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A B S T R A C T  

Informally, a disposition is a proposition which is prepon- 
derantly, but no necessarily always, true. For example, birds 
can fly is a disposition, as are the propositions Swedes are 
blond and Spaniards are dark. 

An idea which underlies the theory described in this 
paper is that a disposition may be viewed as a proposition 
with implicit fuzzy quantifiers which are approximations to all 
and always, e.g., almost all, almost always, most, frequently, 
etc. For example, birds can fly may be interpreted as the 
result of supressing the fuzzy quantifier most in the proposi- 
tion most birds can fly. Similarly, young men like young women 
may be read as most young men like mostly young women. The 
process of transforming a disposition into a proposition is 
referred to as ezplicitation or restoration. 

Explicitation sets the stage for representing the meaning 
of a proposition through the use of test-score semantics 
(Zadeh, 1978, 1982). In this approach to semantics, the mean- 
ing of a proposition, p, is represented as a procedure which 
tests, scores and aggregates the elastic constraints which are 
induced by p. 

The paper closes with a description of an approach to 
reasoning with dispositions which is based on the concept of a 
fuzzy syllogism. Syllogistic reasoning with dispositions has an 
important bearing on commonsense reasoning as well as on 
the management of uncertainty in expert systems. As a sim- 
ple application of the techniques described in this paper, we 
formulate a definition of typical i ty -  a concept which plays an 
important role in human cognition and is of relevance to 
default reasoning. 

1. I n t r o d u c t i o n  

Informally, a disposition is a proposition which is prepon- 
derantly, but not necessarily always, true. Simple examples of 
dispositions are: Smoking is addictive, exercise is good for your 
health, long sentences are more difficult to parse than short sen- 
tences, overeating causes obesity, Trudi is always right, etc. 
Dispositions play a central role in human reasoning, since 
much of human knowledge and, especially, commousense 
knowledge, may be viewed as a collection of dispositions. 

The concept of a disposition gives rise to a number of 
related concepts among which is the concept of a dispositional 
predicate. Familiar examples of unary predicates of this type 
are: Healthy, honest, optimist, safe, etc., with binary disposi- 
tional predicates exemplified by: taller than in Swedes are taller 
than Frenchmen, like in Italians are like Spaniards, like in 
youn 9 men like young women, and smokes in Ron smokes 
cigarettes. Another related concept is that of a dispositional 
command {or imperative) which is exemplified by proceed with 
caution, avoid overexertion, keep under refrigeration, be frank, 
etc. 
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The basic idea underlying the approach described in this 
paper is that  a disposition may be viewed as a proposition 
with suppressed, or, more generally, implicit fuzzy quantifiers 
such as most~ almost all, almost always, usually, rarely, much of 
the time, etc . To illustrate, the disposition gestating causes 
obesity may be viewed as the result of suppression of the fuzzy 
quantifier most in the proposition most of  those who overeat 
are obese. Similarly, the disposition young men like young 
women may be interpreted as most young men like mostly 
young women. It should be stressed, however, that  restoration 
(or ezplicitation) -- viewed as the inverse of suppression - is an 
interpretation-dependent process in the sense that, in general, 
a disposition may be interpreted in different ways depending 
on the manner in which the fuzzy quantifiers are restored and 
defined. 

The implicit presence of fuzzy quantifiers stands in the 
way of representing the meaning of dispositional concepts 
through the use of conventional methods based on truth- 
conditional, possible-world or model-theoretic semantics 
(Cresswell, 1973; McCawley, 1981; Miller and Johnson-Laird, 
1970),~-tn the computational approach which is described in 
this paper, a fuzzy quantifier is manipulated as a fuzzy 
number. This idea serves two purposes. First, it provides a 
basis for representing the meaning of dispositions; and second, 
it opens a way of reasoning with dispositions through the use 
of a collection of syllogisms. This aspect of the concept of a 
disposition is of relevance to default reasoning and non- 
monotonic logic (McCarthy, 1980; McDermott and Doyle, 
1980; McDermott, 1982; Reiter, 1983). 

To illustrate the manner in which fuzzy quantifiers may 
be manipulated as fuzzy numbers, assume that, after restora- 
tion, two dispositions d I and d 2 may be expressed as proposi- 
tions of the form 

Pl A Qt A t s are BI  s (1.1) 

P2 A = Q2 Be s are CI s , (1.2) 

in which Ql and Q2 are fuzzy quantifiers, and A, B and C are 
fuzzy predicates. For example, 

Pl &- most students are undergraduates (1.3) 

P2 ~ most undergraduates are young . 

By treating Pl and P2 as the major and minor premises in 
a syllogism, the following chaining syllogism may be esta- 
blished if B C A (Zadeh, 1983): 

1. In the literature of linguistics, logic and philosophy of languages, fuz- 
zy quantifiers are usually referred to as ~agne or generalized quantifiers 
(Barwise and Cooper, 1981; Peterson, 1979). In the approach described 
in this paper, a fuszy quantifier is interpreted as a fuzzy number which 
provides an approximate characterization of absolute or relative cardi- 
nality. 
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Q 1 A  ' s ore B t  s (1.4) 

Q :  B I  s are CI s 

>_(QI ~ Q2) A # s  are C ' s  

in which Q1 ~ Q2 represents the product of the fuzzy 
numbers QI and Q2 (Figure 1). 
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Figure 1. Multiplication of fuzzy quantifiers 

and ~_(Ql ~ Q:t) should be read as "a t  least Q1 ~ Q2." As 
shown in Figure 1, Q~ and Q2 are defined by their respective 
possibility distributions, which means that  if the value of Q1 
at the point u is a, then a represents the possibility tha t  the 
proportion of A ~ s in B ~ s is u. 

In the special case where Pl and P2 are expressed by 
(1.3), the chaining syllogism yields 

most students are undergraduates 

most nnderqradnates are vounq 

m o s t  2 s tuden t s  are young 

where most ~ represents the product of the fuzzy number m o s t  
with itself (Figure 2). 
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Figure 2. Representation of most and most 2. 

2. Meaning Representation and Test-Score Semantics 
To represent the meaning of a disposition, d, ~¢e employ 

a two-stage process. First, the suppressed fuzzy quantifiers in 
d are restored, resulting in a fuzzily quantified proposition p. 
Then, the meaning of p is represented -- through the use of 
test-score semantics (Zadeh, 1978, 1982) - as a procedure 
which acts on a collection of relations in an explanatory data- 
base and returns a test score which represents the degree of 

compatibility of p with the database. In effect, this implies 
tha t  p may be viewed as a collection of elastic constraints 
which are tested, scored and aggregated by the meaning- 
representation procedure. In test-score semantics, these elastic 
constraints play a role which is analogous to tha t  t ruth-  
conditions in truth-conditional semantics (Cresswell, 1973). 

As a simple illustration, consider the familiar example 

d A s n o w  is white 

which we interpret as a disposition whose intended meaning is 
the proposition 

p A usually snow is white . 

To represent the meaning of p, we assume that  the ezplana- 
tory database, EDF (Zadeh, 1982), consists of the following 
relations whose meaning is presumed to be known 

EDF A W H I T E  [Sample;p] + USUALLY[Propor t ion;p] ,  

in which + should be read as and. The ith row in WHITE is 
a tuple (Si,ri),  i = 1,... ,m, in which S i is the ith sample of 
snow, and ri is is the degree to which the color of S i matches 
white. Thus, r i may be interpreted as the test score for the 
constraint on the color of Si induced by the elastic constraint 
W H I T E .  Similarly, the relation U S U A L L Y  may be inter- 
preted as an elastic constraint on the variable Proportion, with 
p representing the test score associated with a numerical value 
of Proportion. 

The steps in the procedure which represents the meaning 
of p may be described as follows: 

1. Find the proportion of samples whose color is white: 

r l - k  • • • - b  r m 

m 
in which the proportion is expressed as the arith- 
metic average of the test scores. 

2. Compute the degree to which ¢ satisfies the con- 
straint  induced by USUALL Y: 

r ~ ~ USUALLY[Proport ion  ~ p] , 

in which r is the overall test  score, i.e., the degree of 
compatibility of p with ED, and the notation 
~R[X = a] means: Set the variable X in the rela- 
tion R equal to a and read the value of the variable 
p. 

More generally, to represent the meaning of a disposition 
it is necessary to define the cardinality of a fuzzy set. 
Specifically, if A is a subset of a finite universe of discourse 
U ---- {ul, . . . ,u,}, then the sigma-count of A is defined as 

~Count(A ) = I:~pA(U~), (2.1) 

in which pA(Ui), i ---- l,...,n, is the grade of membership of u/ 
in A (Zadeh, 1983a), and it is understood tha t  the sum may be 
rounded, if need be, to the nearest integer. Furthermore, one 
may stipulate tha t  the terms whose grade of membership falls 
below a specified threshold be excluded from the summation. 
The purpose of such an exclusion is to avoid a situation in 
which a large number of terms with low grades of membership 
become count-equivalent to a small number  of terms with high 
membership. 

The relative sigma-count, denoted by ~ Count( B / A ), may 
be interpreted as the proportion of elements of B in A. More 
explicitly, 

~ C o u n t ( B / A  ) --~ ~ C o u n t ( A  fl B)  (2.2) 
ECount(a ) ' 

where B D A,  the intersection of B and A, is defined by 
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i t B n A ( U ) f U S / U )  ^ US(U),  U e U , 

where A denotes the s i n  operator in infix form. Thus, in 
terms of the membership functions of B and A, the relative 
slgma-count of B and A is given by 

~,#B(u,) A tin(u,) 
Z Count( B / A } = (2.3} 

~,tJa(u,) 
As an illustration, consider the disposition 

d A overating causes obesity (2.4) 

which after restoration is assumed to read 2 

p A most o f  those who overeat are obese . (2.5) 

To represent the meaning of p, we shall employ an expla- 
natory database whose constituent relations are: 

EDF ~- P O P U L A T I O N [ N o m e ;  Overeat; Obese] 

+ MOST(Proportion;it] . 

The relation POPULA T I O N  is a list of names of individuals, 
with the variables Overeat and Obese representing, respec- 
tively, the degrees to which Name overeats and is obese. In 
MOST,  p is the degree to which a numerical value of Propor- 
tion fits the intended meaning of MOST.  

To test procedure which represents the meaning of p 
involves the following steps. 

1. Let Name~, i - -  1 ..... m, be the name of ith indivi- 
dual in P O P U L A T I O N .  For each N a m e ,  find the 
degrees to which Namei overeats and is obese: 

ai A POVEREA r(Namei)  A 0 . . . . .  t POPULA T /ON(Name  = Namei] 

#, A ItonEsE( Namei} ~ o6, ,  POPULA TlON[Name ~ Namei] . 

2. Compute the relative sigma-count of OBESE in 
O V E R E A T :  

= i a i  A #i 
p @ ~ C o u n t ( O B E S E / O V E R E A T ) =  

E,a i  

3. Compute the test score for the constraint induced 
by MOST: 

r - ~  ~MOST[Proportion --~ p] . 

This test score represents the compatibility of p with the 
explanatory database. 

3. T h e  Scope  of  a F u z z y  Quantif ier  
In dealing with the conventional quantifiers all and some 

in flint-order logic, the scope of a quantifier plays an essential 
role in defining its meaning. In the case of a fuzzy quantifier 
which is characterized by a relative sigma-count, what matters 
is the identity of the sets which enter into the relative count. 
Thus, if the sigma-count is of the form E C o u n t ( B / A  ), which 
should be read as the proportion of B I s  in A Is ,  then B and 
A will be referred to as the n-set [with n standing for numera- 
tor) and b-set (with b standing for base), respectively. The 
ordered pair {n-set, b-set}, then, may be viewed a~ a generali- 
zation of the concept of the scope of a quantifier. Note, how- 
ever, that,  in this sense, the scope of a fuzzy quantifier is a 
semantic rather than syntactic concept. 

As a simple illustration, consider the proposition 
p A most students are undergraduates. In this case, the n- 
set of most is undergraduates, the b-set is students, and the 
scope of most is the pair { undergraduates, students}. 

2. It should be understood that (2.5) is just one of many possible in- 
terpret~.tions of (2.4), with no implicat;on that is constitutes a prescrip- 
tive interpretation of causality. See Suppes (1970}. 

As an additional illustration of the interaction between 
scope and meaning, consider the disposition 

d A young men like young women . (3.1) 

Among the possible interpretations of this disposition, we 
shall focus our attention on the following (the symbol rd 
denotes a restoration of a disposition): 

rd I A most young men like most young women 

rd 2 A most young men like mostly young women . 

To place in evidence the difference between rd I and rdz, 
it is expedient to express them in the form 

rdl -~- most young men PI 

rd 2 ~ most young men P 2 ,  

where Pl  and P2 are the fuzzy predicates 

P l  A likes most  young women 

and 

P2 A likes mostly  young women , 

with the understanding that ,  for grammatical correctness, likes 
in PI and P2 should be replaced by llke when Pl and P2 act 
as constituents of rd I and rd 2. In more explicit terms, 
PI and P2 may be expressed as 

PI A P,[Name;p] (3.2) 

P2 ~- P2[Name;p],  

in which Name is the name of a male person and # is the 
degree to which the person in question satisfies the predicate. 
[Equivalently, p is the grade of membership of the person in 
the fuzzy set which represents the denotation or, equivalently, 
the extension of the predicate.) 

To represent the meaning of PI and P2 through the use 
of test-score semantics, we assume that  the explanatory data- 
base consists of the following relations (gadeh, 1983b): 

EDF A P O P U L A T I O N ( N a m e ;  Age; Sex] + 

L l K E [ N a m e l ; N a m e 2 ;  p] + YOUNG(Age;  p] + 

MOST(Proport ion;  It] . 

In LIKE,  it is the degree to which Namel  likes Name9 ; 
and in YOUNG, it is the degree to which a person whose age is 
Age is young. 

First, we shall represent the meaning of PI by the follow- 
ing test procedure. 

1. Divide P O P U L A T I O N  into the population of males, 
M . P O P U L A T I O N ,  and the population of females, 
F . P O P U L A  TION: 

M.POPULA T I O N  A N . . . .  Ag, POPULA TION[Sez---Male] 

F . P O P U L A  T O N  A Ne,,,,age POPULA TION[Sez---Female] , 

where N~mc,AocPOPULATION denotes the projec- 
tion of P O P U L A T I O N  on the attributes Name and 
Age. 

2. For each Name: , j  ~ 1 ..... L ,  in F . P O P U L A T I O N ,  
find the age of Namei: 

A i  A Age F . P O P U L A  T I O N [ N a m e ~ N a m e i ]  . 

3. For each Namei,  find the degree to which Name i is 
young: 

ai  A ~ Y O U N G [ A g e = A i  ] , 

where a i may be interpreted as the grade of 
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membership of Name i in the fuzzy set, Y W ,  of 
young women. 

4. For each Namei, i = l , . . . , K ,  in M . P O P U L A T I O N ,  
find the age of Namei: 

Bi A Age M.P OPULA TlON[Name---Namei]  . 

5. For each Namei,  find the degree to which Namei 
likes Name i : 

~ii ~- ~LIKE[Namel  = Namel;Name2 = Namei] , 

with the understanding that ~i/ m a y  be interpreted 
as the grade of membership of Name i in the fuzzy 
set, WLi,  of women whom Name, likes. 

6. For each Name/ find the degree to which Name, 
likes Name i and Name i is young: 

"Tii A a i  A #ii • 

Note: As in previous examples, we employ the aggre- 
gation operator rain ( A )  to represent the meaning 
of conjunction. In effect, 70 is the grade of 
membership of Name i in the intersection of the 
fuzzy sets WLI and YW. 

7. Compute the relative sigma-count of women whom 
Name i likes among young women: 

Pi A ~ C o u n t t W L i / Y W )  (3.4) 

E C o u n t ( W L  i N Y W )  

~Count (  Y W )  

_ ~ i  76 

a i 

F. i a i 

8. Compute the test score for the constraint induced 
by MOST: 

r i = ~ MOST[Proport ion ---- Pi] (3.5) 

This test-score way be interpreted as the degree to 
which Name i satisfies PI, i.e., 

ri = p PI [Name = Namei] 

The test procedure described above represents the 
meaning of P,.  In effect, it tests the constraint 
expressed by the proposition 

E Count ( Y W / W L  i ) is M O S T  

and implies that the n-set and the b-set for the 
quantifier most in PI are given by: 

n- se t  = WLi = N. , . ,2LIKE[Name 1 --~ Namei] 

fl  F . P O P U L A  T I O N  
and 

b-set  = Y W  = Y O U N G  fl F . P O P U L A  T I O N  . 

By contrast, in the case of P2, the identities of the 
n-set and the b-set are interchanged, i.e., 

n- se t  = Y W  

and 

b-set  = WL i , 

which implies that the constraint which defines P2 is 
expressed by 

ECount(  Y W [  WLi)  is M O S T  . 

9. 

10. 

11. 

Thus, whereas the scope of the quantifier most in PI 
is { W L i ,  Y W } ,  the scope of mostly in P2 is 
{ YW, WL~}. 

Having represented the meaning of P1 and P~, it 
becomes a simple matter to represent the meaning 
of rd, and rd~. Taking rd D for example, we have to 
add the following steps to the test procedure which 
defines P r  

For each Namei, find the degree to which Name i is 
young: 

6i A uYOUNG[Age = Bi] , 

where /f i may be interpreted as the grade of 
membership of Name i in the fuzzy set, YM, of 
young men. 

Compute the relative sigma-count of men who have 
property P* among young men: 

6 &-- ~ C o u n t ( P l / Y M  ) 

~ C o u n t ( P i  fl  Y M )  

C o u n t ( Y M )  

~iri A $i 

~i~i 

Test the constraint induced by MOST: 

r = ~MOST[Proportion=--p] . 

The test score expressed by (3.6) represents the 
overall test score for the disposition 

d A young men like young women 

if d is interpreted as rd 1. If d is interpreted as rd2, 
which is a more likely interpretation, then the pro- 
cedure is unchanged except that r i in (3.5) should he 
replaced by 

r i = ~MOST[Proportion -~- 6i] 

where 

6, A ~ C o u n t ( Y W / W L , )  

4. Representation of  Dhspos|tlonal Commands  and 
Concep t s  

The approach described in the preceding sections can be 
applied not only to the representation of the meaning of dispo- 
sitions and dispositional predicates, but, more generally, to 
various types of semantic entities as well as dispositional con- 
cepts. 

As an illustration of its application to the representation 
of the meaning of dispositional commands, consider 

dc A s t a y  away from bald men , (4.1) 
whose explicit representation will be assumed to be the com- 
m and 

c A s t a y  away from m o s t  bald  m e n  . (4.2) 
The meaning of c is defined by its compliance criterion (gadeh, 
1982) or, equivalently, its propositional content (Searle, 1979), 
which may be expressed as 

ee A staying away from most bald men . 

To represent the meaning of ce through the use of test- 
score semantics, we shall employ the explanatory database 
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EDF A RECORD[Name; pBald; Action] 

+ MOST[Proposition; # ]  . 

The relation RECORD may be interpreted as a diary -- 
kept during the period of interest -- in which Name is the 
name of a man; pBald is the degree to which he is bald; and 
Action describes whether  the man in question was stayed away 
from ( A c t i o n ~ l )  or not (Act ion=0) .  

The test  procedure which defines the meaning of dc may 
be described as follows: 

1. For each Name i, i ~ I  ..... n, find (a) the degree to 
which Namel is bald; and (b) the action taken: 

#Baldi A ,B~IdRECORD[Name --. Namei] 
Action i A a~tionRECORO[Nam e --. Namei] . 

2. Compute  the relative sigma-count of compliance: 

1 [~i pBaldl A Acti°ni}" (4.3) p = - - #  

3. Test  the  constraint  induced by MOST: 

r = ~MOST[PropoMtion = p] • (4.4) 

The computed  test  score expressed by (4.4) 
represents the degree of compliance with c, while the 
procedure which leads to r represents the meaning of 
de. 

The concept of dispositionality applies not  only to seman- 
tic entities such as propositions, predicates, commands,  etc., 
but, more generally, to concepts and their definitions. As an 
illustration, we shall consider the concept of typicality -- a 
concept which plays a basic role in human reasoning, especially 
in default  reasoning '(Reiter, 1983), concept formation (Smith 
and Media, 1981), and pa t te rn  recognition (Zadeh, 1977}. 

Let U be a universe of discourse and let A be a fuzzy set 
in A (e.g., U A cars and A ~ station wagons). The 
definition of a typical element of A may be expressed in verbal 
terms as follows: 

t is a typical element of A if and only if (4.5) 

(a) t has a high grade of membership in A, and 

(b) most demen t s  of ,4 are similar to t.  

it should be remarked tha t  this definition should be viewed as 
a dispositional definition, that  is, as a definition which may 
fail, in some cases, to reflect our intuitive perception of the 
meaning of typicality. 

To put  the verbal definition expressed by (4.5) into a 
more precise form, we can employ test-score semantics to 
represent the meaning of (a) and (h). Specifically, let S be a 
similarity relation defined on U which associates wi~h each ele- 
ment  u in U the degree to which u is similar to t ~. Further-  
more, let S(t) be the Mmilarity clas~ of t,  i.e., the fuzzy set of 
elements of U which are similar to t.  ~Vhat this means is tha t  
the grade of membership of u in S(t) is equal to #s(t ,u),  the 
degree to which u is similar to t (Zadeh, 1971). 

Let HIGH denote the fuzzy subset of the unit interval 
which is the extension of the fuzzy predicate high. Then, the 
verbal definition (4.5) may be expressed more precisely in the 
form: 

t is a typical element of A if and only if (4.6) 

3. For consistency with the definition of A,  S must be such that if u 
and u I have a high degree of similarity, then their grades of member- 
ship in A should be close in magnitude. 

(a) P a ( t )  is HIGH 

(b) ECount(S( t ) /A ) is MOST. 
The fuzzy predicate high may be characterized by its 

membership function PHtCH or, equivalently, as the fuzzy rein- 
ton IIIGfI [Grade; PL in which Grade is a number  in the inter- 
val [0,1] and p. is the degree to which the value of Grade fits 
the intended meaning of high. 

An impor tan t  implication of this definition is tha t  typi- 
cality is a mat te r  of degree. Thus,  it follows at once from (4.6) 
tha t  the degree, r, to which t is typical or, equivalently, the 
grade of membership of t in the fuzzy set of typical elements 
of A ,  is given by 

r = tHIGH[Grade = t] A (4.7) 

aMOST[Proportion = ~, Count(S(t) /A ] . 

In terms of the  m e m b e ~ h i p  functions of HIGH, MOST,S  
and A,  (4.7} may be wri t ten as 

[ ~ ,  Pst t ,  u) A PA( u) I 
r A V.-LF.  J' (4.8) 

where tHIGH, PMOSr, PS and PA are the  membership functions 
of HIGH, MOST, S and A, respectively, and the  summat ion 
Zu extends over the elements of U. 

It is of interest  to observe tha t  if p a ( t )  ----- 1 and 

.s(t,n) = ~ a ( u ) ,  (4.9) 

tha t  is, the grade of membership of u in A is equal to the  
degree of similarity of u to t ,  then the degree of typicality of t 
is unity. This is reminiscent of definitions of prototypical i ty 
(Rosch, 1978) in which the grade of membership of an object  
in a category is assumed to be inversely related to its "dis- 
tance"  from the prototype.  

In a definition of prototypicali ty which we gave in gadeh 
(1982), a prototype is interpreted as a so-called a-summary .  
In relation to the definition of typicality expressed by (4.5), we 
may say tha t  a prototype is a a -summary of typical elements 
of A.  In this sense, a prototype is not, in general, an element 
of U whereas a typical element of A is, by definition, an cle- 
ment  of  U. As a simple illustration of this difference, assume 
that  U is a collection of movies, and A is the fuzzy set of 
Western movies. A prototype of A is a summary  of the sum- 
maries {i.e., plots) of Western movies, and thus is not a movie. 
A typical Western movie, on the other  hand, is a movie and 
thus is an element of U. 

5. Fuzzy Syllogisms 
A concept which plays an essential role in reasoning with 

dispositions is tha t  of a fuzzy syllogism (Zadeh, 1983c). As a 
general inference schema, a fuzzy syllogism may be expressed 
in the form 

QIA'a are Bin (5.1) 

Q2 CI8 are D I s  

fQs E '  a are F~ a 

where Ql and Q2 are given fuzzy quantifiers, Q3 is fuzzy 
quantifier which is to be determined,  and A, /3, C, D, E and F 
are interrelated fuzzy predicates. 

In what  follows, we shall present  a brief discussion of two 
basic types of fuzzy syllogisms. A more detailed description of 
these and other  fuzzy syllogisms may be found in Zadeh 
(1983c, 1984). 

The  intersection~product syllogism may be viewed as an 
instance of (5.1) in which 
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6' ~ A and B 

E A A  

F A B andD , 

and Q a =  Q1 ~ Q2, i.e-, Qa is the product of QI and Q2in 
fuzzy arithmetic. Thus, we have as the statement of the syllo- 
gism: 

Q 1 A ' s  are B '  s (5.2) 

QT(A and B) '  s arc CI s 

(Q1 (~ Q2) A I s  are ( B a n d  C)ls  • 

In particular, if B is contained in A, i.e., PB --< PA, where PA 
and P8 are the membership functions of A and B, respec- 
tively, then A and B = B, and (5.2) becomes 

Q 1 A ' s  are Be s (5.3) 

Q~ B '  s arc CI s 

(QI ~ Q2) A ' s  are (B a n d C ) ' s  . 

Since B and C implies C, it follows at once from (5.3) 
that 

Q1A I s arc BI s (5.4) 

Q2 BI  s are C '  s 

> ( Q I  ~ Q2) A ' s  arc C ' s ,  

which is the chaining syllogism expressed by (1.4). Further- 
more, if the quantifiers Q] and Q2 are monotonic, i.e., 
>- QI - -  Q1 and _> Q2 = Q2, then (5.4) becomes the product 
syllogism 

QI A e s are B '  s (5.5) 

Q~ B I s  are C I s  

(QI ~ Q2) A ' s  ore C ' s  

the case of the consequent conjunction syllogism, we ]n 
have 

C ~ _ A  

E ~ _ A  

F = B and D . 

In this ease, the statement of syllogism is: 

QI A ' s  are B ' s  (5.0) 

Q : A f s  are C I s  

Qa A e s are (B and C) Is 

where Q is a fuzzy number (or interval) defined by the ine- 
qualities 

0 ~ ( Q  1 • Q201)_~  Q _~ QI~)Q2,  (5.7) 

where (~ , ~ ~ and @ are the operations of addition, subtrac- 
tion, rain and max in fuzzy arithmetic. 

As a simple illustration, consider the dispositions 

dl A students are young 

d 2 ~-- students are single.  

Upon restoration, these dispositions become the propositions 

Pl A most students are young 

P2 A most students are single 

Then, applying the consequent conjunction syllogism to Pl and 
P2, w e  c a n  infer that 

Q students are single and young 

where 

2 most 0 1  <_ Q <_ most  . (5.8) 

Thus, from the dispositions in question we can infer the dispo- 
sition 

d A students are ,ingle and young 

on the understanding that the implicit fuzzy quantifier in d is 
expressed by (5.8). 

6. Nega t ion  o f  Disposi t lona 
In dealing with dispositions, it is natural to raise the 

question: What happens when a disposition is acted upon with 
an operator, T, where T might be the operation of negation, 
active-to-passive transformation, etc. More generally, the 
same question may be asked when T is an operator which is 
defined on pairs or n-tuples of disp?sitions. 

As an illustration, we shall focus our attention on the 
operation of negation. More specifically, the question which 
we shall consider briefly is the following: Given a disposition, 
d, what can be said about the negaton of d, not d? For exam- 
ple, what can be said about not (birds can fly) or not (young 
men like young women). 

For simplicity, assume that, after restoration, d may be 
expressed in the form 

rd A Q A W s are B I s  . (6 .1)  

Then, 

not d = not (Q A ' s ore B ' s ) .  (6.2) 

Now, using the semantic equivalence established in Zadeh 
(1978), we may write 

not (Q A ' s  are B ' s ) E ( n o t  Q ) A ' s  ore B ' o  , (6.3) 

where not Q is the complement of the fuzzy quantifier Q in 
the sense that the membership function of not Q is given by 

P,,ot Q(u).~- 1 - p Q ( u ) , 0  < u < 1 . (6 .4)  

Furthermore, the following inference rule can readily be 
established (gadeh, 1983a): 

Q A ' s ore B '  s (0.5) 
~__ (ant Q ) A I s arc not B t o ' 

where ant Q denotes the antonym of Q, defined by 

~ , , , ~ ( u )  = ~ q ( 1 - n ) ,  o < u < 1 ,  (6.o) 

On combining (0.3) and (0.5), we are led to the following 
result: 

not(Q A # s are B '  s ) =  (6.7) 
>_ (oat (not q))  A ' o ore not  B t  , 

which reduces to 

not(q A ' s  are B ' * ) =  (0.8) 

(ant (not q)) A ' , are not B '  * 

if Q is monotonic (e.g., Q A most). 

As an illustration, if d A birds can fly and Q A most, 
then (0.8) yields 

not (birds can f ly)  (ant (not most)) birds cannot f l y .  (o.g) 

It should be observed that if Q is an approximation to 
all, then ant(not Q) is an approximation to some. For the 
right-hand member of (0.9) to be a disposition, most must be 
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an approximation to at least a half. In this case ant [not most] 
will be an approximation to most, and consequently the right- 
hand member of (0.9) may be expressed -- upon the suppres- 
sion of most -- as the disposition birds cannot fly. 
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