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Abstract

Modeling natural language inference is a
very challenging task. With the avail-
ability of large annotated data, it has re-
cently become feasible to train complex
models such as neural-network-based in-
ference models, which have shown to
achieve the state-of-the-art performance.
Although there exist relatively large anno-
tated data, can machines learn all knowl-
edge needed to perform natural language
inference (NLI) from these data? If not,
how can neural-network-based NLI mod-
els benefit from external knowledge and
how to build NLI models to leverage it?
In this paper, we enrich the state-of-the-art
neural natural language inference models
with external knowledge. We demonstrate
that the proposed models improve neural
NLI models to achieve the state-of-the-art
performance on the SNLI and MultiNLI
datasets.

1 Introduction

Reasoning and inference are central to both hu-
man and artificial intelligence. Natural language
inference (NLI), also known as recognizing tex-
tual entailment (RTE), is an important NLP prob-
lem concerned with determining inferential rela-
tionship (e.g., entailment, contradiction, or neu-
tral) between a premise p and a hypothesis h. In
general, modeling informal inference in language
is a very challenging and basic problem towards
achieving true natural language understanding.

In the last several years, larger anno-
tated datasets were made available, e.g., the
SNLI (Bowman et al., 2015) and MultiNLI
datasets (Williams et al., 2017), which made
it feasible to train rather complicated neural-
network-based models that fit a large set of
parameters to better model NLI. Such models
have shown to achieve the state-of-the-art per-
formance (Bowman et al., 2015, 2016; Yu and
Munkhdalai, 2017b; Parikh et al., 2016; Sha et al.,
2016; Chen et al., 2017a,b; Tay et al., 2018).

While neural networks have been shown to be
very effective in modeling NLI with large train-
ing data, they have often focused on end-to-end
training by assuming that all inference knowledge
is learnable from the provided training data. In
this paper, we relax this assumption and explore
whether external knowledge can further help NLI.
Consider an example:

• p: A lady standing in a wheat field.

• h: A person standing in a corn field.

In this simplified example, when computers are
asked to predict the relation between these two
sentences and if training data do not provide the
knowledge of relationship between “wheat” and
“corn” (e.g., if one of the two words does not ap-
pear in the training data or they are not paired in
any premise-hypothesis pairs), it will be hard for
computers to correctly recognize that the premise
contradicts the hypothesis.

In general, although in many tasks learning tab-
ula rasa achieved state-of-the-art performance, we
believe complicated NLP problems such as NLI



2407

could benefit from leveraging knowledge accumu-
lated by humans, particularly in a foreseeable fu-
ture when machines are unable to learn it by them-
selves.

In this paper we enrich neural-network-based
NLI models with external knowledge in co-
attention, local inference collection, and inference
composition components. We show the proposed
model improves the state-of-the-art NLI models
to achieve better performances on the SNLI and
MultiNLI datasets. The advantage of using exter-
nal knowledge is more significant when the size of
training data is restricted, suggesting that if more
knowledge can be obtained, it may bring more
benefit. In addition to attaining the state-of-the-
art performance, we are also interested in under-
standing how external knowledge contributes to
the major components of typical neural-network-
based NLI models.

2 Related Work

Early research on natural language inference and
recognizing textual entailment has been performed
on relatively small datasets (refer to MacCartney
(2009) for a good literature survey), which in-
cludes a large bulk of contributions made under
the name of RTE, such as (Dagan et al., 2005;
Iftene and Balahur-Dobrescu, 2007), among many
others.

More recently the availability of much larger
annotated data, e.g., SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2017), has
made it possible to train more complex mod-
els. These models mainly fall into two types
of approaches: sentence-encoding-based models
and models using also inter-sentence attention.
Sentence-encoding-based models use Siamese ar-
chitecture (Bromley et al., 1993). The parameter-
tied neural networks are applied to encode both
the premise and the hypothesis. Then a neural
network classifier is applied to decide relationship
between the two sentences. Different neural net-
works have been utilized for sentence encoding,
such as LSTM (Bowman et al., 2015), GRU (Ven-
drov et al., 2015), CNN (Mou et al., 2016), BiL-
STM and its variants (Liu et al., 2016c; Lin et al.,
2017; Chen et al., 2017b; Nie and Bansal, 2017),
self-attention network (Shen et al., 2017, 2018),
and more complicated neural networks (Bowman
et al., 2016; Yu and Munkhdalai, 2017a,b; Choi
et al., 2017). Sentence-encoding-based models

transform sentences into fixed-length vector rep-
resentations, which may help a wide range of
tasks (Conneau et al., 2017).

The second set of models use inter-sentence at-
tention (Rocktäschel et al., 2015; Wang and Jiang,
2016; Cheng et al., 2016; Parikh et al., 2016;
Chen et al., 2017a). Among them, Rocktäschel
et al. (2015) were among the first to propose neu-
ral attention-based models for NLI. Chen et al.
(2017a) proposed an enhanced sequential infer-
ence model (ESIM), which is one of the best mod-
els so far and is used as one of our baselines in this
paper.

In this paper we enrich neural-network-based
NLI models with external knowledge. Unlike
early work on NLI (Jijkoun and de Rijke, 2005;
MacCartney et al., 2008; MacCartney, 2009) that
explores external knowledge in conventional NLI
models on relatively small NLI datasets, we aim to
merge the advantage of powerful modeling ability
of neural networks with extra external inference
knowledge. We show that the proposed model
improves the state-of-the-art neural NLI models
to achieve better performances on the SNLI and
MultiNLI datasets. The advantage of using exter-
nal knowledge is more significant when the size of
training data is restricted, suggesting that if more
knowledge can be obtained, it may have more ben-
efit. In addition to attaining the state-of-the-art
performance, we are also interested in understand-
ing how external knowledge affect major compo-
nents of neural-network-based NLI models.

In general, external knowledge has shown to be
effective in neural networks for other NLP tasks,
including word embedding (Chen et al., 2015;
Faruqui et al., 2015; Liu et al., 2015; Wieting
et al., 2015; Mrksic et al., 2017), machine trans-
lation (Shi et al., 2016; Zhang et al., 2017b), lan-
guage modeling (Ahn et al., 2016), and dialogue
systems (Chen et al., 2016b).

3 Neural-Network-Based NLI Models
with External Knowledge

In this section we propose neural-network-based
NLI models to incorporate external inference
knowledge, which, as we will show later in Sec-
tion 5, achieve the state-of-the-art performance.
In addition to attaining the leading performance
we are also interested in investigating the effects
of external knowledge on major components of
neural-network-based NLI modeling.



2408

Figure 1 shows a high-level general view of the
proposed framework. While specific NLI systems
vary in their implementation, typical state-of-the-
art NLI models contain the main components (or
equivalents) of representing premise and hypoth-
esis sentences, collecting local (e.g., lexical) in-
ference information, and aggregating and compos-
ing local information to make the global decision
at the sentence level. We incorporate and investi-
gate external knowledge accordingly in these ma-
jor NLI components: computing co-attention, col-
lecting local inference information, and compos-
ing inference to make final decision.

3.1 External Knowledge

As discussed above, although there exist relatively
large annotated data for NLI, can machines learn
all inference knowledge needed to perform NLI
from the data? If not, how can neural network-
based NLI models benefit from external knowl-
edge and how to build NLI models to leverage it?

We study the incorporation of external,
inference-related knowledge in major compo-
nents of neural networks for natural language
inference. For example, intuitively knowledge
about synonymy, antonymy, hypernymy and
hyponymy between given words may help model
soft-alignment between premises and hypotheses;
knowledge about hypernymy and hyponymy
may help capture entailment; knowledge about
antonymy and co-hyponyms (words sharing the
same hypernym) may benefit the modeling of
contradiction.

In this section, we discuss the incorporation of
basic, lexical-level semantic knowledge into neu-
ral NLI components. Specifically, we consider ex-
ternal lexical-level inference knowledge between
word wi and wj , which is represented as a vec-
tor rij and is incorporated into three specific com-
ponents shown in Figure 1. We will discuss the
details of how rij is constructed later in the exper-
iment setup section (Section 4) but instead focus
on the proposed model in this section. Note that
while we study lexical-level inference knowledge
in the paper, if inference knowledge about larger
pieces of text pairs (e.g., inference relations be-
tween phrases) are available, the proposed model
can be easily extended to handle that. In this paper,
we instead let the NLI models to compose lexical-
level knowledge to obtain inference relations be-
tween larger pieces of texts.

3.2 Encoding Premise and Hypothesis
Same as much previous work (Chen et al.,
2017a,b), we encode the premise and the hypoth-
esis with bidirectional LSTMs (BiLSTMs). The
premise is represented as a = (a1, . . . , am) and
the hypothesis is b = (b1, . . . , bn), where m
and n are the lengths of the sentences. Then a
and b are embedded into de-dimensional vectors
[E(a1), . . . ,E(am)] and [E(b1), . . . ,E(bn)] using
the embedding matrix E ∈ Rde×|V |, where |V | is
the vocabulary size and E can be initialized with
the pre-trained word embedding. To represent
words in its context, the premise and the hypothe-
sis are fed into BiLSTM encoders (Hochreiter and
Schmidhuber, 1997) to obtain context-dependent
hidden states as and bs:

asi = Encoder(E(a), i) , (1)

bsj = Encoder(E(b), j) . (2)

where i and j indicate the i-th word in the premise
and the j-th word in the hypothesis, respectively.

3.3 Knowledge-Enriched Co-Attention
As discussed above, soft-alignment of word pairs
between the premise and the hypothesis may ben-
efit from knowledge-enriched co-attention mech-
anism. Given the relation features rij ∈ Rdr be-
tween the premise’s i-th word and the hypothesis’s
j-th word derived from the external knowledge,
the co-attention is calculated as:

eij = (asi )
Tbsj + F (rij) . (3)

The function F can be any non-linear or linear
functions. In this paper, we use F (rij) = λ1(rij),
where λ is a hyper-parameter tuned on the devel-
opment set and 1 is the indication function as fol-
lows:

1(rij) =

{
1 if rij is not a zero vector ;

0 if rij is a zero vector .
(4)

Intuitively, word pairs with semantic relationship,
e.g., synonymy, antonymy, hypernymy, hyponymy
and co-hyponyms, are probably aligned together.
We will discuss how we construct external knowl-
edge later in Section 4. We have also tried a two-
layer MLP as a universal function approximator
in function F to learn the underlying combination
function but did not observe further improvement
over the best performance we obtained on the de-
velopment datasets.
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Figure 1: A high-level view of neural-network-based NLI models enriched with external knowledge in
co-attention, local inference collection, and inference composition.

Soft-alignment is determined by the co-
attention matrix e ∈ Rm×n computed in Equa-
tion (3), which is used to obtain the local relevance
between the premise and the hypothesis. For the
hidden state of the i-th word in the premise, i.e.,
asi (already encoding the word itself and its con-
text), the relevant semantics in the hypothesis is
identified into a context vector aci using eij , more
specifically with Equation (5).

αij =
exp(eij)∑n
k=1 exp(eik)

, aci =
n∑

j=1

αijb
s
j , (5)

βij =
exp(eij)∑m

k=1 exp(ekj)
, bcj =

m∑
i=1

βija
s
i , (6)

where α ∈ Rm×n and β ∈ Rm×n are the nor-
malized attention weight matrices with respect to
the 2-axis and 1-axis. The same calculation is per-
formed for each word in the hypothesis, i.e., bsj ,
with Equation (6) to obtain the context vector bcj .

3.4 Local Inference Collection with External
Knowledge

By way of comparing the inference-related seman-
tic relation between asi (individual word repre-
sentation in premise) and aci (context representa-
tion from hypothesis which is align to word asi ),
we can model local inference (i.e., word-level in-
ference) between aligned word pairs. Intuitively,
for example, knowledge about hypernymy or hy-
ponymy may help model entailment and knowl-
edge about antonymy and co-hyponyms may help
model contradiction. Through comparing asi and

aci , in addition to their relation from external
knowledge, we can obtain word-level inference
information for each word. The same calcula-
tion is performed for bsj and bcj . Thus, we collect
knowledge-enriched local inference information:

am
i = G([as

i ;a
c
i ;a

s
i − ac

i ;a
s
i ◦ ac

i ;

n∑
j=1

αijrij ]) , (7)

bmj = G([bsj , b
c
j ; b

s
j − bcj ; bsj ◦ bcj ;

m∑
i=1

βijrji]) , (8)

where a heuristic matching trick with difference
and element-wise product is used (Mou et al.,
2016; Chen et al., 2017a). The last terms in Equa-
tion (7)(8) are used to obtain word-level infer-
ence information from external knowledge. Take
Equation (7) as example, rij is the relation fea-
ture between the i-th word in the premise and
the j-th word in the hypothesis, but we care
more about semantic relation between aligned
word pairs between the premise and the hypoth-
esis. Thus, we use a soft-aligned version through
the soft-alignment weight αij . For the i-th word
in the premise, the last term in Equation (7) is
a word-level inference information based on ex-
ternal knowledge between the i-th word and the
aligned word. The same calculation for hypoth-
esis is performed in Equation (8). G is a non-
linear mapping function to reduce dimensionality.
Specifically, we use a 1-layer feed-forward neural
network with the ReLU activation function with
a shortcut connection, i.e., concatenate the hidden
states after ReLU with the input

∑n
j=1 αijrij (or∑m

i=1 βijrji) as the output ami (or bmj ).
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3.5 Knowledge-Enhanced Inference
Composition

In this component, we introduce knowledge-
enriched inference composition. To determine the
overall inference relationship between the premise
and the hypothesis, we need to explore a compo-
sition layer to compose the local inference vectors
(am and bm) collected above:

avi = Composition(am, i) , (9)

bvj = Composition(bm, j) . (10)

Here, we also use BiLSTMs as building blocks
for the composition layer, but the responsibility
of BiLSTMs in the inference composition layer
is completely different from that in the input en-
coding layer. The BiLSTMs here read local in-
ference vectors (am and bm) and learn to judge
the types of local inference relationship and dis-
tinguish crucial local inference vectors for overall
sentence-level inference relationship. Intuitively,
the final prediction is likely to depend on word
pairs appearing in external knowledge that have
some semantic relation. Our inference model con-
verts the output hidden vectors of BiLSTMs to
the fixed-length vector with pooling operations
and puts it into the final classifier to determine
the overall inference class. Particularly, in addi-
tion to using mean pooling and max pooling sim-
ilarly to ESIM (Chen et al., 2017a), we propose
to use weighted pooling based on external knowl-
edge to obtain a fixed-length vector as in Equation
(11)(12).

aw =

m∑
i=1

exp(H(
∑n

j=1 αijrij))∑m
i=1 exp(H(

∑n
j=1 αijrij))

av
i , (11)

bw =

n∑
j=1

exp(H(
∑m

i=1 βijrji))∑n
j=1 exp(H(

∑m
i=1 βijrji))

bvj . (12)

In our experiments, we regard the function H as
a 1-layer feed-forward neural network with ReLU
activation function. We concatenate all pooling
vectors, i.e., mean, max, and weighted pooling,
into the fixed-length vector and then put the vector
into the final multilayer perceptron (MLP) clas-
sifier. The MLP has one hidden layer with tanh
activation and softmax output layer in our exper-
iments. The entire model is trained end-to-end,
through minimizing the cross-entropy loss.

4 Experiment Set-Up

4.1 Representation of External Knowledge

Lexical Semantic Relations As described in
Section 3.1, to incorporate external knowledge
(as a knowledge vector rij) to the state-of-the-
art neural network-based NLI models, we first
explore semantic relations in WordNet (Miller,
1995), motivated by MacCartney (2009). Specif-
ically, the relations of lexical pairs are derived as
described in (1)-(4) below. Instead of using Jiang-
Conrath WordNet distance metric (Jiang and Con-
rath, 1997), which does not improve the perfor-
mance of our models on the development sets, we
add a new feature, i.e., co-hyponyms, which con-
sistently benefit our models.

(1) Synonymy: It takes the value 1 if the words in
the pair are synonyms in WordNet (i.e., be-
long to the same synset), and 0 otherwise. For
example, [felicitous, good] = 1, [dog, wolf] =
0.

(2) Antonymy: It takes the value 1 if the words
in the pair are antonyms in WordNet, and 0
otherwise. For example, [wet, dry] = 1.

(3) Hypernymy: It takes the value 1− n/8 if one
word is a (direct or indirect) hypernym of the
other word in WordNet, where n is the num-
ber of edges between the two words in hier-
archies, and 0 otherwise. Note that we ignore
pairs in the hierarchy which have more than 8
edges in between. For example, [dog, canid]
= 0.875, [wolf, canid] = 0.875, [dog, carni-
vore] = 0.75, [canid, dog] = 0

(4) Hyponymy: It is simply the inverse of the hy-
pernymy feature. For example, [canid, dog]
= 0.875, [dog, canid] = 0.

(5) Co-hyponyms: It takes the value 1 if the two
words have the same hypernym but they do
not belong to the same synset, and 0 other-
wise. For example, [dog, wolf] = 1.

As discussed above, we expect features like syn-
onymy, antonymy, hypernymy, hyponymy and co-
hyponyms would help model co-attention align-
ment between the premise and the hypothesis.
Knowledge of hypernymy and hyponymy may help
capture entailment; knowledge of antonymy and
co-hyponyms may help model contradiction. Their
final contributions will be learned in end-to-end
model training. We regard the vector r ∈ Rdr as
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the relation feature derived from external knowl-
edge, where dr is 5 here. In addition, Table 1 re-
ports some key statistics of these features.

Feature #Words #Pairs
Synonymy 84,487 237,937
Antonymy 6,161 6,617
Hypernymy 57,475 753,086
Hyponymy 57,475 753,086
Co-hyponyms 53,281 3,674,700

Table 1: Statistics of lexical relation features.

In addition to the above relations, we also use
more relation features in WordNet, including in-
stance, instance of, same instance, entailment,
member meronym, member holonym, substance
meronym, substance holonym, part meronym, part
holonym, summing up to 15 features, but these ad-
ditional features do not bring further improvement
on the development dataset, as also discussed in
Section 5.

Relation Embeddings In the most recent years
graph embedding has been widely employed to
learn representation for vertexes and their relations
in a graph. In our work here, we also capture
the relation between any two words in WordNet
through relation embedding. Specifically, we em-
ployed TransE (Bordes et al., 2013), a widely used
graph embedding methods, to capture relation em-
bedding between any two words. We used two
typical approaches to obtaining the relation em-
bedding. The first directly uses 18 relation em-
beddings pretrained on the WN18 dataset (Bordes
et al., 2013). Specifically, if a word pair has a cer-
tain type relation, we take the corresponding re-
lation embedding. Sometimes, if a word pair has
multiple relations among the 18 types; we take an
average of the relation embedding. The second ap-
proach uses TransE’s word embedding (trained on
WordNet) to obtain relation embedding, through
the objective function used in TransE, i.e., l ≈
t− h, where l indicates relation embedding, t in-
dicates tail entity embedding, and h indicates head
entity embedding.

Note that in addition to relation embedding
trained on WordNet, other relational embedding
resources exist; e.g., that trained on Freebase
(WikiData) (Bollacker et al., 2007), but such
knowledge resources are mainly about facts (e.g.,
relationship between Bill Gates and Microsoft)
and are less for commonsense knowledge used in

general natural language inference (e.g., the color
yellow potentially contradicts red).

4.2 NLI Datasets

In our experiments, we use Stanford Natural Lan-
guage Inference (SNLI) dataset (Bowman et al.,
2015) and Multi-Genre Natural Language Infer-
ence (MultiNLI) (Williams et al., 2017) dataset,
which focus on three basic relations between a
premise and a potential hypothesis: the premise
entails the hypothesis (entailment), they contradict
each other (contradiction), or they are not related
(neutral). We use the same data split as in previ-
ous work (Bowman et al., 2015; Williams et al.,
2017) and classification accuracy as the evaluation
metric. In addition, we test our models (trained on
the SNLI training set) on a new test set (Glockner
et al., 2018), which assesses the lexical inference
abilities of NLI systems and consists of 8,193 sam-
ples. WordNet 3.0 (Miller, 1995) is used to extract
semantic relation features between words. The
words are lemmatized using Stanford CoreNLP
3.7.0 (Manning et al., 2014). The premise and the
hypothesis sentences fed into the input encoding
layer are tokenized.

4.3 Training Details

For duplicability, we release our code1. All our
models were strictly selected on the development
set of the SNLI data and the in-domain devel-
opment set of MultiNLI and were then tested on
the corresponding test set. The main training de-
tails are as follows: the dimension of the hid-
den states of LSTMs and word embeddings are
300. The word embeddings are initialized by
300D GloVe 840B (Pennington et al., 2014), and
out-of-vocabulary words among them are initial-
ized randomly. All word embeddings are updated
during training. Adam (Kingma and Ba, 2014)
is used for optimization with an initial learning
rate of 0.0004. The mini-batch size is set to 32.
Note that the above hyperparameter settings are
same as those used in the baseline ESIM (Chen
et al., 2017a) model. ESIM is a strong NLI
baseline framework with the source code made
available at https://github.com/lukecq1231/nli (the
ESIM core code has also been adapted to sum-
marization (Chen et al., 2016a) and question-
answering tasks (Zhang et al., 2017a)).

The trade-off λ for calculating co-

1https://github.com/lukecq1231/kim



2412

attention in Equation (3) is selected in
[0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50] based on the
development set. When training TransE for
WordNet, relations are represented with vectors
of 20 dimension.

5 Experimental Results

5.1 Overall Performance

Table 2 shows the results of state-of-the-art models
on the SNLI dataset. Among them, ESIM (Chen
et al., 2017a) is one of the previous state-of-the-art
systems with an 88.0% test-set accuracy. The pro-
posed model, namely Knowledge-based Inference
Model (KIM), which enriches ESIM with external
knowledge, obtains an accuracy of 88.6%, the best
single-model performance reported on the SNLI
dataset. The difference between ESIM and KIM is
statistically significant under the one-tailed paired
t-test at the 99% significance level. Note that the
KIM model reported here uses five semantic rela-
tions described in Section 4. In addition to that, we
also use 15 semantic relation features, which does
not bring additional gains in performance. These
results highlight the effectiveness of the five se-
mantic relations described in Section 4. To further
investigate external knowledge, we add TransE re-
lation embedding, and again no further improve-
ment is observed on both the development and test
sets when TransE relation embedding is used (con-
catenated) with the semantic relation vectors. We
consider this is due to the fact that TransE embed-
ding is not specifically sensitive to inference in-
formation; e.g., it does not model co-hyponyms
features, and its potential benefit has already been
covered by the semantic relation features used.

Table 3 shows the performance of models on the
MultiNLI dataset. The baseline ESIM achieves
76.8% and 75.8% on in-domain and cross-domain
test set, respectively. If we extend the ESIM with
external knowledge, we achieve significant gains
to 77.2% and 76.4% respectively. Again, the gains
are consistent on SNLI and MultiNLI, and we ex-
pect they would be orthogonal to other factors
when external knowledge is added into other state-
of-the-art models.

5.2 Ablation Results

Figure 2 displays the ablation analysis of differ-
ent components when using the external knowl-
edge. To compare the effects of external knowl-
edge under different training data scales, we ran-

Model Test
LSTM Att. (Rocktäschel et al., 2015) 83.5
DF-LSTMs (Liu et al., 2016a) 84.6
TC-LSTMs (Liu et al., 2016b) 85.1
Match-LSTM (Wang and Jiang, 2016) 86.1
LSTMN (Cheng et al., 2016) 86.3
Decomposable Att. (Parikh et al., 2016) 86.8
NTI (Yu and Munkhdalai, 2017b) 87.3
Re-read LSTM (Sha et al., 2016) 87.5
BiMPM (Wang et al., 2017) 87.5
DIIN (Gong et al., 2017) 88.0
BCN + CoVe (McCann et al., 2017) 88.1
CAFE (Tay et al., 2018) 88.5

ESIM (Chen et al., 2017a) 88.0
KIM (This paper) 88.6

Table 2: Accuracies of models on SNLI.

Model In Cross
CBOW (Williams et al., 2017) 64.8 64.5
BiLSTM (Williams et al., 2017) 66.9 66.9
DiSAN (Shen et al., 2017) 71.0 71.4
Gated BiLSTM (Chen et al., 2017b) 73.5 73.6
SS BiLSTM (Nie and Bansal, 2017) 74.6 73.6
DIIN * (Gong et al., 2017) 77.8 78.8
CAFE (Tay et al., 2018) 78.7 77.9

ESIM (Chen et al., 2017a) 76.8 75.8
KIM (This paper) 77.2 76.4

Table 3: Accuracies of models on MultiNLI. * in-
dicates models using extra SNLI training set.

domly sample different ratios of the entire training
set, i.e., 0.8%, 4%, 20% and 100%. “A” indicates
adding external knowledge in calculating the co-
attention matrix as in Equation (3), “I” indicates
adding external knowledge in collecting local in-
ference information as in Equation (7)(8), and “C”
indicates adding external knowledge in compos-
ing inference as in Equation (11)(12). When we
only have restricted training data, i.e., 0.8% train-
ing set (about 4,000 samples), the baseline ESIM
has a poor accuracy of 62.4%. When we only
add external knowledge in calculating co-attention
(“A”), the accuracy increases to 66.6% (+ absolute
4.2%). When we only utilize external knowledge
in collecting local inference information (“I”), the
accuracy has a significant gain, to 70.3% (+ ab-
solute 7.9%). When we only add external knowl-
edge in inference composition (“C”), the accuracy
gets a smaller gain to 63.4% (+ absolute 1.0%).
The comparison indicates that “I” plays the most
important role among the three components in us-
ing external knowledge. Moreover, when we com-
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pose the three components (“A,I,C”), we obtain
the best result of 72.6% (+ absolute 10.2%). When
we use more training data, i.e., 4%, 20%, 100%
of the training set, only “I” achieves a significant
gain, but “A” or “C” does not bring any signifi-
cant improvement. The results indicate that ex-
ternal semantic knowledge only helps co-attention
and composition when limited training data is lim-
ited, but always helps in collecting local inference
information. Meanwhile, for less training data, λ
is usually set to a larger value. For example, the
optimal λ on the development set is 20 for 0.8%
training set, 2 for the 4% training set, 1 for the
20% training set and 0.2 for the 100% training set.

Figure 3 displays the results of using different
ratios of external knowledge (randomly keep dif-
ferent percentages of whole lexical semantic rela-
tions) under different sizes of training data. Note
that here we only use external knowledge in col-
lecting local inference information as it always
works well for different scale of the training set.
Better accuracies are achieved when using more
external knowledge. Especially under the condi-
tion of restricted training data (0.8%), the model
obtains a large gain when using more than half of
external knowledge.

Figure 2: Accuracies of models of incorporat-
ing external knowledge into different NLI compo-
nents, under different sizes of training data (0.8%,
4%, 20%, and the entire training data).

5.3 Analysis on the (Glockner et al., 2018)
Test Set

In addition, Table 4 shows the results on a newly
published test set (Glockner et al., 2018). Com-
pared with the performance on the SNLI test

Figure 3: Accuracies of models under differ-
ent sizes of external knowledge. More external
knowledge corresponds to higher accuracies.

Model SNLI Glockner’s(∆)
(Parikh et al., 2016)* 84.7 51.9 (-32.8)
(Nie and Bansal, 2017)* 86.0 62.2 (-23.8)
ESIM * 87.9 65.6 (-22.3)
KIM (This paper) 88.6 83.5 ( -5.1)

Table 4: Accuracies of models on the SNLI and
(Glockner et al., 2018) test set. * indicates the re-
sults taken from (Glockner et al., 2018).

set, the performance of the three baseline mod-
els dropped substantially on the (Glockner et al.,
2018) test set, with the differences ranging from
22.3% to 32.8% in accuracy. Instead, the proposed
KIM achieves 83.5% on this test set (with only a
5.1% drop in performance), which demonstrates
its better ability of utilizing lexical level inference
and hence better generalizability.

Figure 5 displays the accuracy of ESIM
and KIM in each replacement-word category of
the (Glockner et al., 2018) test set. KIM outper-
forms ESIM in 13 out of 14 categories, and only
performs worse on synonyms.

5.4 Analysis by Inference Categories
We perform more analysis (Table 6) using the sup-
plementary annotations provided by the MultiNLI
dataset (Williams et al., 2017), which have 495
samples (about 1/20 of the entire development set)
for both in-domain and out-domain set. We com-
pare against the model outputs of the ESIM model
across 13 categories of inference. Table 6 reports
the results. We can see that KIM outperforms
ESIM on overall accuracies on both in-domain and
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Category Instance ESIM KIM
Antonyms 1,147 70.4 86.5
Cardinals 759 75.5 93.4
Nationalities 755 35.9 73.5
Drinks 731 63.7 96.6
Antonyms WordNet 706 74.6 78.8
Colors 699 96.1 98.3
Ordinals 663 21.0 56.6
Countries 613 25.4 70.8
Rooms 595 69.4 77.6
Materials 397 89.7 98.7
Vegetables 109 31.2 79.8
Instruments 65 90.8 96.9
Planets 60 3.3 5.0
Synonyms 894 99.7 92.1

Overall 8,193 65.6 83.5

Table 5: The number of instances and accu-
racy per category achieved by ESIM and KIM on
the (Glockner et al., 2018) test set.

Category In-domain Cross-domain
ESIM KIM ESIM KIM

Active/Passive 93.3 93.3 100.0 100.0
Antonym 76.5 76.5 70.0 75.0
Belief 72.7 75.8 75.9 79.3
Conditional 65.2 65.2 61.5 69.2
Coreference 80.0 76.7 75.9 75.9
Long sentence 82.8 78.8 69.7 73.4
Modal 80.6 79.9 77.0 80.2
Negation 76.7 79.8 73.1 71.2
Paraphrase 84.0 72.0 86.5 89.2
Quantity/Time 66.7 66.7 56.4 59.0
Quantifier 79.2 78.4 73.6 77.1
Tense 74.5 78.4 72.2 66.7
Word overlap 89.3 85.7 83.8 81.1

Overall 77.1 77.9 76.7 77.4

Table 6: Detailed Analysis on MultiNLI.

cross-domain subset of development set. KIM out-
performs or equals ESIM in 10 out of 13 cate-
gories on the cross-domain setting, while only 7
out of 13 categories on in-domain setting. It indi-
cates that external knowledge helps more in cross-
domain setting. Especially, for antonym category
in cross-domain set, KIM outperform ESIM sig-
nificantly (+ absolute 5.0%) as expected, because
antonym feature captured by external knowledge
would help unseen cross-domain samples.

5.5 Case Study

Table 7 includes some examples from the SNLI
test set, where KIM successfully predicts the in-
ference relation and ESIM fails. In the first exam-

P/G Sentences
e/c p: An African person standing in a wheat

field.
h: A person standing in a corn field.

e/c p: Little girl is flipping an omelet in the
kitchen.
h: A young girl cooks pancakes.

c/e p: A middle eastern marketplace.
h: A middle easten store.

c/e p: Two boys are swimming with boogie
boards.
h: Two boys are swimming with their floats.

Table 7: Examples. Word in bold are key words
in making final prediction. P indicates a predicted
label and G indicates gold-standard label. e and c
denote entailment and contradiction, respectively.

ple, the premise is “An African person standing in
a wheat field” and the hypothesis “A person stand-
ing in a corn field”. As the KIM model knows that
“wheat” and “corn” are both a kind of cereal, i.e,
the co-hyponyms relationship in our relation fea-
tures, KIM therefore predicts the premise contra-
dicts the hypothesis. However, the baseline ESIM
cannot learn the relationship between “wheat” and
“corn” effectively due to lack of enough samples
in the training sets. With the help of external
knowledge, i.e., “wheat” and “corn” having the
same hypernym “cereal”, KIM predicts contradic-
tion correctly.

6 Conclusions

Our neural-network-based model for natural lan-
guage inference with external knowledge, namely
KIM, achieves the state-of-the-art accuracies. The
model is equipped with external knowledge in its
main components, specifically, in calculating co-
attention, collecting local inference, and compos-
ing inference. We provide detailed analyses on our
model and results. The proposed model of infus-
ing neural networks with external knowledge may
also help shed some light on tasks other than NLI.
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