we must mutate
the argument to the operator before the operator
itself, as well as cases where we must mutate the
operator before its arguments. Consider, for in-
stance:

P: All felines have a tail

H: Some cats have a tail

where we must first mutate cat to feline, versus:

P: All cats have a tail

H: Some felines have a tail

where we must first mutate some to all. There-
fore, our traversal first visits each operator, then
performs a breadth-first traversal of the tree, and
then visits each operator a second time.

3.2 Meronymy and Relational Entailment

Although natural logic and the underlying mono-
tonicity calculus has only been explored in the
context of hypernymy, the underlying framework
can be applied to any partial order.

Natural language operators can be defined as a
mapping from denotations of objects to truth val-
ues. The domain of word denotations is then or-
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(a)

x= Felix kitten cat animal thing
Denotation of word x

False
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(b)

x= Hilo Big Island Hawaii USA North America
Denotation of word x

False

True
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e Obama was born in x

x is an island

Figure 2: An illustration of monotonicity using
different partial orders. (a) The monotonicity of
all and some in their first arguments, over a do-
main of denotations. (b) An illustration of the born
in monotone operator over the meronymy hierar-
chy, and the operator is an island as neither mono-
tone or antitone.

dered by the subset operator, corresponding to or-
dering by hypernymy over the words.2 However,
hypernymy is not the only useful partial ordering
over denotations. We include two additional or-
derings as motivating examples: relational entail-
ment and meronymy.

Relational Entailment For two verbs v1 and v2,
we define v1 ≤ v2 if the first verb entails the sec-
ond. In many cases, a verb v1 may entail a verb
v2 even if v2 is not a hypernym of v1. For exam-
ple, to sell something (hopefully) entails owning
that thing. Apart from context-specific cases (e.g.,
orbit entails launch only for man-made objects),
these hold largely independent of context. Note
that the usual operators apply to relational entail-
ments – if all cactus owners live in Arizona then
all cactus sellers live in Arizona.

This information was incorporated using data
from VERBOCEAN (Chklovski and Pantel, 2004),
adapting the confidence weights as transition
costs. VERBOCEAN uses lexicosyntactic pat-
terns to score pairs of verbs as candidate par-
ticipants in a set of relations. We approximate
the VERBOCEAN relations stronger -than(v1, v2)
(e.g., to kill is stronger than to wound) and

2Truth values are a trivial partial order corresponding to
entailment: if t1 ≤ t2 (i.e., t1 v t2), and you know that t1 is
true, then t2 must be true.

happens-before(v2, v1) (e.g., buying happens be-
fore owning) to indicate that v1 entails v2. These
verb entailment transitions are incorporated us-
ing costs derived from the original weights from
Chklovski and Pantel (2004).

Meronymy The most salient use-case for
meronymy is with locations. For example, if
Obama was born in Hawaii, then we know that
Obama was born in America, because Hawaii is a
meronym of (part of) America. Unlike relational
entailment and hypernymy, meronymy is operated
on by a distinct set of operators: if Hawaii is an
island, we cannot necessarily entail that America
is an island.

We semi-automatically collect a set of 81 op-
erators (e.g., born in, visited) which then com-
pose in the usual way with the conventional op-
erators (e.g., some, all). These operators consist
of dependency paths of length 2 that co-occurred
in newswire text with a named entity of type PER-
SON and two different named entities of type LO-
CATION, such that one location was a meronym of
the other. All other operators are considered non-
monotone with respect to the meronym hierarchy.

Note that these are not the only two orders that
can be incorporated into our framework; they just
happen to be two which have lexical resources
available and are likely to be useful in real-world
entailment tasks.

3.3 Removing the Insertion Transition

Inserting words during search poses an inherent
problem, as the space of possible words to insert
at any position is on the order of the size of the
vocabulary. In NaturalLI, this was solved by keep-
ing a trie of possible insertions, and using that to
prune this space. This is both computationally
slow and adapts awkwardly to a search over de-
pendency trees.

Therefore, this work instead opts to perform
a bidirectional search: when constructing the
knowledge base, we add not only the original
sentence but also all entailments with subtrees
deleted. For example, a premise of some furry cats
have tails would yield two facts for the knowledge
base: some furry cats have tails as well as some
cats have tails. For this, we use the process de-
scribed in Angeli et al. (2015) to generate short
entailed sentences from a long utterance using nat-
ural logic. This then leaves the reverse search to
only deal with mutations and inference insertions,

445



which are relatively easier.
The new challenge this introduces, of course,

is the additional space required to store the new
facts. To mitigate this, we hash every fact into a
64 bit integer, and store only the hashed value in
the knowledge base. We construct this hash func-
tion such that it operates over a bag of edges in the
dependency tree. This has two key properties: it
allows us to be invariant to the word order of of
the sentence, and more importantly it allows us to
run our search directly over modifications to this
hash function.

To elaborate, we notice that each of the two
classes of operations our search is performing are
done locally over a single dependency edge. When
adding an edge, we can simply take the XOR of
the hash saved in the parent state and the hash of
the added edge. When mutating an edge, we XOR
the hash of the parent state with the edge we are
mutating, and again with the mutated edge. In
this way, each search node need only carry an 8
byte hash, local information about the edge cur-
rently being considered (8 bytes), global infor-
mation about the words deleted during search (5
bytes), a 3 byte backpointer to recover the infer-
ence path, and 8 bytes of operator metadata – 32
bytes in all, amounting to exactly half a cache line
on our machines. This careful attention to data
structures and memory layout turn out to have a
large impact on runtime efficiency. More details
are given in Angeli (2016).

4 An Evaluation Function for NaturalLI

There are many cases – particularly as the length
of the premise and the hypothesis grow – where
despite our improvements NaturalLI will fail to
find any supporting premises; for example:

P: Food serves mainly for growth, energy and body re-
pair, maintenance and protection.

H: Animals get energy for growth and repair from food.

In addition to requiring reasoning with multi-
ple implicit premises (a concomitant weak point of
natural logic), a correct interpretation of the sen-
tence requires fairly nontrivial nonlocal reasoning:
Food serves mainly for x → Animals get x from
food.

Nonetheless, there enough lexical clues in the
sentence that even a simple entailment classifier
would get the example correct. We build such a
classifier and adapt it as an evaluation function in-
side NaturalLI in case no premises are found dur-

ing search.

4.1 A Standalone Entailment Classifier
Our entailment classifier is designed to be as do-
main independent as possible; therefore we de-
fine only 5 unlexicalized real-valued features, with
an optional sixth feature encoding the score out-
put by the Solr information extraction system (in
turn built upon Lucene). In fact, this classifier is
a stronger baseline than it may seem: evaluating
the system on RTE-3 (Giampiccolo et al., 2007)
yielded 63.75% accuracy – 2 points above the me-
dian submission.

All five of the core features are based on an
alignment of keyphrases between the premise and
the hypothesis. A keyphrase is defined as a span
of text which is either (1) a possibly empty se-
quence of adjectives and adverbs followed by a
sequence of nouns, and optionally followed by ei-
ther of or the possessive marker (’s), and another
noun (e.g., sneaky kitten or pail of water); (2) a
possibly empty sequence of adverbs followed by
a verb (e.g., quietly pounce); or (3) a gerund fol-
lowed by a noun (e.g., flowing water). The verb
to be is never a keyphrase. We make a distinction
between a keyphrase and a keyword – the latter is
a single noun, adjective, or verb.

We then align keyphrases in the premise and
hypothesis by applying a series of sieves. First,
all exact matches are aligned to each other. Then,
prefix or suffix matches are aligned, then if either
keyphrase contains the other they are aligned as
well. Last, we align a keyphrase in the premise
pi to a keyphrase in the hypothesis hk if there is
an alignment between pi−1 and hk−1 and between
pi+1 and hk+1. This forces any keyphrase pair
which is “sandwiched” between aligned pairs to
be aligned as well. An example alignment is given
in Figure 3.

Features are extracted for the number of align-
ments, the numbers of alignments which do and do
not match perfectly, and the number of keyphrases
in the premise and hypothesis which were not
aligned. A feature for the Solr score of the premise
given the hypothesis is optionally included; we re-
visit this issue in the evaluation.

4.2 An Evaluation Function for Search
A version of the classifier constructed in Sec-
tion 4.1, but over keywords rather than keyphrases
can be incorporated directly into NaturalLI’s
search to give a score for each candidate premise
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Heat energy is being transferred when a stove is used to boil water in a pan.

When you heat water on a stove, thermal energy is transferred.

Figure 3: An illustration of an alignment between a premise and a hypothesis. Keyphrases can be
multiple words (e.g., heat energy), and can be approximately matched (e.g., to thermal energy). In the
premise, used, boil and pan are unaligned. Note that heat water is incorrectly tagged as a compound
noun.

visited. This can be thought of as analogous to the
evaluation function in game-playing search – even
though an agent cannot play a game of Chess to
completion, at some depth it can apply an evalua-
tion function to its leaf states.

Using keywords rather than keyphrases is in
general a hindrance to the fuzzy alignments the
system can produce. Importantly though, this al-
lows the feature values to be computed incremen-
tally as the search progresses, based on the score
of the parent state and the mutation or deletion
being performed. For instance, if we are delet-
ing a word which was previously aligned perfectly
to the premise, we would subtract the weight for
a perfect and imperfect alignment, and add the
weight for an unaligned premise keyphrase. This
has the same effect as applying the trained clas-
sifier to the new state, and uses the same weights
learned for this classifier, but requires substantially
less computation.

In addition to finding entailments from candi-
date premises, our system also allows us to en-
code a notion of likely negation. We can consider
the following two statements naı̈vely sharing ev-
ery keyword. Each token marked with its polarity:

P: some↑ cats↑ have↑ tails↑

H: no↑ cats↓ have↓ tails↓

However, we note that all of the keyword pairs
are in opposite polarity contexts. We can therefore
define a pair of keywords as matching in NaturalLI
if the following two conditions hold: (1) their lem-
matized surface forms match exactly, and (2) they
have the same polarity in the sentence. The second
constraint encodes a good approximation for nega-
tion. To illustrate, consider the polarity signatures
of common operators:

Operators Subj. polarity Obj. polarity
Some, few, etc. ↑ ↑
All, every, etc. ↓ ↑
Not all, etc. ↑ ↓
No, not, etc. ↓ ↓
Most, many, etc. – ↑
We note that most contradictory operators (e.g.,

some/no; all/not all) induce the exact opposite po-
larity on their arguments. Otherwise, pairs of op-
erators which share half their signature are usually
compatible with each other (e.g., some and all).

This suggests a criterion for likely negation: If
the highest classifier score is produced by a con-
tradictory candidate premise, we have reason to
believe that we may have found a contradiction.
To illustrate with our example, NaturalLI would
mutate no cats have tails to the cats have tails,
at which point it has found a contradictory candi-
date premise which has perfect overlap with the
premise some cats have tails. Even had we not
found the exact premise, this suggests that the hy-
pothesis is likely false.

5 Related Work

This work is similar in many ways to work on rec-
ognizing textual entailment – e.g., Schoenmack-
ers et al. (2010), Berant et al. (2011), Lewis and
Steedman (2013). In the RTE task, a single
premise and a single hypothesis are given as in-
put, and a system must return a judgment of either
entailment or nonentailment (in later years, nonen-
tailment is further split into contradiction and in-
dependence). These approaches often rely on
alignment features, similar to ours, but do not gen-
erally scale to large premise sets (i.e., a compre-
hensive knowledge base). The discourse commit-
ments in Hickl and Bensley (2007) can be thought
of as similar to the additional entailed facts we
add to the knowledge base (Section 3.3). In an-
other line of work, Tian et al. (2014) approach the
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RTE problem by parsing into Dependency Com-
positional Semantics (DCS) (Liang et al., 2011).
This work particularly relevant in that it also in-
corporates an evaluation function (using distribu-
tional similarity) to augment their theorem prover
– although in their case, this requires a transla-
tion back and forth between DCS and language.
Beltagy et al. (To appear 2016) takes a similar ap-
proach, but encoding distributional information di-
rectly in entailment rules in a Markov Logic Net-
work (Richardson and Domingos, 2006).

Many systems make use of structured knowl-
edge bases for question answering. Semantic
parsing methods (Zettlemoyer and Collins, 2005;
Liang et al., 2011) use knowledge bases like
Freebase to find support for a complex ques-
tion. Knowledge base completion (e.g., Chen et
al. (2013), Bordes et al. (2011), or Riedel et al.
(2013)) can be thought of as entailment, predict-
ing novel knowledge base entries from the origi-
nal database. In contrast, this work runs inference
over arbitrary text without needing a structured
knowledge base. Open IE (Wu and Weld, 2010;
Mausam et al., 2012) QA approaches – e.g., Fader
et al. (2014) are closer to operating over plain text,
but still requires structured extractions.

Of course, this work is not alone in attempting
to incorporate strict logical reasoning into ques-
tion answering systems. The COGEX system
(Moldovan et al., 2003) incorporates a theorem
prover into a QA system, boosting overall per-
formance on the TREC QA task. Similarly, Wat-
son (Ferrucci et al., 2010) incorporates logical rea-
soning components alongside shallower methods.
This work follows a similar vein, but both the
theorem prover and lexical classifier operate over
text, without requiring either the premises or ax-
ioms to be in logical forms.

On the Aristo corpus we evaluate on, Hixon et
al. (2015) proposes a dialog system to augment
a knowledge graph used for answering the ques-
tions. This is in a sense an oracle measure, where
a human is consulted while answering the ques-
tion; although, they show that their additional ex-
tractions help answer questions other than the one
the dialog was collected for.

6 Evaluation

We evaluate our entailment system on the Regents
Science Exam portion of the Aristo dataset (Clark
et al., 2013; Clark, 2015). The dataset consists of

a collection of multiple-choice science questions
from the New York Regents 4th Grade Science Ex-
ams (NYSED, 2014). Each multiple choice option
is translated to a candidate hypotheses. A large
corpus is given as a knowledge base; the task is
to find support in this knowledge base for the hy-
pothesis.

Our system is in many ways well-suited to the
dataset. Although certainly many of the facts re-
quire complex reasoning (see Section 6.4), the ma-
jority can be answered from a single premise. Un-
like FraCaS (Cooper et al., 1996) or the RTE chal-
lenges, however, the task does not have explicit
premises to run inference from, but rather must in-
fer the truth of the hypothesis from a large collec-
tion of supporting text.

6.1 Data Processing

We make use of two collections of unlabeled cor-
pora for our experiments. The first of these is
the Barron’s study guide (BARRON’S), consisting
of 1200 sentences. This is the corpus used by
Hixon et al. (2015) for their conversational dia-
log engine Knowbot, and therefore constitutes a
more fair comparison against their results. How-
ever, we also make use of the full SCITEXT cor-
pus (Clark et al., 2014). This corpus consists of
1 316 278 supporting sentences, including the Bar-
ron’s study guide alongside simple Wikipedia, dic-
tionaries, and a science textbook.

Since we lose all document context when
searching over the corpus with NaturalLI, we first
pre-process the corpus to resolve high-precision
cases of pronominal coreference, via a set of very
simple high-precision sieves. This finds the most
recent candidate antecedent (NP or named entity)
which, in order of preference, matches either the
pronoun’s animacy, gender, and number. Filter-
ing to remove duplicate sentences and sentences
containing non-ASCII characters yields a total of
822 748 facts in the corpus.

These sentences were then indexed using Solr.
The set of promising premises for the soft align-
ment in Section 4, as well as the Solr score fea-
ture in the lexical classifier (Section 4.1), were
obtained by querying Solr using the default sim-
ilarity metric and scoring function. On the query
side, questions were converted to answers using
the same methodology as Hixon et al. (2015). In
cases where the question contained multiple sen-
tences, only the last sentence was considered. As
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discussed in Section 6.4, we do not attempt rea-
soning over multiple sentences, and the last sen-
tence is likely the most informative sentence in a
longer passage.

6.2 Training an Entailment Classifier
To train a soft entailment classifier, we needed a
set of positive and negative entailment instances.
These were collected on Mechanical Turk. In par-
ticular, for each true hypothesis in the training set
and for each sentence in the Barron’s study guide,
we found the top 8 results from Solr and consid-
ered these to be candidate entailments. These were
then shown to Turkers, who decided whether the
premise entailed the hypothesis, the hypothesis en-
tailed the premise, both, or neither. Note that each
pair was shown to only one Turker, lowering the
cost of data collection, but consequently resulting
in a somewhat noisy dataset. The data was aug-
mented with additional negatives, collected by tak-
ing the top 10 Solr results for each false hypothesis
in the training set. This yielded a total of 21 306
examples.

The scores returned from NaturalLI incorporate
negation in two ways: if NaturalLI finds a contra-
dictory premise, the score is set to zero. If Natu-
ralLI finds a soft negation (see Section 4.2), and
did not find an explicit supporting premise, the
score is discounted by 0.75 – a value tuned on the
training set. For all systems, any premise which
did not contain the candidate answer to the multi-
ple choice query was discounted by a value tuned
on the training set.

6.3 Experimental Results
We present results on the Aristo dataset in Table 1,
alongside prior work and strong baselines. In all
cases, NaturalLI is run with the evaluation func-
tion enabled; the limited size of the text corpus and
the complexity of the questions would cause the
basic NaturalLI system to perform poorly. The test
set for this corpus consists of only 68 examples,
and therefore both perceived large differences in
model scores and the apparent best system should
be interpreted cautiously. NaturalLI consistently
achieves the best training accuracy, and is more
stable between configurations on the test set. For
instance, it may be consistently discarding lexi-
cally similar but actually contradictory premises
that often confuse some subset of the baselines.

KNOWBOT is the dialog system presented in
Hixon et al. (2015). We report numbers for two

System Barron’s SCITEXT
Train Test Train Test

KNOWBOT (held-out) 45 – – –
KNOWBOT (oracle) 57 – – –

Solr Only 49 42 62 58
Classifier 53 52 68 60

+ Solr 53 48 66 64

Evaluation Function 52 54 61 63
+ Solr 50 45 62 58

NaturalLI 52 51 65 61
+ Solr 55 49 73 61
+ Solr + Classifier 55 49 74 67

Table 1: Accuracy on the Aristo science questions
dataset. All NaturalLI runs include the evalua-
tion function. Results are reported using only the
Barron’s study guide or SCITEXT as the support-
ing KNOWBOT is the dialog system presented in
Hixon et. al (2015). The held-out version uses ad-
ditional facts from other question’s dialogs; the or-
acle version made use of human input on the ques-
tion it was answering. The test set did not exist at
the time KNOWBOT was published.

variants of the system: held-out is the system’s
performance when it is not allowed to use the di-
alog collected from humans for the example it is
answering; oracle is the full system. Note that the
oracle variant is a human-in-the-loop system.

We additionally present three baselines. The
first simply uses Solr’s IR confidence to rank en-
tailment (Solr Only in Table 1). The max IR score
of any premise given a hypothesis is taken as the
score for that hypothesis. Furthermore, we report
results for the entailment classifier defined in Sec-
tion 4.1 (Classifier), optionally including the Solr
score as a feature. We also report performance
of the evaluation function in NaturalLI applied di-
rectly to the premise and hypothesis, without any
inference (Evaluation Function).

Last, we evaluate NaturalLI with the improve-
ments presented in this paper (NaturalLI in Ta-
ble 1). We additionally tune weights on our train-
ing set for a simple model combination with (1)
Solr (with weight 6:1 for NaturalLI) and (2) the
standalone classifier (with weight 24:1 for Nat-
uralLI). Empirically, both parameters were ob-
served to be fairly robust.

To demonstrate the system’s robustness on a
larger dataset, we additionally evaluate on a test
set of 250 additional science exam questions, with
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System Test Accuracy
Solr Only 46.8
Classifier 43.6

NaturalLI 46.4
+ Solr 48.0

Table 2: Results of our baselines and NaturalLI on
a larger dataset of 250 examples. All NaturalLI
runs include the evaluation function.

an associated 500 example training set (and 249
example development set). These are substantially
more difficult as they contain a far larger num-
ber of questions that require an understanding of
a more complex process. Nonetheless, the trend
illustrated in Table 1 holds for this larger set, as
shown in Table 2. Note that with a web-scale
corpus, accuracy of an IR-based system can be
pushed up to 51.4%; a PMI-based solver, in turn,
achieves an accuracy of 54.8% – admittedly higher
than our best system (Clark et al., 2016).3 An in-
teresting avenue of future work would be to run
NaturalLI over such a large web-scale corpus, and
to incorporate PMI-based statistics into the evalu-
ation function.

6.4 Discussion

We analyze some common types of errors made
by the system on the training set. The most com-
mon error can be attributed to the question requir-
ing complex reasoning about multiple premises.
29 of 108 questions in the training set (26%) con-
tain multiple premises. Some of these cases can
be recovered from (e.g., This happens because the
smooth road has less friction.), while others are
trivially out of scope for our method (e.g., The vol-
ume of water most likely decreased.). Although
there is usually still some signal for which answer
is most likely to be correct, these questions are
fundamentally out-of-scope for the approach.

Another class of errors which deserves mention
are cases where a system produces the same score
for multiple answers. This occurs fairly frequently
in the standalone classifier (7% of examples in
training; 4% loss from random guesses), and es-
pecially often in NaturalLI (11%; 6% loss from
random guesses). This offers some insight into
why incorporating other models – even with low
weight – can offer significant boosts in the per-

3Results from personal correspondence with the authors.

formance of NaturalLI. Both this and the previous
class could be further mitigated by having a notion
of a process, as in Berant et al. (2014).

Other questions are simply not supported by any
single sentence in the corpus. For example, A hu-
man offspring can inherit blue eyes has no sup-
port in the corpus that does not require significant
multi-step inferences.

A remaining chunk of errors are simply classi-
fication errors. For example, Water freezing is an
example of a gas changing to a solid is marked as
the best hypothesis, supported incorrectly by An
ice cube is an example of matter that changes from
a solid to a liquid to a gas, which after mutating
water to ice cube matches every keyword in the
hypothesis.

7 Conclusion

We have improved NaturalLI to be more robust
for question answering by running the inference
over dependency trees, pre-computing deletions,
and incorporating a soft evaluation function for
predicting likely entailments when formal support
could not be found. Lastly, we show that relational
entailment and meronymy can be elegantly incor-
porated into natural logic. These features allow
us to perform large-scale broad domain question
answering, achieving strong results on the Aristo
science exams corpus.
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