
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 109–114
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-4019

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 109–114
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-4019

UCCAApp: Web-application for Syntactic and Semantic
Phrase-based Annotation

Omri Abend, Shai Yerushlami, Ari Rappoport

Department of Computer Science, The Hebrew University of Jerusalem
{oabend|shaiy|arir}@cs.huji.ac.il

Abstract

We present UCCAApp, an open-source,
flexible web-application for syntactic and
semantic phrase-based annotation in gen-
eral, and for UCCA annotation in par-
ticular. UCCAApp supports a variety of
formal properties that have proven use-
ful for syntactic and semantic representa-
tion, such as discontiguous phrases, mul-
tiple parents and empty elements, mak-
ing it useful to a variety of other anno-
tation schemes with similar formal prop-
erties. UCCAApp’s user interface is in-
tuitive and user friendly, so as to support
annotation by users with no background
in linguistics or formal representation. In-
deed, a pilot version of the application has
been successfully used in the compilation
of the UCCA Wikipedia treebank by anno-
tators with no previous linguistic training.
The application and all accompanying re-
sources are released as open source under
the GNU public license, and are available
online along with a live demo.1

1 Introduction

We present UCCAApp, a web-application for
semantic and general phrase strucutre annotation,
which has been developed for annotation using
the UCCA scheme (Abend and Rappoport, 2013),
but can support the annotation of most phrase-
structure annotation schemes, including support
for discontiguous units, multiple categories for
a phrase, and reentrancy (multiple parents for a
phrase, resulting in DAG structures). Despite the

1https://github.com/omriabnd/UCCA-App

recent interest in web-based annotation applica-
tions, very few open source applications support
phrase-structure annotation (see Section 5), a gap
we address in this work.

UCCA (Universal Conceptual Cognitive Anno-
tation) is a cross-linguistically applicable seman-
tic representation scheme, building on the Basic
Linguistic Theory typological framework (Dixon,
2010a,b, 2012), and Cognitive Linguistics litera-
ture (Croft and Cruse, 2004). It has demonstrated
applicability to multiple languages, including En-
glish, French, German and Czech, support for
rapid annotation, accessibility to non-expert anno-
tators and stability under translation (Sulem et al.,
2015). The scheme has recently proven useful for
machine translation evaluation (Birch et al., 2016).

UCCA emphasizes accessibility and intuitive
distinctions in the definition of its categories. UC-
CAApp complements this effort by offering an in-
tuitive user interface (see Figure 1 and Section 4),
which does not require background in formal rep-
resentation and linguistics, as attested by the steep
learning curve of annotators with no background
in these fields that used UCCAApp in the annota-
tion of the UCCA Wikipedia corpus (Abend and
Rappoport, 2013).2

Aside from the annotation interface, the appli-
cation includes modules for defining annotation
schemes (layers), and for project management.
Importantly, the system supports a multi-layered
architecture, where the same text passage may be
annotated by multiple layers. See Section 3.

In order to facilitate the adoption of UCCAApp
by other research groups, we built UCCAApp us-
ing recent, standard web technology. The server
is based on Django, accompanied with a Post-

2UCCA’s resources are freely available through http:
//www.cs.huji.ac.il/˜oabend/ucca.html.

109

https://doi.org/10.18653/v1/P17-4019
https://doi.org/10.18653/v1/P17-4019

greSQL database. The API follows the apigee
style guide,3 and the client is based on AngularJS.

2 The UCCA Framework
UCCA graphs are edge-labeled, directed

acyclic graphs (DAGs), whose leaves correspond
to the tokens of the text. A node (or unit) corre-
sponds to a terminal or to several sub-units (not
necessarily contiguous) viewed as a single entity
according to semantic or cognitive considerations.

Edges bear a category, indicating the role of the
sub-unit in the parent relation. Figure 2 presents
a few examples. One incoming edge for each
non-root node is marked as primary, and the rest
(mostly used for implicit relations and arguments)
as remote edges, a distinction made by the an-
notator (see Section 4). The primary edges thus
form a tree structure, whereas the remote edges en-
able reentrancy, forming a DAG. The primary tree
structure can be equivalently viewed as a node-
labeled tree, where each node is labeled with the
category of the edge leading to its primary parent.
We adopt this view in our user interface.

UCCA is a multi-layered framework, where
each layer corresponds to a “module” of seman-
tic distinctions. UCCA’s foundational layer, with
which existing UCCA corpora are annotated, cov-
ers predicate-argument relations for predicates of
all grammatical categories (verbal, nominal, ad-
jectival and others), their inter-relations, and other
major linguistic phenomena such as coordination
and multi-word expressions. The layer’s basic no-
tion is the scene, describing a movement, action
or state. Each scene contains one main relation
(marked as either a Process or a State), as well
as one or more Participants. For example, the
sentence “After graduation, John moved to Paris”
(Figure 2a) contains two scenes, whose main re-
lations are “graduation” and “moved”. “John” is
a Participant in both scenes, while “Paris” only
in the latter. Further categories account for inter-
scene relations and the internal structure of com-
plex arguments and relations .

3 System Architecture
The system is built as two completely sepa-

rate modules: a RESTful web API for monitor-
ing and manipulating the system’s resources, and a
client which interfaces with the system’s resources
through http requests to the API. This modular ar-
chitecture allows to create, read, update and delete

3https://apigee.com/

the system’s resources without using the client,
which is useful for the integration of external re-
sources, such as parsers and analysis tools.

The system’s resources can largely be cat-
egorized into resources that define annotation
schemes (layers and categories), and resources for
managing the annotation projects and tasks.

Defining Annotation Schemes. The atomic units
of annotation schemes are the categories. A layer
is a set of categories, paired with a set of restric-
tions over the joint occurrence of these categories
(see Section 4). The grouping of categories into
layers and the definition of restrictions are fully
configurable either through chart-based admin in-
terface or through the web API.

UCCAApp supports a multi-layered architec-
ture, which is implemented using three types of
inter-layer relations. The first is REFINEMENT,
where one layer defines sub-categories for the par-
ent layer (e.g., a Participant category may be re-
fined to Agent and Patient categories). The second
is COARSENING, where one layer defines super-
categories for sub-sets of categories in the other
layer (i.e., the inverse of REFINEMENT). The third
is EXTENSION, where two disjoint sets of cate-
gories, that may inform the annotation of one an-
other, are annotated one on top of the other (e.g.,
information structural categories and phrase struc-
ture annotation).

Passages and Users. UCCAApp includes stan-
dard management tools for text passages and
users. There are four types of roles in the sys-
tem. ADMIN users are super-users who adminis-
trate the system, and have complete access to its
resources. PROJECT MANAGERS oversee one or
more projects, and may create new layers and cate-
gories, invite new users and assign annotators with
tasks. ANNOTATORS carry out tasks assigned to
them, while GUESTS can view all the layers and
categories defined in the system, as well as try out
the annotation interface, in order to get an impres-
sion of the system’s capabilities.

Passages are the source texts that the annota-
tion procedure targets. The system allows insert-
ing passages either through a web interface, or by
uploading a delimited text file.

Projects. An annotation project is managed by a
project manager, and consists of a layer (possibly
shared across projects), and a set of tasks. Tasks
come in several types, where each is defined ac-
cording to the type of input it receives and what it

110

Figure 1: The layout of UCCAApp’s annotation interface. See Section 4.

(a)
After

L

graduation
P

H

,
U

John

A

moved

P

to
R

Paris

C

A

H

A

(b) John

A

gave

C

everything up

C

P

A
P process
A participant
H linked scene
C center
R relator
N connector
L scene linker
U punctuation
F function unit

Figure 2: UCCA structures demonstrating two structural
properties exhibited by the scheme. (a) includes a remote
edge (dashed), resulting in “John” having two parents. (b)
includes a discontinuous unit (“gave ... up”). Pre-terminal
nodes are omitted for brevity. Right: legend of edge labels.

allows annotators to do.
• Tokenization tasks, whose input is a passage

of text and whose output is a sequence of to-
kens. Tokenization tasks are carried out by
hand-correcting the output of an automatic to-
kenizer.
• Annotation task, whose input is a set of tokens,

and whose output is a DAG structure, whose
leaves are the tokens. The task proceeds by iter-
atively grouping tokens into units.
• Review task, which is similar to an annotation

task, but whose input is a full annotation of a
given passage, and not only its set of tokens.

Annotation tasks in a project that uses a de-
rived layer (i.e., a layer which is either a REFINE-
MENT, an EXTENSION or a COARSENING of a
parent layer), start where a full annotation of a pas-
sage using the parent layer is in place. Such tasks
are thus created by selecting a completed task that
uses the parent layer as a parent task.

A complete documentation of the API is in-
cluded in the project’s repository. Figure 3
presents a screenshot of the admin screens used
for managing the different resources. The admin
interface is designed to scale to tens of thousands
of tasks and passages, and supports advanced pag-
ination, search and filtering capabilities.

4 Annotation Interface
The system’s core is its annotation interface.

Annotation is carried out over passages, rather
than individual sentences. The application thus
supports the annotation of inter-sentence relations,
which feature in many annotation schemes, in-
cluding the Penn Discourse Treebank (Miltsakaki
et al., 2004), the Groningen Meaning Bank (Basile
et al., 2012), and UCCA. UCCAApp fully sup-
ports both mouse functionality, for novice anno-
tators, and keyboard functionality, which we have
found to be faster, and more suitable for experi-
enced annotators.

Layout. The layout of the web-interface is pre-
sented in Figure 1. Its main components are (1)
a navigation bar with general functionality such
as saving, submitting and returning to the main

111

Figure 3: An example admin screen, for accessing and manipulating the system’s resources.

menu; (2) a left sidebar that includes buttons for
creating new categories, and assigning and remov-
ing categories from existing units, and (3) the an-
notation panel on which the annotation is carried
out, and which takes up most of the screen.

Within the annotation panel, the passage box is
presented at the top of the annotation panel, and
corresponds to the root of the DAG. Upon the cre-
ation of a unit, a unit box is created, indented be-
low its parent. Each unit thus appears twice in
the annotation panel: as a nested unit box, and
as a bordered span in the unit box of its parent.
The cursor is always found within one of the unit
boxes, which is highlighted (henceforth, the focus
unit).

Creating and Deleting Units. Annotation is car-
ried out by iteratively grouping tokens and units
into larger units. Units are created by marking
spans of text (not necessarily contiguous), declar-
ing them as units, and assigning them any number
of categories.

Preliminary user studies conducted with a pilot
version of the application have shown that most
annotators find it most intuitive and efficient to
perform the annotation top-down, starting off by
creating larger units (e.g., sentences), and itera-
tively analyzing their sub-parts, until the resulting
unit cannot be further decomposed.

We consequently designed the interface to op-
timally support top-down annotation flow. Once
an annotation unit has been created, the focus im-
mediately shifts to the newly formed unit, allow-

ing the user to internally analyze it. Once the an-
notation of a unit has been completed, the user
may mark it as “finished”. The system then val-
idates the annotation of the unit and its sub-tree
(according to the layer’s restrictions), collapses
its sub-unit tree and shifts the focus to the parent
unit. Such a procedure minimizes the number of
keystrokes required for a user who is annotating
bottom-up. Still, the user is free to override this
action order, and annotate the passage in any or-
der she pleases.

Remote Sub-Units. In order to support the an-
notation of remote sub-units, we note that most
schemes that allow DAG structures, including
UCCA, use multiple parents to express shared ar-
gumenthood, namely a single argument participat-
ing in multiple relations (see Figure 2a). However,
supporting such structures does not require gen-
eral DAG annotation functionality, but only sup-
port for drawing additional edges between units
that otherwise form a tree. For instance, UCCA
annotation does not require a functionality for
forming partially overlapping sub-units, such as
having both w1, w2 and w2, w3 be sub-units of a
unit whose span is w1, w2, w3.

Remote edges are annotated by allowing the
user to set any previously annotated unit (except
for its descendant and ancestor units) as a remote
sub-unit. For instance, in the sentence “After grad-
uation, John moved to Paris”, “John” is an ar-
gument of both “graduation” and “moved”. UC-
CAApp can capture this shared argumenthood by

112

annotating “John” as a sub-unit of “John moved to
Paris” and a remote sub-unit of “graduation”.4

Remote sub-units may not have any children
and are displayed in a different color in the unit
hierarchy. For example:

Implicit Sub-Units. Many annotation schemes
encode units that do not correspond to any span of
text. Examples include traces, such as in the Penn
Treebank (Marcus et al., 1993), and implicit argu-
ments (Gerber and Chai, 2010). UCCAApp sup-
ports this functionality by allowing units to have
remote sub-units that do not correspond to any
span of text. Implicit sub-units may receive cat-
egories just like any other unit.

Restrictions Module. UCCAApp supports the in-
troduction of restrictions over the joint occurrence
of different categories within a layer. Restrictions
may either forbid a category from having any chil-
dren, require that two categories appear together as
siblings or children of one another, or forbid them
from doing so. Restrictions are validated when a
unit is declared finished, or when the passage is
submitted. If the validation fails, an error message
pops up, indicating what the user should fix.

Multi-layered Annotation. In order to keep the
user interface user friendly, annotation tasks that
use derived layers, i.e., layers that were derived
from another layer through extension, refinement
or coarsening, are built upon a complete anno-
tation according to the parent layer. The anno-
tation task in a derived layer thus only includes
adding units and categories to an existing annota-
tion, which in itself is not editable.

For instance, assume L is a refinement layer
of Lparent. Then an annotation task t by L be-
gins with the submitted annotation of a parent task
tparent, annotated with Lparent. Completing t re-
quires traversing the units created in tparent, and
for each of the units that is annotated with a cat-
egory c ∈ Lparent, selecting which of the refined
categories in L applies to it.

4There is some arbitrariness in selecting which unit
“John” is a remote sub-unit of. Both assigning “John” to be
a remote sub-unit of “graduation” and of “moved to Paris”
are valid options, although annotators tend to prefer selecting
contiguous units wherever possible.

5 Previous Work
While there are a number of open-source web-

applications for corpus annotation, very few of
them support phrase-based annotation in general,
and the formal properties required by UCCA in
particular. Annotald5 is a web application for
phrase structure annotation, originally developed
for Icelandic. It is however difficult to use in
a web-based setting, as it requires all annotators
to be logged in to the same system, which of-
ten leads to security issues. Folia FLAT6 is an
open-source web-application with support for dis-
tributed collaborative annotation in a variety of
annotation formats, including phrase-structure an-
notation. However, as it is mostly geared to-
wards flat annotations, phrase structure annotation
with FLAT is somewhat difficult. SynTree7 also
supports phrase-structure annotation, focusing on
Chinese. Its applicability, however, has so far been
limited due to its documentation being formulated
only in Chinese. To the best of our knowledge,
none of these applications support DAG annota-
tion, or full keyboard functionality.

The AMR editor8 (Banarescu et al., 2013) sup-
ports annotation through an interface based on the
linearization of the AMR DAGs using the PEN-
MAN notation. The application has a number of
dedicated functionalities both for facilitating the
annotation process (e.g., nodes and edges can be
added either by directly inputting their textual rep-
resentations, or through more elaborate modals),
and for validating that the resulting annotation is
indeed well-formed. The editor is also well in-
tegrated with the AMR category set, facilitating
the navigation through its rich ontology. UC-
CAApp supports many of the properties required
for AMR annotation, including reentrancy, and of-
fers a graphical user interface that does not require
annotators to be versed in formal notation. While
not all functionalities required for AMR annota-
tion are currently supported in UCCAApp (im-
portantly, the application does not support repre-
sentations that are not anchored in the words and
phrases of the text), future work will address the
adaptation of UCCAApp to AMR annotation.

A number of recent annotation web applications
support dependency annotation, and provide ef-

5https://annotald.github.io/
6https://github.com/proycon/flat
7http://syntree.github.io/
8http://www.isi.edu/˜ulf/amr/

AMR-editor.html

113

fective tools for collaborative annotation by ge-
ographically dispersed parties. The brat appli-
cation (Stenetorp et al., 2012) is a popular web-
based annotation tool that supports a wide variety
of annotation types, including dependency analy-
sis, chunking and named entity recognition. How-
ever, annotation in brat is carried out through di-
alogue boxes, which slows down the annotation
process. WebAnno (Eckart de Castilho et al.,
2016) is a generic and flexible annotation tool for
collaborative annotation, which supports the joint
annotation of semantic and syntactic dependen-
cies. One of its major design principles is multi-
layered analysis and the effective browsing of rich
category sets, which it supports using a sugges-
tion engine, and both manually-configurable and
automatically-induced constraints on the joint ap-
pearance of categories. It also improves upon
brat’s (and earlier versions of WebAnno) user in-
terface, allowing improved keyboard functionali-
ties and visualization. Arborator (Gerdes, 2013)
is a lightweight, web-based annotation application
which focuses on dependency structures. The tool
is easily configurable, and has a mouse-based in-
terface for creating annotations. None of these
recently proposed tools support phrase-structure
grammar annotation.

6 Conclusion
We presented UCCAApp, an open-source web

application for phrase-based and UCCA annota-
tion, with an intuitive and accessible design. An
earlier version of UCCAApp was developed as
part of the compilation of the English UCCA cor-
pus, and was successfully employed by annotators
with no background in linguistics or formal repre-
sentation.

UCCAApp supports annotation with a vari-
ety of formal properties, including discontiguous
units, inter-sentence annotation, reentrancy and
multi-layered annotation, making it suitable for
other syntactic and semantic annotation schemes
that use these properties. Future extensions of UC-
CAApp will include further analysis capabilities,
such as inter-annotator agreement tools, as well as
support for AMR annotation.

Given the scarcity of freely available annota-
tion web applications for phrase structures, UC-
CAApp’s modular and extensible design, and its
intuitive user interface, we believe UCCAApp will
make a substantial contribution to the field of lin-
guistic annotation.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL. pages 228–238.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of LAW. pages 178–186.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje
Venhuizen. 2012. Developing a large semantically
annotated corpus. In Proc. of LREC. pages 3196–
3200.

Alexandra Birch, Omri Abend, Ondřej Bojar, and
Barry Haddow. 2016. HUME: Human UCCA-
based evaluation of machine translation. In Proc.
of EMNLP. pages 1264–1274.

William Croft and Alan Cruse. 2004. Cognitive lin-
guistics. Cambridge University Press.

R.M.W. Dixon. 2010a. Basic Linguistic Theory:
Grammatical Topics, Vol. 2. Oxford University
Press.

R.M.W. Dixon. 2010b. Basic Linguistic Theory:
Methodology, Vol. 1. Oxford University Press.

R.M.W. Dixon. 2012. Basic Linguistic Theory: Fur-
ther Grammatical Topics, Vol. 3. Oxford University
Press.

Richard Eckart de Castilho, Eva Mujdricza-Maydt,
Seid Muhie Yimam, Hartmann Silvana, Iryna
Gurevych, Annette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of
semantic and syntactic structures. In Proc. of the
LT4DH workshop. pages 76–84.

Matthew Gerber and Joyce Chai. 2010. Beyond Nom-
Bank: A study of implicit arguments for nominal
predicates. In Proc. of ACL. pages 1583–1592.

Kim Gerdes. 2013. Collaborative dependency annota-
tion. In Proc. of DepLing. pages 88–97.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19:313–330.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and
Bonnie Webber. 2004. The penn discourse treebank.
In LREC. pages 2237–2240.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted text
annotation. In Proc. of EACL. pages 102–107.

Elior Sulem, Omri Abend, and Ari Rappoport. 2015.
Conceptual annotations preserve structure across
translations: A French-English case study. In Proc.
of Semantics-Driven Statistical Machine Translation
(S2MT) Workshop. pages 11–22.

114

	UCCAApp: Web-application for Syntactic and Semantic Phrase-based Annotation

