
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1546–1556,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Optimizing Spectral Learning for Parsing

Shashi Narayan and Shay B. Cohen
School of Informatics

University of Edinburgh
Edinburgh, EH8 9LE, UK

{snaraya2,scohen}@inf.ed.ac.uk

Abstract

We describe a search algorithm for opti-
mizing the number of latent states when
estimating latent-variable PCFGs with
spectral methods. Our results show that
contrary to the common belief that the
number of latent states for each nontermi-
nal in an L-PCFG can be decided in isola-
tion with spectral methods, parsing results
significantly improve if the number of la-
tent states for each nonterminal is globally
optimized, while taking into account in-
teractions between the different nontermi-
nals. In addition, we contribute an empiri-
cal analysis of spectral algorithms on eight
morphologically rich languages: Basque,
French, German, Hebrew, Hungarian, Ko-
rean, Polish and Swedish. Our results
show that our estimation consistently per-
forms better or close to coarse-to-fine
expectation-maximization techniques for
these languages.

1 Introduction

Latent-variable probabilistic context-free gram-
mars (L-PCFGs) have been used in the natural lan-
guage processing community (NLP) for syntactic
parsing for over a decade. They were introduced
in the NLP community by Matsuzaki et al. (2005)
and Prescher (2005), with Matsuzaki et al. us-
ing the expectation-maximization (EM) algorithm
to estimate them. Their performance on syntac-
tic parsing of English at that stage lagged behind
state-of-the-art parsers.

Petrov et al. (2006) showed that one of the
reasons that the EM algorithm does not estimate
state-of-the-art parsing models for English is that
the EM algorithm does not control well for the
model size used in the parser – the number of la-

tent states associated with the various nontermi-
nals in the grammar. As such, they introduced a
coarse-to-fine technique to estimate the grammar.
It splits and merges nonterminals (with latent state
information) with the aim to optimize the likeli-
hood of the training data. Together with other
types of fine tuning of the parsing model, this led
to state-of-the-art results for English parsing.

In more recent work, Cohen et al. (2012) de-
scribed a different family of estimation algorithms
for L-PCFGs. This so-called “spectral” family of
learning algorithms is compelling because it offers
a rigorous theoretical analysis of statistical conver-
gence, and sidesteps local maxima issues that arise
with the EM algorithm.

While spectral algorithms for L-PCFGs are
compelling from a theoretical perspective, they
have been lagging behind in their empirical results
on the problem of parsing. In this paper we show
that one of the main reasons for that is that spectral
algorithms require a more careful tuning proce-
dure for the number of latent states than that which
has been advocated for until now. In a sense, the
relationship between our work and the work of
Cohen et al. (2013) is analogous to the relation-
ship between the work by Petrov et al. (2006) and
the work by Matsuzaki et al. (2005): we suggest
a technique for optimizing the number of latent
states for spectral algorithms, and test it on eight
languages.

Our results show that when the number of la-
tent states is optimized using our technique, the
parsing models the spectral algorithms yield per-
form significantly better than the vanilla-estimated
models, and for most of the languages – better than
the Berkeley parser of Petrov et al. (2006).

As such, the contributions of this parser are two-
fold:

• We describe a search algorithm for optimiz-

1546

ing the number of latent states for spectral
learning.

• We describe an analysis of spectral algo-
rithms on eight languages (until now the re-
sults of L-PCFG estimation with spectral al-
gorithms for parsing were known only for
English). Our parsing algorithm is rather
language-generic, and does not require sig-
nificant linguistically-oriented adjustments.

In addition, we dispel the common wisdom that
more data is needed with spectral algorithms. Our
models yield high performance on treebanks of
varying sizes from 5,000 sentences (Hebrew and
Swedish) to 40,472 sentences (German).

The rest of the paper is organized as follows.
In §2 we describe notation and background. §3
further investigates the need for an optimization
of the number of latent states in spectral learn-
ing and describes our optimization algorithm, a
search algorithm akin to beam search. In §4 we de-
scribe our experiments with natural language pars-
ing for Basque, French, German, Hebrew, Hungar-
ian, Korean, Polish and Swedish. We conclude in
§5.

2 Background and Notation

We denote by [n] the set of integers {1, . . . , n}.
An L-PCFG is a 5-tuple (N , I,P, f, n) where:

• N is the set of nonterminal symbols in the
grammar. I ⊂ N is a finite set of intermi-
nals. P ⊂ N is a finite set of preterminals.
We assume thatN = I ∪ P , and I ∩ P = ∅.
Hence we have partitioned the set of nonter-
minals into two subsets.

• f :N → N is a function that maps each non-
terminal a to the number of latent states it
uses. The set [ma] includes the possible hid-
den states for nonterminal a.

• [n] is the set of possible words.

• For all a ∈ I, b ∈ N , c ∈ N , h1 ∈ [ma],
h2 ∈ [mb], h3 ∈ [mc], we have a binary
context-free rule a(h1)→ b(h2) c(h3).

• For all a ∈ P , h ∈ [ma], x ∈ [n], we have a
lexical context-free rule a(h)→ x.

The estimation of an L-PCFG requires an as-
signment of probabilities (or weights) to each of

the rules a(h1) → b(h2) c(h3) and a(h) → x,
and also an assignment of starting probabilities for
each a(h), where a ∈ I and h ∈ [ma]. Estima-
tion is usually assumed to be done from a set of
parse trees (a treebank), where the latent states are
not included in the data – only the “skeletal” trees
which consist of nonterminals in N .

L-PCFGs, in their symbolic form, are related
to regular tree grammars, an old grammar formal-
ism, but they were introduced as statistical mod-
els for parsing with latent heads more recently
by Matsuzaki et al. (2005) and Prescher (2005).
Earlier work about L-PCFGs by Matsuzaki et al.
(2005) used the expectation-maximization (EM)
algorithm to estimate the grammar probabilities.
Indeed, given that the latent states are not ob-
served, EM is a good fit for L-PCFG estimation,
since it aims to do learning from incomplete data.
This work has been further extended by Petrov et
al. (2006) to use EM in a coarse-to-fine fashion:
merging and splitting nonterminals using the la-
tent states to optimize the number of latent states
for each nonterminal.

Cohen et al. (2012) presented a so-called spec-
tral algorithm to estimate L-PCFGs. This algo-
rithm uses linear-algebraic procedures such as sin-
gular value decomposition (SVD) during learning.
The spectral algorithm of Cohen et al. builds on
an estimation algorithm for HMMs by Hsu et al.
(2009).1 Cohen et al. (2013) experimented with
this spectral algorithm for parsing English. A dif-
ferent variant of a spectral learning algorithm for
L-PCFGs was developed by Cohen and Collins
(2014). It breaks the problem of L-PCFG estima-
tion into multiple convex optimization problems
which are solved using EM.

The family of L-PCFG spectral learning algo-
rithms was further extended by Narayan and Co-
hen (2015). They presented a simplified version
of the algorithm of Cohen et al. (2012) that es-
timates sparse grammars and assigns probabili-
ties (instead of weights) to the rules in the gram-
mar, and as such does not suffer from the prob-
lem of negative probabilities that arise with the
original spectral algorithm (see discussion in Co-
hen et al., 2013). In this paper, we use the algo-
rithms by Narayan and Cohen (2015) and Cohen

1A related algorithm for weighted tree automata (WTA)
was developed by Bailly et al. (2010). However, the con-
version from L-PCFGs to WTA is not straightforward, and
information is lost in this conversion. See also (Rabusseau et
al., 2016).

1547

VP

V

chased

NP

D

the

N

cat

S

NP

D

the

N

mouse

VP

Figure 1: The inside tree (left) and outside tree
(right) for the nonterminal VP in the parse tree
(S (NP (D the) (N mouse)) (VP (V
chased) (NP (D the) (N cat)))) for
the sentence “the mouse chased the cat.”

et al. (2012), and we compare them against state-
of-the-art L-PCFG parsers such as the Berkeley
parser (Petrov et al., 2006). We also compare our
algorithms to other state-of-the-art parsers where
elaborate linguistically-motivated feature specifi-
cations (Hall et al., 2014), annotations (Crabbé,
2015) and formalism conversions (Fernández-
González and Martins, 2015) are used.

3 Optimizing Spectral Estimation

In this section, we describe our optimization algo-
rithm and its motivation.

3.1 Spectral Learning of L-PCFGs and
Model Size

The family of spectral algorithms for latent-
variable PCFGs rely on feature functions that are
defined for inside and outside trees. Given a tree,
the inside tree for a node contains the entire sub-
tree below that node; the outside tree contains ev-
erything in the tree excluding the inside tree. Fig-
ure 1 shows an example of inside and outside trees
for the nonterminal VP in the parse tree of the sen-
tence “the mouse chased the cat”.

With L-PCFGs, the model dictates that an in-
side tree and an outside tree that are connected at
a node are statistically conditionally independent
of each other given the node label and the latent
state that is associated with it. As such, one can
identify the distribution over the latent states for a
given nonterminal a by using the cross-covariance
matrix of the inside and the outside trees, Ωa. For
more information on the definition of this cross-
covariance matrix, see Cohen et al. (2012) and
Narayan and Cohen (2015).

The L-PCFG spectral algorithms use singular
value decomposition (SVD) on Ωa to reduce the
dimensionality of the feature functions. If Ωa is
computed from the true L-PCFG distribution then

the rank of Ωa (the number of non-zero singular
values) gives the number of latent states according
to the model.

In the case of estimating Ωa from data gener-
ated from an L-PCFG, the number of latent states
for each nonterminal can be exposed by capping
it when the singular values of Ωa are smaller than
some threshold value. This means that spectral al-
gorithms give a natural way for the selection of the
number of latent states for each nonterminal a in
the grammar.

However, when the data from which we esti-
mate an L-PCFG model are not drawn from an L-
PCFG (the model is “incorrect”), the number of
non-zero singular values (or the number of singu-
lar values which are large) is no longer sufficient
to determine the number of latent states for each
nonterminal. This is where our algorithm comes
into play: it optimizes the number of latent search
for each nonterminal by applying a search algo-
rithm akin to beam search.

3.2 Optimizing the Number of Latent States

As mentioned in the previous section, the number
of non-zero singular values of Ωa gives a criterion
to determine the number of latent states ma for a
given nonterminal a. In practice, we cap ma not
to include small singular values which are close to
0, because of estimation errors of Ωa.

This procedure does not take into account the
interactions that exist between choices of latent
state numbers for the various nonterminals. In
principle, given the independence assumptions
that L-PCFGs make, choosing the nonterminals
based only on the singular values is “statistically
correct.” However, because in practice the mod-
eling assumptions that we make (that natural lan-
guage parse trees are drawn from an L-PCFG) do
not hold, we can improve further the accuracy of
the model by taking into account the nonterminal
interaction. Another source of difficulty in choos-
ing the number of latent states based the singu-
lar values of Ωa is sampling error: in practice, we
are using data to estimate Ωa, and as such, even
if the model is correct, the rank of the estimated
matrix does not have to correspond to the rank of
Ωa according to the true distribution. As a mat-
ter of fact, in addition to neglecting small singular
values, the spectral methods of Cohen et al. (2013)
and Narayan and Cohen (2015) also cap the num-
ber of latent states for each nonterminal to an up-

1548

Inputs: An input treebank divided into training and devel-
opment set. A basic spectral estimation algorithm S with its
default setting. An integer k denoting the size of the beam.
An integer m denoting the upper bound on the number of
latent states.

Algorithm:
(Step 0: Initialization)

• Set Q, a queue of size k, to be empty.

• Estimate an L-PCFG GS : (N , I,P, fS , n) using S.

• Initialize f = fS , a function that maps each nontermi-
nal a ∈ N to the number of latent states.

• Let L be a list of nonterminals (a1, . . . , aM) such that
ai ∈ N for which to optimize the number of latent
states.

• Let s be the F1 score for the above L-PCFG GS on the
development set.

• Put in Q the element (s, 1, f, coarse).

• The queue is ordered by s, the first element of tuples,
in the queue.

(Step 1: Search, repeat until termination happens)

• Dequeue the queue into (s, j, f, t) where j is the index
in the input nonterminal list L.

• If j = (M + 1), return f .

• If t is coarse then for each m0 ∈ {1, 5, 10, . . . , m}:
• Let f0 be such that ∀a 6= aj f0(a) = f(a) and

f0(aj) = m0.
• Train an L-PCFG G0 using S but with f0.
• Let s0 be the F1 score for G0 on the development

set.
• Enqueue into Q: (s0, j, f0, refine).

• If t is refine then for each m0 ∈ {f(a) + ` | ` ∈
{−4,−3,−2,−1, 0, 1, 2, 3, 4}}:
• Let f0 be such that ∀a 6= aj f0(a) = f(a) and

f0(aj) = m0.
• Train an L-PCFG G0 using S but with f0.
• Let s0 be the F1 score for G0 on the development

set.
• Enqueue into Q: (s0, j + 1, f0, coarse).

Figure 2: A search algorithm for finding the opti-
mal number of latent states.

per bound to keep the grammar size small.
Petrov et al. (2006) improves over the estima-

tion described in Matsuzaki et al. (2005) by taking
into account the interactions between the nonter-
minals and their latent state numbers in the train-
ing data. They use the EM algorithm to split and
merge nonterminals using the latent states, and op-

timize the number of latent states for each nonter-
minal such that it maximizes the likelihood of a
training treebank. Their refined grammar success-
fully splits nonterminals to various degrees to cap-
ture their complexity. We take the analogous step
with spectral methods. We propose an algorithm
where we first compute Ωa on the training data
and then we optimize the number of latent states
for each nonterminal by optimizing the PARSE-
VAL metric (Black et al., 1991) on a development
set.

Our optimization algorithm appears in Figure 2.
The input to the algorithm is training and develop-
ment data in the form of parse trees, a basic spec-
tral estimation algorithm S in its default setting,
an upper bound m on the number of latent states
that can be used for the different nonterminals and
a beam size k which gives a maximal queue size
for the beam. The algorithm aims to learn a func-
tion f that maps each nonterminal a to the number
of latent states. It initializes f by estimating a de-
fault grammar GS : (N , I,P, fS , n) using S and
setting f = fS . It then iterates over a ∈ N , im-
proving f such that it optimizes the PARSEVAL
metric on the development set.

The state of the algorithm includes a queue that
consists of tuples of the form (s, j, f, t) where f
is an assignment of latent state numbers to each
nonterminal in the grammar, j is the index of a
nonterminal to be explored in the input nontermi-
nal list L, s is the F1 score on the development set
for a grammar that is estimated with f and t is a
tag that can either be coarse or refine.

The algorithm orders these tuples by s in the
queue, and iteratively dequeues elements from the
queue. Then, depending on the label t, it either
makes a refined search for the number of latent
states for aj , or a more coarse search. As such,
the algorithm can be seen as a variant of a beam
search algorithm.

The search algorithm can be used with any
training algorithm for L-PCFGs, including the al-
gorithms of Cohen et al. (2013) and Narayan and
Cohen (2015). These methods, in their default set-
ting, use a function fS which maps each nonter-
minal a to a fixed number of latent states ma it
uses. In this case, S takes as input training data,
in the form of a treebank, decomposes into in-
side and outside trees at each node in each tree in
the training set; and reduces the dimensionality of
the inside and outside feature functions by running

1549

lang. Basque French German-N German-T Hebrew Hungarian Korean Polish Swedish
tr

ai
n

sent. 7,577 14,759 18,602 40,472 5,000 8,146 23,010 6,578 5,000
tokens 96,565 443,113 328,531 719,532 128,065 170,221 301,800 66,814 76,332
lex. size 25,136 27,470 48,509 77,219 15,971 40,775 85,671 21,793 14,097
#nts 112 222 208 762 375 112 352 198 148

de
v sent. 948 1,235 1,000 5,000 500 1,051 2,066 821 494

tokens 13,893 38,820 17,542 76,704 11,305 30,010 25,729 8,391 9,339

te
st sent. 946 2,541 1,000 5,000 716 1,009 2,287 822 666

tokens 11,477 75,216 17,585 92,004 17,002 19,913 28,783 8,336 10,675

Table 1: Statistics about the different datasets used in our experiments for the training (“train”), development (“dev”) and test
(“test”) sets. “sent.” denotes the number of sentences in the dataset, “tokens” denotes the total number of words in the dataset,
“lex. size” denotes the vocabulary size in the training set and “#nts” denotes the number of nonterminals in the training set after
binarization.

SVD on the cross-covariance matrix Ωa of the in-
side and the outside trees, for each nonterminal a.
Cohen et al. (2013) estimate the parameters of the
L-PCFG up to a linear transformation using f(a)
non-zero singular values of Ωa, whereas Narayan
and Cohen (2015) use the feature representations
induced from the SVD step to cluster instances of
nonterminal a in the training data into f(a) clus-
ters; these clusters are then treated as latent states
that are “observed.” Finally, Narayan and Cohen
follow up with a simple frequency count maxi-
mum likelihood estimate to estimate the parame-
ters in the L-PCFG with these latent states.

An important point to make is that the learning
algorithms of Narayan and Cohen (2015) and Co-
hen et al. (2013) are relatively fast,2 in comparison
to the EM algorithm. They require only one iter-
ation over the data. In addition, the SVD step of
S for these learning algorithms is computed just
once for a large m. The SVD of a lower rank can
then be easily computed from that SVD.

4 Experiments

In this section, we describe our setup for parsing
experiments on a range of languages.

4.1 Experimental Setup

Datasets We experiment with nine treebanks
consisting of eight different morphologically rich
languages: Basque, French, German, Hebrew,
Hungarian, Korean, Polish and Swedish. Table 1
shows the statistics of 9 different treebanks with
their splits into training, development and test sets.
Eight out of the nine datasets (Basque, French,
German-T, Hebrew, Hungarian, Korean, Polish

2It has been documented in several papers that the fam-
ily of spectral estimation algorithms is faster than algorithms
such as EM, not just for L-PCFGs. See, for example, Parikh
et al. (2012).

and Swedish) are taken from the workshop on
Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL; Seddah et al., 2013). The Ger-
man corpus in the SPMRL workshop is taken from
the TiGer corpus (German-T, Brants et al., 2004).
We also experiment with another German cor-
pus, the NEGRA corpus (German-N, Skut et al.,
1997), in a standard evaluation split.3 Words in
the SPMRL datasets are annotated with their mor-
phological signatures, whereas the NEGRA cor-
pus does not contain any morphological informa-
tion.

Data preprocessing and treatment of rare
words We convert all trees in the treebanks to a
binary form, train and run the parser in that form,
and then transform back the trees when doing eval-
uation using the PARSEVAL metric. In addition,
we collapse unary rules into unary chains, so that
our trees are fully binarized. The column “#nts”
in Table 1 shows the number of nonterminals af-
ter binarization in the various treebanks. Before
binarization, we also drop all functional informa-
tion from the nonterminals. We use fine tags for
all languages except Korean. This is in line with
Björkelund et al. (2013).4 For Korean, there are
2,825 binarized nonterminals making it impracti-
cal to use our optimization algorithm, so we use
the coarse tags.

Björkelund et al. (2013) have shown that the
morphological signatures for rare words are useful
to improve the performance of the Berkeley parser.

3We use the first 18,602 sentences as a training set, the
next 1,000 sentences as a development set and the last 1,000
sentences as a test set. This corresponds to an 80%-10%-10%
split of the treebank.

4In their experiments Björkelund et al. (2013) found that
fine tags were not useful for Basque also; they did not find a
proper explanation for that. In our experiments, however, we
found that fine tags were useful for Basque. To retrieve the
fine tags, we concatenate coarse tags with their refinement
feature (“AZP”) values.

1550

In our preliminary experiments with naı̈ve spectral
estimation, we preprocess rare words in the train-
ing set in two ways: (i) we replace them with their
corresponding POS tags, and (ii) we replace them
with their corresponding POS+morphological sig-
natures. We follow Björkelund et al. (2013) and
consider a word to be rare if it occurs less than 20
times in the training data. We experimented both
with a version of the parser that does not ignore
and does ignore letter cases, and discovered that
the parser behaves better when case is not ignored.

Spectral algorithms: subroutine choices The
latent state optimization algorithm will work
with either the clustering estimation algorithm of
Narayan and Cohen (2015) or the spectral algo-
rithm of Cohen et al. (2013). In our setup, we
first run the latent state optimization algorithm
with the clustering algorithm. We then run the
spectral algorithm once with the optimized f from
the clustering algorithm. We do that because the
clustering algorithm is significantly faster to itera-
tively parse the development set, because it leads
to sparse estimates.

Our optimization algorithm is sensitive to the
initialization of the number of latent states as-
signed to each nonterminals as it sequentially goes
through the list of nonterminals and chooses latent
state numbers for each nonterminal, keeping latent
state numbers for other nonterminals fixed. In our
setup, we start our search algorithm with the best
model from the clustering algorithm, controlling
for all hyperparameters; we tune f , the function
which maps each nonterminal to a fixed number
of latent states m, by running the vanilla version
with different values of m for different languages.
Based on our preliminary experiments, we set m
to 4 for Basque, Hebrew, Polish and Swedish; 8
for German-N; 16 for German-T, Hungarian and
Korean; and 24 for French.

We use the same features for the spectral meth-
ods as in Narayan and Cohen (2015) for German-
N. For the SPMRL datasets we do not use the head
features. These require linguistic understanding of
the datasets (because they require head rules for
propagating leaf nodes in the tree), and we discov-
ered that simple heuristics for constructing these
rules did not yield an increase in performance.

We use the kmeans function in Matlab to
do the clustering for the spectral algorithm of
Narayan and Cohen (2015). We experimented
with several versions of k-means, and discovered

that the version that works best in a set of prelimi-
nary experiments is hard k-means.5

Decoding and evaluation For efficiency, we
use a base PCFG without latent states to prune
marginals which receive a value less than 0.00005
in the dynamic programming chart. This is
just a bare-bones PCFG that is estimated using
maximum likelihood estimation (with frequency
count). The parser takes part-of-speech tagged
sentences as input. We tag the German-N data us-
ing the Turbo Tagger (Martins et al., 2010). For
the languages in the SPMRL data we use the Mar-
Mot tagger of Müeller et al. (2013) to jointly pre-
dict the POS and morphological tags.6 The parser
itself can assign different part-of-speech tags to
words to avoid parse failure. This is also particu-
larly important for constituency parsing with mor-
phologically rich languages. It helps mitigate the
problem of the taggers to assign correct tags when
long-distance dependencies are present.

For all results, we report the F1 measure
of the PARSEVAL metric (Black et al., 1991).
We use the EVALB program7 with the parame-
ter file COLLINS.prm (Collins, 1999) for the
German-N data and the SPMRL parameter file,
spmrl.prm, for the SPMRL data (Seddah et al.,
2013).

In this setup, the latent state optimization algo-
rithm terminates in few hours for all datasets ex-
cept French and German-T. The German-T data
has 762 nonterminals to tune over a large develop-
ment set consisting of 5,000 sentences, whereas,
the French data has a high average sentence length
of 31.43 in the development set.8

Following Narayan and Cohen (2015), we fur-
ther improve our results by using multiple spec-
tral models where noise is added to the underlying
features in the training set before the estimation of
each model.9 Using the optimized f , we estimate

5To be more precise, we use the Matlab function kmeans
while passing it the parameter ‘start’=‘sample’ to ran-
domly sample the initial centroid positions. In our experi-
ments, we found that default initialization of centroids differs
in Matlab14 (random) and in Matlab15 (kmeans++). Our es-
timation performs better with random initialization.

6See Björkelund et al. (2013) for the performance of the
MarMot tagger on the SPMRL datasets.

7http://nlp.cs.nyu.edu/evalb/
8To speed up tuning on the French data, we drop sentences

with length >46 from the development set, dropping its size
from 12,35 to 1,006.

9We only use the algorithm of Narayan and Cohen (2015)
for the noisy model estimation. They have shown that de-
coding with noisy models performs better with their sparse

1551

lang. Basque French German-N German-T Hebrew Hungarian Korean Polish Swedish

B
k van 69.2 79.9 - 81.7 87.8 83.9 71.0 84.1 74.5

rep 84.3 79.7 - 82.7 89.6 89.1 82.8 87.1 75.5
C

l van (pos) 69.8 73.9 75.7 78.3 88.0 81.3 68.7 90.3 70.9
van (rep) 78.6 73.7 - 78.8 88.1 84.7 76.5 90.4 71.4
opt 81.2∗ 76.7 77.8 81.7 90.1 87.2 79.2 92.0 75.2

Sp

van 78.1 78.0 77.6 82.0 89.2 87.7 80.6 91.7 73.4
opt 79.0 78.1∗ 79.0∗ 82.9∗ 90.3∗ 87.8∗ 80.9∗ 91.7∗ 75.5∗

Bk multiple 87.4 82.5 - 85.0 90.5 91.1 84.6 88.4 79.5
Cl multiple 83.4 79.9 82.7 85.1 90.6 89.0 80.8 92.5 78.3

Hall et al. ’14 83.7 79.4 - 83.3 88.1 87.4 81.9 91.1 76.0
Crabbé ’15 84.0 80.9 - 84.1 90.7 88.3 83.1 92.8 77.9

Table 2: Results on the development datasets. “Bk” makes use of the Berkeley parser with its coarse-to-fine mechanism to
optimize the number of latent states (Petrov et al., 2006). For Bk, “van” uses the vanilla treatment of rare words using signatures
defined by Petrov et al. (2006), whereas “rep.” uses the morphological signatures instead. “Cl” uses the algorithm of Narayan
and Cohen (2015) and “Sp” uses the algorithm of Cohen et al. (2013). In Cl, “van (pos)” and “van (rep)” are vanilla estima-
tions (i.e., each nonterminal is mapped to fixed number of latent states) replacing rare words by POS or POS+morphological
signatures, respectively. The best of these two models is used with our optimization algorithm in “opt”. For Sp, “van” uses
the best setting for unknown words as Cl. Best result in each column from the first seven rows is in bold. In addition, our
best performing models from rows 3-7 are marked with ∗. “Bk multiple” shows the best results with the multiple models using
product-of-grammars procedure (Petrov, 2010) and discriminative reranking (Charniak and Johnson, 2005). “Cl multiple” gives
the results with multiple models generated using the noise induction and decoded using the hierarchical decoding (Narayan and
Cohen, 2015). Bk results are not available on the development dataset for German-N. For others, we report Bk results from
Björkelund et al. (2013). We also include results from Hall et al. (2014) and Crabbé (2015).

lang. Basque French German-N German-T Hebrew Hungarian Korean Polish Swedish
Bk 74.7 80.4 80.1 78.3 87.0 85.2 78.6 86.8 80.6

C
l van 79.6 74.3 76.4 74.1 86.3 86.5 76.5 90.5 76.4

opt 81.4∗ 75.6 78.0 76.0 87.2 88.4 78.4 91.2 79.4

Sp

van 79.9 78.7 78.4 78.0 87.8 89.1 80.3 91.8 78.4
opt 80.5 79.1∗ 79.4∗ 78.2∗ 89.0∗ 89.2∗ 80.0∗ 91.8∗ 80.9∗

Bk multiple 87.9 82.9 84.5 81.3 89.5 91.9 84.3 87.8 84.9
Cl multiple 83.4 80.4 82.7 80.4 89.2 89.9 80.3 92.4 82.8

Hall et al. ’14 83.4 79.7 - 78.4 87.2 88.3 80.2 90.7 82.0
F&M ’15 85.9 78.8 - 78.7 89.0 88.2 79.3 91.2 82.8

Crabbé ’15 84.9 80.8 - 79.3 89.7 90.1 82.7 92.7 83.2

Table 3: Results on the test datasets. “Bk” denotes the best Berkeley parser result reported by the shared task organizers
(Seddah et al., 2013). For the German-N data, Bk results are taken from Petrov (2010). “Cl van” shows the performance of the
best vanilla models from Table 2 on the test set. “Cl opt” and “Sp opt” give the result of our algorithm on the test set. We also
include results from Hall et al. (2014), Crabbé (2015) and Fernández-González and Martins (2015).

80 models for each of noise induction mechanisms
in Narayan and Cohen: Dropout, Gaussian (ad-
ditive) and Gaussian (multiplicative). To decode
with multiple noisy models, we train the MaxEnt
reranker of Charniak and Johnson (2005).10 Hi-
erarchical decoding with “maximal tree coverage”
over MaxEnt models, further improves our accu-
racy. See Narayan and Cohen (2015) for more de-
tails on the estimation of a diverse set of models,
and on decoding with them.

estimates than the dense estimates of Cohen et al. (2013).
10Implementation: https://github.com/BLLIP/

bllip-parser. More specifically, we used the
programs extract-spfeatures, cvlm-lbfgs and
best-indices. extract-spfeatures uses head fea-
tures, we bypass this for the SPMRL datasets by creating a
dummy heads.cc file. cvlm-lbfgs was used with the
default hyperparameters from the Makefile.

4.2 Results

Table 2 and Table 3 give the results for the various
languages.11 Our main focus is on comparing the
coarse-to-fine Berkeley parser (Petrov et al., 2006)
to our method. However, for the sake of com-
pleteness, we also present results for other parsers,
such as parsers of Hall et al. (2014), Fernández-
González and Martins (2015) and Crabbé (2015).

In line with Björkelund et al. (2013), our pre-
liminary experiments with the treatment of rare
words suggest that morphological features are
useful for all SPMRL languages except French.
Specifically, for Basque, Hungarian and Korean,
improvements are significantly large.

Our results show that the optimization of the

11See more in http://cohort.inf.ed.ac.uk/
lpcfg/.

1552

preterminals interminals all
language

∑
i xi

∑
i yi div. #nts

∑
i xi

∑
i yi div. #nts

∑
i xi

∑
i yi div. #nts

Basque 311 419 196 169 91 227 152 31 402 646 348 200
French 839 715 476 108 1145 1279 906 114 1984 1994 1382 222
German-N 425 567 416 109 323 578 361 99 748 1145 777 208
German-T 1251 890 795 378 1037 1323 738 384 2288 2213 1533 762
Hebrew 434 442 182 279 169 544 393 96 603 986 575 375
Hungarian 457 415 282 87 186 261 129 25 643 676 411 112
Korean 1077 980 547 331 218 220 150 21 1295 1200 697 352
Polish 252 311 197 135 132 180 86 63 384 491 283 198
Swedish 191 284 127 106 85 345 266 42 276 629 393 148

Table 4: A comparison of the number of latent states for the different nonterminals before and after running our latent state
number optimization algorithm. The index i ranges over preterminals and interminals, with xi denoting the number of latent
states for nonterminal i with the vanilla version of the estimation algorithm and yi denoting the number of latent states for
nonterminal i after running the optimization algorithm. The divergence figure (“div.”) is a calculation of

∑
i |xi − yi|.

number of latent states with the clustering and
spectral algorithms indeed improves these algo-
rithms performance, and these increases general-
ize to the test sets as well. This was a point
of concern, since the optimization algorithm goes
through many points in the hypothesis space of
parsing models, and identifies one that behaves op-
timally on the development set – and as such it
could overfit to the development set. However, this
did not happen, and in some cases, the increase in
accuracy of the test set after running our optimiza-
tion algorithm is actually larger than the one for
the development set.

While the vanilla estimation algorithms (with-
out latent state optimization) lag behind the Berke-
ley parser for many of the languages, once the
number of latent states is optimized, our parsing
models do better for Basque, Hebrew, Hungar-
ian, Korean, Polish and Swedish. For German-
T we perform close to the Berkeley parser (78.2
vs. 78.3). It is also interesting to compare the
clustering algorithm of Narayan and Cohen (2015)
to the spectral algorithm of Cohen et al. (2013).
In the vanilla version, the spectral algorithm does
better in most cases. However, these differences
are narrowed, and in some cases, overcome, when
the number of latent states is optimized. Decod-
ing with multiple models further improves our ac-
curacy. Our “Cl multiple” results lag behind “Bk
multiple.” We believe this is the result of the need
of head features for the MaxEnt models.12

Our results show that spectral learning is
a viable alternative to the use of expectation-

12Björkelund et al. (2013) also use the MaxEnt raranker
with multiple models of the Berkeley parser, and in their case
also the performance after the raranking step is not always
significantly better. See footnote 10 on how we create dummy
head-features for our MaxEnt models.

maximization coarse-to-fine techniques. As we
discuss later, further improvements have been in-
troduced to state-of-the-art parsers that are orthog-
onal to the use of a specific estimation algorithm.
Some of them can be applied to our setup.

4.3 Further Analysis

In addition to the basic set of parsing results, we
also wanted to inspect the size of the parsing mod-
els when using the optimization algorithm in com-
parison to the vanilla models. Table 4 gives this
analysis. In this table, we see that in most cases,
on average, the optimization algorithm chooses to
enlarge the number of latent states. However, for
German-T and Korean, for example, the optimiza-
tion algorithm actually chooses a smaller model
than the original vanilla model.

We further inspected the behavior of the
optimization algorithm for the preterminals in
German-N, for which the optimal model chose (on
average) a larger number of latent states. Table 5
describes this analysis. We see that in most cases,
the optimization algorithm chose to decrease the
number of latent states for the various pretermi-
nals, but in some cases significantly increases the
number of latent states.13

Our experiments dispel another “common wis-
dom” about spectral learning and training data
size. It has been believed that spectral learning
do not behave very well when small amounts of
data are available (when compared to maximum
likelihood estimation algorithms such as EM) –
however we see that our results do better than the
Berkeley parser for several languages with small

13Interestingly, most of the punctuation symbols, such as
$∗LRB∗, $. and $,, drop their latent state number to a sig-
nificantly lower value indicating that their interactions with
other nonterminals in the tree are minimal.

1553

preterminal freq. b. a. preterminal freq. b. a. preterminal freq. b. a. preterminal freq. b. a.
PWAT 64 2 2 TRUNC 614 8 1 PIS 1,628 8 8 KON 8,633 8 30
XY 135 3 1 VAPP 363 6 4 $*LRB* 13,681 8 6 PPER 4,979 8 100
NP|NN 88 2 1 PDS 988 8 8 ADJD 6,419 8 60 $. 17,699 8 3
VMINF 177 3 5 AVP|ADV 211 4 11 KOUS 2,456 8 1 APPRART 6,217 8 15
PTKA 162 3 1 FM 578 8 3 PIAT 1,061 8 8 ADJA 18,993 8 10
VP|VVINF 409 6 2 VVIMP 76 2 1 NP|PPER 382 6 1 APPR 26,717 8 7
PRELAT 94 2 1 KOUI 339 5 2 VVPP 5,005 8 20 VVFIN 13,444 8 3
AP|ADJD 178 3 1 VAINF 1,024 8 1 PP|PROAV 174 3 1 $, 16,631 8 1
APPO 89 2 2 PRELS 2,120 8 40 VAFIN 8,814 8 1 VVINF 4,382 8 10
PWS 361 6 1 CARD 6,826 8 8 PTKNEG 1,884 8 8 ART 35,003 8 10
KOKOM 800 8 37 NE 17,489 8 6 PTKZU 1,586 8 1 ADV 15,566 8 8
VP|VVPP 844 8 5 PRF 2,158 8 1 VVIZU 479 7 1 PIDAT 1,254 8 20
PWAV 689 8 1 PDAT 1,129 8 1 PPOSAT 2,295 8 6 NN 68,056 8 12
APZR 134 3 2 PROAV 1,479 8 10 PTKVZ 1,864 8 3 VMFIN 3,177 8 1

Table 5: A comparison of the number of latent states for each preterminal for the German-N model, before (“b.”) running the
latent state number optimization algorithm and after running it (“a.”). Note that some of the preterminals denote unary rules
that were collapsed (the nonterminals in the chain are separated by |). We do not show rare preterminals with b. and a. both
being 1.

training datasets, such as Basque, Hebrew, Pol-
ish and Hungarian. The source of this common
wisdom is that ML estimators tend to be statis-
tically “efficient:” they extract more information
from the data than spectral learning algorithms do.
Indeed, there is no reason to believe that spectral
algorithms are statistically efficient. However, it is
not clear that indeed for L-PCFGs with the EM
algorithm, the ML estimator is statistically effi-
cient either. MLE is statistically efficient under
specific assumptions which are not clearly satis-
fied with L-PCFG estimation. In addition, when
the model is “incorrect,” (i.e. when the data is
not sampled from L-PCFG, as we would expect
from natural language treebank data), spectral al-
gorithms could yield better results because they
can mimic a higher order model. This can be
understood through HMMs. When estimating an
HMM of a low order with data which was gener-
ated from a higher order model, EM does quite
poorly. However, if the number of latent states
(and feature functions) is properly controlled with
spectral algorithms, a spectral algorithm would
learn a “product” HMM, where the states in the
lower order model are the product of states of a
higher order.14

State-of-the-art parsers for the SPMRL datasets
improve the Berkeley parser in ways which are or-
thogonal to the use of the basic estimation algo-
rithm and the method for optimizing the number
of latent states. They include transformations of
the treebanks such as with unary rules (Björkelund
et al., 2013), a more careful handling of unknown
words and better use of morphological informa-

14For example, a trigram HMM can be reduced to a bigram
HMM where the states are products of the original trigram
HMM.

tion such as decorating preterminals with such in-
formation (Björkelund et al., 2014; Szántó and
Farkas, 2014), with careful feature specifications
(Hall et al., 2014) and head-annotations (Crabbé,
2015), and other techniques. Some of these tech-
niques can be applied to our case.

5 Conclusion

We demonstrated that a careful selection of the
number of latent states in a latent-variable PCFG
with spectral estimation has a significant effect
on the parsing accuracy of the L-PCFG. We de-
scribed a search procedure to do this kind of
optimization, and described parsing results for
eight languages (with nine datasets). Our results
demonstrate that when comparing the expectation-
maximization with coarse-to-fine techniques to
our spectral algorithm with latent state optimiza-
tion, spectral learning performs better on six of the
datasets. Our results are comparable to other state-
of-the-art results for these languages. Using a di-
verse set of models to parse these datasets further
improves the results.

Acknowledgments

The authors would like to thank David McClosky
for his help with running the BLLIP parser and
his comments on the paper and also the three
anonymous reviewers for their helpful comments.
We also thank Eugene Charniak, DK Choe and
Geoff Gordon for useful discussions. Finally,
thanks to Djamé Seddah for providing us with
the SPMRL datasets and to Thomas Müller and
Anders Björkelund for providing us the MarMot
models. This research was supported by an EP-
SRC grant (EP/L02411X/1) and an EU H2020
grant (688139/H2020-ICT-2015; SUMMA).

1554

References
Raphaël Bailly, Amaury Habrard, and François Denis.

2010. A spectral approach for probabilistic gram-
matical inference on trees. In Proceedings of Inter-
national Conference on Algorithmic Learning The-
ory.

Anders Björkelund, Özlem Çetinoğlu, Richárd Farkas,
Thomas Müeller, and Wolfgang Seeker. 2013.
(Re)ranking meets morphosyntax: State-of-the-art
results from the SPMRL 2013 shared task. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages.

Anders Björkelund, Özlem Çetinoğlu, Agnieszka
Faleńska, Richárd Farkas, Thomas Müller, Wolf-
gang Seeker, and Zsolt Szántó. 2014. Introducing
the IMS-Wrocław-Szeged-CIS entry at the SPMRL
2014 shared task: Reranking and morphosyntax
meet unlabeled data. In Proceedings of the First
Joint Workshop on Statistical Parsing of Morpho-
logically Rich Languages and Syntactic Analysis of
Non-Canonical Languages.

Ezra W. Black, Steven Abney, Daniel P. Flickinger,
Claudia Gdaniec, Ralph Grishman, Philip Harri-
son, Donald Hindle, Robert J. P. Ingria, Freder-
ick Jelinek, Judith L. Klavans, Mark Y. Liberman,
Mitchell P. Marcus, Salim Roukos, Beatrice San-
torini, and Tomek Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage
of English grammars. In Proceedings of DARPA
Workshop on Speech and Natural Language.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszko-
reit. 2004. TIGER: Linguistic interpretation of a
German corpus. Research on Language and Com-
putation, 2(4):597–620.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of ACL.

Shay B. Cohen and Michael Collins. 2014. A prov-
ably correct learning algorithm for latent-variable
PCFGs. In Proceedings of ACL.

Shay B. Cohen, Karl Stratos, Michael Collins, Dean F.
Foster, and Lyle Ungar. 2012. Spectral learning of
latent-variable PCFGs. In Proceedings of ACL.

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.
Foster, and Lyle Ungar. 2013. Experiments with
spectral learning of latent-variable PCFGs. In Pro-
ceedings of NAACL.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Benoit Crabbé. 2015. Multilingual discriminative lex-
icalized phrase structure parsing. In Proceedings of
EMNLP.

Daniel Fernández-González and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of ACL-
IJCNLP.

David Hall, Greg Durrett, and Dan Klein. 2014. Less
grammar, more features. In Proceedings of ACL.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. 2009.
A spectral algorithm for learning hidden Markov
models. In Proceedings of COLT.

André F. T. Martins, Noah A. Smith, Eric P. Xing,
Mário A. T. Figueiredo, and Pedro M. Q. Aguiar.
2010. TurboParsers: Dependency parsing by ap-
proximate variational inference. In Proceedings of
EMNLP.

Takuya Matsuzaki, Yusuke Miyao, and Junichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of ACL.

Thomas Müeller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient higher-order CRFs for
morphological tagging. In Proceedings of EMNLP.

Shashi Narayan and Shay B. Cohen. 2015. Diversity
in spectral learning for natural language parsing. In
Proceedings of EMNLP.

Ankur P. Parikh, Le Song, Mariya Ishteva, Gabi
Teodoru, and Eric P. Xing. 2012. A spectral al-
gorithm for latent junction trees. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Ar-
tificial Intelligence.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of
COLING-ACL.

Slav Petrov. 2010. Products of random latent variable
grammars. In Proceedings of HLT-NAACL.

Detlef Prescher. 2005. Head-driven PCFGs with
latent-head statistics. In Proceedings of IWPT.

Guillaume Rabusseau, Borja Balle, and Shay B. Cohen.
2016. Low-rank approximation of weighted tree au-
tomata. In Proceedings of The 19th International
Conference on Artificial Intelligence and Statistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clérgerie. 2013. Overview of the SPMRL
2013 shared task: A cross-framework evaluation of
parsing morphologically rich languages. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages.

1555

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for
free word order languages. In Proceedings of ANLP.

Zsolt Szántó and Richárd Farkas. 2014. Special tech-
niques for constituent parsing of morphologically
rich languages. In Proceedings of EACL.

1556

