@inproceedings{welleck-etal-2019-dialogue,
title = "Dialogue Natural Language Inference",
author = "Welleck, Sean and
Weston, Jason and
Szlam, Arthur and
Cho, Kyunghyun",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1363/",
doi = "10.18653/v1/P19-1363",
pages = "3731--3741",
abstract = "Consistency is a long standing issue faced by dialogue models. In this paper, we frame the consistency of dialogue agents as natural language inference (NLI) and create a new natural language inference dataset called Dialogue NLI. We propose a method which demonstrates that a model trained on Dialogue NLI can be used to improve the consistency of a dialogue model, and evaluate the method with human evaluation and with automatic metrics on a suite of evaluation sets designed to measure a dialogue model`s consistency."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="welleck-etal-2019-dialogue">
<titleInfo>
<title>Dialogue Natural Language Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">Welleck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Weston</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arthur</namePart>
<namePart type="family">Szlam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Consistency is a long standing issue faced by dialogue models. In this paper, we frame the consistency of dialogue agents as natural language inference (NLI) and create a new natural language inference dataset called Dialogue NLI. We propose a method which demonstrates that a model trained on Dialogue NLI can be used to improve the consistency of a dialogue model, and evaluate the method with human evaluation and with automatic metrics on a suite of evaluation sets designed to measure a dialogue model‘s consistency.</abstract>
<identifier type="citekey">welleck-etal-2019-dialogue</identifier>
<identifier type="doi">10.18653/v1/P19-1363</identifier>
<location>
<url>https://aclanthology.org/P19-1363/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3731</start>
<end>3741</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dialogue Natural Language Inference
%A Welleck, Sean
%A Weston, Jason
%A Szlam, Arthur
%A Cho, Kyunghyun
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F welleck-etal-2019-dialogue
%X Consistency is a long standing issue faced by dialogue models. In this paper, we frame the consistency of dialogue agents as natural language inference (NLI) and create a new natural language inference dataset called Dialogue NLI. We propose a method which demonstrates that a model trained on Dialogue NLI can be used to improve the consistency of a dialogue model, and evaluate the method with human evaluation and with automatic metrics on a suite of evaluation sets designed to measure a dialogue model‘s consistency.
%R 10.18653/v1/P19-1363
%U https://aclanthology.org/P19-1363/
%U https://doi.org/10.18653/v1/P19-1363
%P 3731-3741
Markdown (Informal)
[Dialogue Natural Language Inference](https://aclanthology.org/P19-1363/) (Welleck et al., ACL 2019)
ACL
- Sean Welleck, Jason Weston, Arthur Szlam, and Kyunghyun Cho. 2019. Dialogue Natural Language Inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3731–3741, Florence, Italy. Association for Computational Linguistics.