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Abstract

We present a novel abstraction framework
called FASTDial for designing task oriented
dialogue agents, built on top of the OpenDial
toolkit. This framework is meant to facilitate
prototyping and development of dialogue sys-
tems from scratch also by non tech savvy, es-
pecially when limited training data is avail-
able. To this end, we use a generic and simple
frame-slots data-structure with pre-defined di-
alogue policies that allows for fast design and
implementation at the price of some flexibility
reduction. Moreover, it allows for minimizing
programming effort and domain expert train-
ing time, by hiding away many implementa-
tion details.

1 Introduction

In recent years, there has been an increasing de-
mand for a new generation of conversational sys-
tems that are able to naturally interact and assist
humans in a number of scenarios, including - but
not limited to - virtual coaches, personal assistants
and automatic help desks. However, when dealing
with applications or commercial scenarios, tech-
nological complexity should be abstracted away
since domain knowledge is often held by non tech
savvy. Moreover, systems should be ‘transparent’
to easily allow for modification or scaling when
needed, such as error fixing or new intents/object-
s/requirements integration.

To this end, several solutions have appeared on
the market. On one side, there are open source
tools/frameworks, such as OpenDial (Lison and
Kennington, 2016), PyDial (Ultes et al., 2017) and
DeepPavlov (Burtsev et al., 2018) that are very
flexible and allow many integrations. While these
tools are designed with the target of computer sci-
entists in mind, they would still need domain ex-
pertise to design proper dialogues. On the other
side of the spectrum, several commercial tools

aim at hiding dialogue implementation complex-
ity, for example by using intuitive graphical inter-
faces to help also non technical experts build their
own dialogues. This comes to the price of loosing
some flexibility, integration capabilities, and con-
trol over the system.

However, constructing flexible multi-intent di-
alogue agents while keeping the implementation
complexity minimal is not a trivial task both on
commercial and open source tools. Considering
that there are several domains requiring such di-
alogue systems (e.g. banking, e-commerce etc.),
we aim at providing a framework that is easy to
use but at the same time is still as flexible as pos-
sible.

To this end, we tried to merge the best of
both worlds (commercial and open source tools)
by designing and implementing a generalization
architecture on top of OpenDial. OpenDial is
a Java-based, domain-independent framework for
developing probabilistic rule-based dialogue sys-
tems. While keeping the rule-based approach of
OpenDial, our architecture, named FASTDial, ab-
stracts away dialogue policies in a generic dia-
logue model that drastically reduces design effort
and code complexity. This generic dialogue model
starts with an intent recognition phase that is user
initiative. Once the intent is recognized the inter-
action is converted to system initiative for filling
the required slots. Still, the user is given an ac-
tive part by allowing universal interruptions such
as calling help or canceling the task (Jurafsky and
Martin, 2017). In our view, most task oriented do-
mains can be easily adapted to this schema. This
allows for speeding up the prototyping of com-
plex multi-intent dialogue scenarios. It allows
easy integration of new languages and new intents,
by prioritizing efficiency and extensibility to fa-
cilitate developing dialogue systems from scratch
and with limited training data available. Scalabil-
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ity can be quickly obtained also by non-experts
since the technical implementation of the dialogue
flow is abstracted away. Therefore, instead of fo-
cusing on a graphical interface approach, we ab-
stracted the dialogue policy in order to make dia-
logue building simpler:

• non-experts can easily be trained to write dia-
logues - or better - to provide the information
needed to automatically establish a dialogue.

• new intents can be quickly added.

• dialogues can be quickly and easily ported to
new languages.

• by using API interface to separate dialogue
from actual data we can increase the modu-
larity in the applications.

However, generalizing the dialogue flow into
certain logical patterns brings along the restric-
tion in the dialogue policy flexibility such that the
agent can only handle informable slot types and a
single slot per turn.

The remainder of the paper is structured as fol-
low: Section 2 presents the architecture of our sys-
tem with its main components, while Section 3
presents our running example in the banking sce-
nario. Finally, in Section 4 and 5 we evaluate our
approach and discuss future developments.

2 Architecture

In the FASTDial architecture1, the main conversa-
tional ability of the agent is encoded in a gener-
alized dialogue policy mechanism that is fed with
a frame-slots data-structure (FSDS). By abstract-
ing the policy away, we manage a systematic way
to load new intents (tasks/goals) to the agent rep-
resented only as slots, data types, api calls, and
pre-defined system utterances to produce relevant
dialogues with the user.

In this scenario, each intent relevant to a given
domain (e.g. ’make a money transfer’, ’check ac-
count balance’, ’block credit card’) is represented
by one FSDS data structure. After recognizing
the user intent, the agent loads the corresponding
FSDS from an external resource (i.e. json files)
and interactively fills the slots by asking related
questions to the user, making sure that all the con-
straints associated with each slot are fulfilled. By

1FASTDial code can be downloaded at the following link:
https://github.com/serrasinem/FASTDial

design, the agent performs single-intent at a time
and after each execution, the user can request a
new intent. An intent can be categorized as ei-
ther a query intent or an action intent. Regarding
the banking domain, requesting information on the
Account Balance is a query intent, while making a
Money Transfer is categorized as an action intent.

The architecture has been designed to be handy
especially in the application scenarios where many
user intents must be implemented in a very short
time and the training dialogue data is really scarce.
The main framework is designed as a module on
top of OpenDial toolkit. The architecture of the
dialogue agent consists of 5 components; namely,
Dialogue Manager, Integration Interface, Natural
Language Understanding, Natural Language Gen-
eration, and Intent Manager.

2.1 Dialogue Manager Module

The dialogue manager is responsible of the inter-
module communication and controlling the dia-
logue flow through dialogue states. In FASTDial,
once the user intent is identified, the dialogue is
led by the system. With respect to the slot order
in the FSDS of the intent, the system asks the slot
filling questions and processes the respective user
utterance to retrieve the slot values. After the slot
value is extracted, the DM module sends it to the
API module for validation. If the value is valid, the
DM module either activates the next slot state or
finalizes the dialogue if all the mandatory slots are
filled. If the value is not valid, the DM reformu-
lates the machine utterance with the corresponding
validation error and asks the slot filling question
again. In Figure 1, we give an example dialogue
demonstrating the aforementioned DM function-
ing.

Although FASTDial is designed to be system
initiative during slot filling, slots can be expressed
by the user at the intent utterance state, which is
the initial stage of the conversation, (e.g. “I would
like to transfer AMOUNT euros to NAME”). For
this reason all slots described in the FSDS are also
searched in the intent utterance. Consequently, as
well as detecting the Money Transfer intent in the
example above, the system would capture the val-
ues for the transfer destination and the amount
slots. The system validates the detected values and
if no error occurs the system skips the correspond-
ing slot filling questions, i.e. SKIPPED TURN in
Figure 1.

https://github.com/serrasinem/FASTDial
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Figure 1: Example of dialogue with FASTDial in a multi-intent banking scenario. On the left: Upper section is
intent recognition (user initiative). Once the intent has been recognized the system takes the lead and ask one slot
at a time (lower section). On the right: a complex sub-dialogue due to validation errors for the amount slot.

FASTDial reduces the dialogue management
complexity and provides a set of predefined dia-
logue policies, which most dialogue scenarios can
be fitted into. However, the reduction of the dia-
logue flow complexity brings some restrictions to
the flexibility of the dialogue management. We
provide a list of restrictions and their alternatives
in FASTDial dialogue flow as follows:

• system initiative dialogue flow: once the user
intent is identified, the system tries to fill all
necessary slots and in case of an unexpected
user utterance, it changes the state to either re-
peating the question or finalizing the dialogue.
This would prevent the system answering the
mid-dialogue user questions, i.e. requestable
slots (Henderson et al., 2013). As an exam-
ple, in the Money Transfer intent, the user may
ask about her account balance before specifying
the amount of money she wants to send. The
DM cannot change the intent to Account Bal-
ance query in this scenario.

• one slot per turn: a slot turn can only be for
a single slot value. Multiple information must
be asked in different questions as different slots.
For instance, in a food ordering scenario, food
type and number of orders should be defined as
different slot turns. Still, both slots can be iden-
tified in the intent sentence if specified by the
user.

2.2 Integration Interface

The dialogue agent can be used as an external tool
to any application through its web service inter-
face. Similar to the dialogue bAbI tasks (Bordes

et al., 2016), the interface creates either a ma-
chine response or a functional call to its client.
The responses of these functional calls, in a “vari-
able:value format”, are directed to the NLG mod-
ule to transform the response values into suit-
able natural text shown to the user. In addition,
for demo purposes, the framework has a simple
Telegram application that requires a knowledge
base implementation as a backend. Unlike the
web service interface, Telegram app only produces
machine utterances and connects to the backend
knowledge base when necessary.

2.3 Natural Language Understanding

The task of the Natural Language Understanding
component is twofold: first to recognize the user
intent and then fill the corresponding FSDS that
has been loaded by the Intent Module and active
at the moment. While understanding the intent
type is implemented as a model interface, the slot
recognition task is handled by each slot type sepa-
rately. The intent identification model is generated
during the initialization of the agent, by retrieving
the intent keys from all registered intents.

Each slot type has its own slot filling method
and the type-specific slot constraints are employed
to match the values from the user utterance. There-
fore, the agent can employ different NLU ap-
proaches for different data types. Similar to the
strategy in OpenDial, while a simple regular ex-
pression model is applied to retrieve numbers, a
more complex deep learning recognition model
can be applied to other slots. This approach al-
lows integrating new slot filling models, such as
Named Entity Recognition models (Louvan and
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Magnini, 2018) or RNN (Mesnil et al., 2015), eas-
ily by overloading the matching function in the ab-
stract class of the slot object.

2.4 Natural Language Generation

The machine utterances shown to the user
throughout the dialogue are supplied by the Nat-
ural Language Generation module whose main re-
sponsibility is to select the correct machine re-
sponse to lead the dialogue to successfully fulfill
a user intent. In the startup of the agent, the NLG
model is generated by using the intent descrip-
tions retrieved from all the registered FSDSs and
language-specific generic texts. API responses are
also integrated into machine utterances whenever
necessary. The machine utterances include the
user greetings, the slot filling questions, confirma-
tion requests, the output of the user intent execu-
tions, error messages (i.e. erroneous slot values,
incomprehensible user utterances, and translation
of the API responses with error codes).

2.5 Intent Manager

Intent Manager loads the intent frame (i.e. FSDS)
on-the-fly when the user intent is detected by
the NLU module. All possible FSDS, including
their metadata and slot descriptions, are registered
when the agent starts up. The intent frame descrip-
tions reside in the FSDS Knowledge Base (KB),
currently a simple folder containing json files of
all registered intents. A new intent can be reg-
istered to the dialogue agent by adding it to the
FSDS KB folder after the following properties are
defined:

• name: defines the name of the intent.

• keys: defines the keywords that are necessary
for understanding the user intent. It is a comma
separated list of regular expressions. In addi-
tion, a more complex NLU function, such as any
defined slot filling model, can be assigned to be
called in this variable.

• confirmation: a boolean value determines if the
execution of the intent requires a confirmation
from the user. For instance, certain actions such
as payments or, more generally, the tasks that re-
quire the user’s complete awareness of the con-
sequences should be finalized after the user’s
confirmation.

• confirmation question : if a confirmation is re-
quired for the execution of the intent, the confir-
mation question must be saved in this parameter.

• execution call: the final execution APICall. API
formalism should be agreed upon with the mid-
dleware.

• success & error messages: the messages to be
shown to the user when the execution of the in-
tent is successful and when the execution of the
intent is failed.

• slots: the ’ordered’ list of slot objects that need
to be filled to execute the intent.

A slot object can be in the type of String,
List of Strings, Date, Time, Currency, Numeric,
and Confirmation. Although we provide a pre-
implemented list of possible slot types, the slot
implementation has been designed as an abstract
object that can be extended easily into new types
of slots depending on the specific requirements of
a new domain. For instance, a Named Entity slot
that holds any given named entity can be imple-
mented by employing a deep NER model. A slot
object can be added to the slot list of an intent by
defining the following variables.

• slot name: should be unique for intent.

• slot type: holds a slot type.

• constraint: type dependent. It determines the
slot filling conditions necessary for the NLU.

• question: It holds the question to be asked to the
user to fill the slot value.

• validation api: Each slot should be verified af-
ter receiving the value from the user in order to
continue to the next slot, unless specified with
the key ”NoValidate”. This variable holds the
validation api function name to call after filling
the slot value.

• error message: The error machine utterances
and the error codes are defined in a list of “er-
ror code:utterance” format.

• mandatory: This variable is a boolean value de-
termining if the slot must be filled in order to
execute the user intent.

• regex: We can define a list of regular expres-
sions for extracting a slot value. Each regex
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should contain “{slot}” string, which is the filler
for the expected slot value, e.g. “my {slot}
card”. While “keys” parameter predefines a set
of slot values to be exactly matched, “regex” pa-
rameter defines a set of patterns to extract the
unknown slot values from the user utterance.

• dependency: The possible values that a slot can
take sometimes depend on a previous slot. In
this condition, dependency variable is required
to hold a slot name which is defined prior to the
current slot.

3 Banking Domain

Considering the data scarcity, Banking dialogues
could be one of the hardest datasets to retrieve due
to security requirements. Not only the real user
interaction dialogues, but also the KB structure
or the logical structure of a banking action would
not completely and easily been shared. In this
scenario, training a model with the actual bank-
ing data or dialogue samples would not be possi-
ble. Keeping these requirements and limitations
in mind, we generated FSDSs for various banking
tasks, such as Money Transfer, Account History
Search, Account Balance query, Card Limit query,
Canceling a Transfer, and Blocking a Card, from
scratch with the help of a domain expert. In this
domain, intent types and almost all slot values de-
tected in the user utterances are validated through
API calls and the dialogue flow can change ac-
cordingly. In Listing 1, we provide the json ob-
ject of a sample FSDS registered to accomplish a
Money Transfer. It is worthwhile to mention that
to give the ability of establishing dialogues for the
Money Transfer intent, all required information re-
sides in this single json object. Additionally, in Ta-
ble 1, we show a simple Account Balance dialogue
with the required API interaction.
{”name” : ” T r a n s f e r ” ,
” keys ” : ”make .∗ t r a n s f e r , send .∗money . . . ” ,
” c o n f i r m a t i o n ” : t r u e ,
” c o n f i r m a t i o n q u e s t i o n ” : ”Do you c o n f i r m

s e n d i n g {Amount} t o {ToAccount} ?” ,
” e x e c u t i o n c a l l ” : ” e x e c u t e t r a n s f e r ” ,
” s l o t s ” : [
{” s l o t n a m e ” : ” ToAccount ” ,

” s l o t t y p e ” : ” S t r i n g L i s t ” ,
” c o n s t r a i n t ” : ” k e y s :

r e c i p i e n t l i s t ” ,
” q u e s t i o n ” : ”What i s t h e name of

t h e r e c i p i e n t ?” ,
” v a l i d a t i o n a p i ” : ”

c h e c k r e c i p i e n t ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ”

There i s no saved r e c i p i e n t

w i th t h e name you p r o v i d e d .
P l e a s e e n t e r one o f t h e
o p t i o n s among : ”} ,

” mandatory ” : t r u e ,
” r e g e x ” : ”money t o { s l o t }”} ,

{” s l o t n a m e ” : ”Amount” ,
” s l o t t y p e ” : ” Cur rency ” ,
” c o n s t r a i n t ” : ” e ” ,
” dependency ” : ” FromAccount ” ,
” q u e s t i o n ” : ”How much money would

you l i k e t o t r a n s f e r ?” ,
” v a l i d a t i o n a p i ” : ”

c h e c k f u n d s l i m i t ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ” The

amount c a n n o t be p r o c e s s e d ,
p l e a s e s p e c i f y a v a l i d
amount . ” , ” f u n d e r r ” : ” S o r r y ,

you do n o t have enough
f u n d s i n your a c c o u n t . Would

you l i k e t o change t h e
amount ?” , ” l i m i t e r r ” : ” S o r r y ,

t h e amount you s p e c i f i e d i s
above your t r a n s f e r l i m i t .

Would you l i k e t o change t h e
amount ?”} ,

” mandatory ” : t r u e } ,
{” s l o t n a m e ” : ” NoteConf i rm ” ,

” s l o t t y p e ” : ” C o n f i r m a t i o n ” ,
” c o n s t r a i n t ” : ” yes , ok , s u r e ,

c o r r e c t , r i g h t , p o s i t i v e ; no ,
n o t now , n o t t o d a y , n e g a t i v e ;
a c t i o n : s k i p N e x t ” ,

” q u e s t i o n ” : ”Do you want t o add a
n o t e t o your t r a n s f e r ?” ,

” v a l i d a t i o n a p i ” : ” N o V a l i d a t e ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ” I

couldn ’ t u n d e r s t a n d your
r e q u e s t . Could you p l e a s e
c o n f i r m or r e j e c t a dd ing a
n o t e ?”} ,

” mandatory ” : t r u e } ,
{” s l o t n a m e ” : ” Note ” ,

” s l o t t y p e ” : ” S t r i n g ” ,
” c o n s t r a i n t ” : ”” ,
” q u e s t i o n ” : ” P l e a s e t y p e your

n o t e . ” ,
” v a l i d a t i o n a p i ” : ” s a v e P o s t ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ”

There i s a problem wi th your
r e q u e s t . Your n o t e c o u l d

n o t be saved . ” } ,
” mandatory ” : f a l s e } ] ,

” s u c c e s s m e s s a g e ” : ”OK, your t r a n s f e r i s
done . Can I h e l p you wi th a n y t h i n g
e l s e ?” ,

” e r r o r m e s s a g e ” : ” Your t r a n s f e r c a n n o t be
e x e c u t e d . {Er ro rMessage } Can I h e l p
you wi th a n y t h i n g e l s e ?”}

Listing 1: json FSDS for Money Transfer

4 System Evaluation

Since one of our main claims is that our abstrac-
tion framework can drastically reduce dialogue de-
sign and code complexity - as compared to Open-
Dial - we set up a comparison task. In this task
we re-implemented three of the intent of the bank-
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B: Hello, how can I help you with ?
U: I would like to check my account balance.
AC : MESSAGE: ACCOUNT LIST, INTENT: AC-

COUNTBALANCE

AR: [CHECKING, SAVINGS]
B: You have Checking, Savings accounts.

Which one would you like to query?
U: savings, please
AC : INFO TYPE: CHECK ACCOUNT, MES-

SAGE: SAVINGS

AR: STATE: INFO CHECK SUCCESS

AC : MESSAGE: EXECUTE INTENT

AR: MESSAGE: {AMOUNT:100, CURRENCY-
TYPE:e }, STATE: EXECUTE SUCCESS

B: The current balance on your Savings ac-
count is 100 e . Can I help you with any-
thing else?

Table 1: An excerpt of an Account Balance dialogue
generated from its FSDS toghether with the API calls.
B is Bot, U is User, AC is API call, AR is API response.

ing scenario into the native OpenDial representa-
tion. The code reduction was of two orders of
magnitude (on average from 2000 lines of XML
code to 80 lines of json format FSDS description).
Note that for this comparison we relied on a de-
veloper, so we excluded the time needed to learn
the tool, that for OpenDial is expected to be much
higher. As a second task, we ported the language-
specific generic NLU/NLG definitions and orig-
inal 9 Banking Domain intents to two new lan-
guages (Italian and Hungarian): on average setting
up a completely functional dialogue agent with all
9 intents required from 3 to 4 hours. In this case
we did not use a programmer but a native speaker
per language with good knowledge of English.

5 Conclusion and Future Work

We presented FASTDial, a dialogue policy ab-
straction framework built on top of OpenDial that
allows for fast prototyping and significant code
complexity reduction in building conversational
agents. We are planning to expand our framework
with new features (e.g. new data types, multiple
slots per turn), and also to build a version that
allows for user driven dialogues. This new ver-
sion would require some changes in the underly-
ing logic. Moreover we are planning to integrate
some available models for NLU and NLG into our
FSDS structure to replace simple regular expres-

sion matching and template filling.
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