
O N  T H E  D E C I D A B I L I T Y  OF F U N C T I O N A L  U N C E R T A I N T Y *  

R o l f  B a c k o f e n  

G e r m a n  R e s e a r c h  C e n t e r  for  Ar t i f ic ia l  I n t e l l i g e n c e  ( D F K I )  
W - 6 6 0 0  Saa rb r f i cken ,  G e r m a n y  

b a c k o f e n @ d f k i . u n i - s b . d e  

A b s t r a c t  

We show that  feature logic extended by functional 
uncertainty is decidable, even if one admits cyclic 
descriptions. We present an algorithm, which 
solves feature descriptions containing functional un- 
certainty in two phases, both phases using a set of de- 
terministic and non-deterministic rewrite rules. We 
then compare our algorithm with the one of Kaplan 
and Maxwell, that  does not cover cyclic feature de- 
scriptions. 

1 I n t r o d u c t i o n  

Feature logic is the main device of unification gram- 
mars, the currently predominant paradigm in com- 
putational linguistics. More recently, feature de- 
scriptions have been proposed as a constraint system 
for logic programming (e.g. see [ l l  D . They provide 
for partial descriptions of abstract objects by means 
of functional attributes called features. 

Formalizations of feature logic have been proposed 
in various forms (for more details see [3] in this vol- 
ume). We will follow the logical approach intro- 
duced by Smolka [9, 10], where feature descriptions 
are standard first order formulae interpreted in first 
order structures. In this formalization features are 
considered as functional relations. Atomic formulae 
(which we will call atomic constraints) are of either 
the form A(x) or z f y ,  where x, y are first order vari- 
ables, A is some sort predicate and f is a feature 
(written in infix notation). The constraints of the 
form x f y  can be generalized to constraints of the 
form xwy ,  where w = f l - . .  fn  is a finite feature path. 
This does not affect the computational properties. 

In this paper we will be concerned with an ex- 
tension to feature descriptions, which has been in- 
troduced as "functional uncertainty" by Kaplan and 
Zaenen [7] and Kaplan and Maxwell [5]. This for- 
mal device plays an important role in the framework 
of LFG in modelling so-called long distance depen- 
dencies and constituent coordination. For a detailed 
linguistic motivation see [7], [6] and [5]; a more gen- 
eral use of functional uncertainty can be found in [8]. 

Functional uncertainty consists of constraints of 
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the form xLy ,  where L is a finite description of 
a regular language of feature paths. A constraint 
x L y  holds if there is a path w E L such that z w y  
holds. Under this existential interpretation, a con- 
straint x L y  can be seen as the disjunction 

= I ,.,, e xLy L}. 

Certainly, this disjunction may be infinite, thus 
functional uncertainty yields additional expressivity. 
Note that  a constraint z w y  is a special case of a func- 
tional uncertainty constraint. 

To see some possible application of functional un- 
certainty we briefly recall an example that  is given in 
Kaplan and Maxwell [5, page 1]. Consider the top- 
icalized sentence Mary John telephoned yesterday. 
Using s as a variable denoting the whole sentence, 
the LFG-like clause s topic x A s obj x specifies that 
in s Mary should be interpreted as the object of the 
relation telephoned. The sentence could be extended 
by introducing additional complement predicates, as 
e.g. in sentences like Mary John claimed thai Bill  
telephoned; Mary John claimed thai Bil l  said that 
. . . H e n r y  telephoned yesterday; . . . .  For this fam- 
ily of sentences the clauses s topic x A s comp obj x,  
s topic x A s  comp cornp obj x and so on would be ap- 
propriate; specifying all possibilities would yield an 
infinite disjunction. This changes if we make use of 
functional uncertainty allowing to specify the above 
as the single clause s topic x A s comp* obj x. 

Kaplan and Maxwell [5] have shown that consis- 
tency of feature descriptions is decidable, provided 
that a certain aeyclicity condition is met. More re- 
cently, Bander et hi. [1] have proven, that  consistency 
is not decidable if we add negation. But it is an open 
problem whether consistency of feature descriptions 
without negation and without additional restrictions 
(such as acyclicity) is decidable. In the work pre- 
sented here we show that  it indeed is decidable. 

2 ' ]?he  M e t h o d  

We will first briefly describe the main part  of solving 
the standard feature terms and then turn to their 
extension with functional uncertainty. 

Consider a clause ¢ = x p l y l  A xpzy2 (from now on 
we will refer to pure conjunctive formulae as clauses). 
A standard method for solving feature terms would 
rewrite ¢ in order to achieve a solved form. This 
rewriting depends on the paths Pl and Pz. If Pl 
equals Pz, we know that  yl and Y2 must be equal. 
This implies that  ¢ is equivalent to xplyx  Ayl  -- Yz. If 
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p~ is a prefix of  p2 and hence P2 = P~P~, we can trans- 
form ¢ equivalently into the formulae xplyi A YlP'Y2. 
The reverse case is treated in a similar 'fashion. If  
neither prefix or equality holds between the paths, 
there is nothing to be done. By and large, clauses 
where this holds for every x and every pair of differ- 
ent constraints xp~y and xp2z are the solved forms 
in Smolka [9], which are consistent. 

If  we consider a clause of the form ¢ = zL~y~ A 
zL2y~, then we again have to check the relation be- 
tween ys and y~. But now there is in general no 
unique relation determined by ¢, since this depends 
on which paths p~ and P2 we choose out of  L~ and 
L~. Hence, we have to guess the relation between pl 
and p~ before we can calculate the relation between 
yl and y~. However, there is a problem with the 
original syntax, namely that  it does not allow one to 
express any relation between the chosen paths (in a 
later section we will compare our algorithm to the 
one of  Kaplan/Maxwell ,  thus showing where exactly 
the problem occurs in their syntax). Therefore, we 
extend the syntax by introducing so-called path vari- 
ables (written c~, fl, a ' , . . . ) ,  which are interpreted as 
feature paths (we will call the other variables first 
order variables). Hence, if we use the modified sub- 
term relation xo~y and a restriction constraint o~ ~ L, 
a constraint xLy  can equivalently be expressed as 
xay  A a ~ L (4 new). The interpretation of  xay  is 
done in two steps. Given a valuation V~, of the path 
variables as feature paths, a constraint =c~y in ¢ is 
substi tuted by xV~,(cQy. This constraint is then in- 
terpreted using the valuation for the first order vari- 
ables in the way such constraints are usually inter- 
preted. 

By using this extended (two-sorted) syntax we are 
now able to reason about  the relations between dif- 
ferent path variables. In doing so, we introduce ad- 
ditional constraints c~ - fl (equality), o~ ~ fl (prefix) 
and c~ fl fl (divergence). Divergence holds if neither 
equality nor prefix holds. Now we can describe a nor- 
mal form equivalent to the solved clauses in Smolka's  
work, which we will call pre-solved clauses. A clause 
¢ is pre-solved iff for each pair of different constraint 
xayl  and x~y2 in ~b there is a constraint a I] ~ in ¢. 
We call this clauses pre-solved, since such clauses are 
not necessarily consistent. I t  may  happen, that  the 
divergence constraints together with the restrictions 
of form a ~ L are inconsistent (e.g. think of the clause 
a~  f+ A ~ ~ f f +  A (~ fl fl). But pre-solved clauses 
have the property, that  if we find a valuation for the 
path variables, then the clause is consistent. 

Our algori thm first transforms a clause into a set 
of pre-solved clauses, which is (seen as a disjunction) 
equivalent to the initial clause. In a second phase the 
pre-solved clauses are checked for consistency with 
respect to the path variables. In this paper we will 
concentrate on the first phase, since it is the more 
difficult one. 

Before looking at the technical part  we will illus- 
trate the first phase. For the rest of  the paper we 

will write clauses as sets of  atomic constraints. Now 
consider the clause 7 = {xay, al ~ L1, xflz, fl~ L2}. 
The first step is to guess the relation between the 
path variables c~ and ft. Therefore, 7 can be ex- 
pressed equivalently by the set of  clauses 

71 = { 4  ,) ~} u 7 73 = { ~  ~ ~}  u 7 
72 = {,~ - ~} u 7 74 = {~ -~ ,~} u 7 

The clause 71 is pre-solved. For the others we have 
to evaluate the relation between a and ]Y, which is 
done as follows. For 72 we subst i tu te /~ by ot and z 
by y, which yields 

{y "--z, xay, o~E L1, aEL2}.  

We keep only the equality constraint for the first or- 
der variables, since we are only interested in their val- 
uation. Combining {4 ~ L1, a ~ L2} to {4 ~ (L1 f')L2)} 
then will give us the equivalent pre~solved clause 

For 73 we know that  the variable/3 can be split 
into two parts, one of them covered by 4. We can 
use concatenation of  path variables to express this, 
i.e. we can replace fl by the term c~.fl', where ~ '  is 
new. Thus we get the clause 

7~ - {xc~y, a~ L1, yfl' z, c~.fl'~L2}, 

The only thing that  we have to do additionally in 
order to achieve a pre-solved clause is to resolve the 
constraint a./~ ~ ~ L2. To do this we have to guess a 
so-called decomposition P, S of  L2 with P.S  C_ L2 
such that  a ~ P and ]~' ~ S. In general, there can be 
an infinite number  of decompositions (think of the 
possible decompositions of  the language f ' g ) .  But 
as we use regular languages, there is a finite set of 
regular decompositions covering all possibilities. Fi- 
nally, reducing {c~ ~ L~, ~ ~ P}  to {~ ~ (L1 n P)} will 
yield a pre-solved clause. 

Note that  the evaluation of  the prefix relation in 
73 has the additional effect of introducing a new con- 
straint y ~ z .  This implies tha t  there again may  be 
some path variables the relation of  which is unknown. 
Hence, after reducing the terms of  form a --" ]~ or 

~ fl we may have to repeat the non-deterministic 
choice of  relations between path variables. In the 
end, the only remaining constraints between path 
variables will be of  the form a fl ft. 

We have to consider some additional point, namely 
that  the rules we present will (naturally) loop in some 
cases. Roughly speaking, one can say that  this al- 
ways occurs if a cycle in the graph coincides with 
a cycle in the regular language. To see this let us 
vary the above example and let 7 now be the clause 
{xax,  c~ ~ f, xflz, fl ~ f ' g } .  Then a possible looping 
derivation could be 

1. a d d a 4 ] ~ :  
{4 4 fl, xax,  a~f, xflz, fl~f*g} 

2. split fl into a-f~': 

3. decompose c~-/~ I~ f ' g :  
{=~,  ~ f ,  ~f~'~, a~f*, Z'~f*g} 
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4. join a-restrictions: 
{=~z, ~ I ,  ~/~'z, ~'~y*g} 

However, we will proof tha t  the rule system is 
quasi-terminating, which means that  the rule system 
may cycle, but  produces only finitely many  different 
clauses (see [4]). This means that  checking for cyclic 
derivations will give us an effective algorithm. 

Quasi-termination is achieved by the following 
measures: first we will guarantee that  the rules do 
not introduce additional variables; second we restrict 
concatenation to length 2; and third we will show 
that  the rules system produces only finitely many 
regular languages. In order to show that  our rewrite 
system is complete, we also have to show that  every 
solution can be found in a pre-solved clause. 

3 P r e l i m i n a r i e s  

Our signature consists of a set of sorts S (A, B , . . . ) ,  
first order variables X ( z , y , . . . ) ,  path variables 7 9 
(a , /3 , . . . )  and features Jr ( f ,  g , . . . ) .  We will assume 
a finite set of features and infinite sets of variables 
and sorts. A path is a finite string of features. A 
path u is a prefix of a path v (written u ~ v) if there 
is a non-empty path w such that  v = uw. Note that  

is neither symmetr ic  nor reflexive. Two paths u, v 
diverge (written u n v) if there are features f ,  g with 
f ~ g and possibly empty paths w, wl, w2 such that  
u = wfw~ A v = wgw2. Clearly, n is a symmetr ic  
relation. 

P r o p o s i t i o n  3.1 Given two paths u and v, then ex- 
actly one of the relations u = v, u .~ v, u ~- v oru  II v 
holds. 

A path term (p, q . . . .  ) is either a path variable a or 
a concatenation of path variables a.fl. We will allow 
complex path terms only in divergence constraints 
and not in prefix or equality constraints. Hence, the 
set of atomic constraints is given by 

e ~ A z  sort restriction 
z ":- y agreement 
z f ~ . . . . . f n  Y subterm agreement 1 
zo~y subterm agreement 2 
p~ L path restriction 
p fi q divergence 

~ [3 prefix 
c~ - fl path equality 

We exclude empty paths in subterm agreement since 
xey is equivalent to x - y. Therefore, we require 
f l " . . . ' f n  E ~r+ and L C_ jr+.  

A clause is a finite set of atomic constraint de- 
noting their conjunction. We will say that  a path 
term a.fl  is contained (or used) in some clause ¢ if 
¢ contains either a constraint a-fl ~ L or a constraint 
a.fl  ti q )  Constraints of the form p~ L, p fl q, a :~ fl 
and c~ - fl will be called path constraints. 

An interpretation Z is a s tandard first order struc- 
ture, where every feature f ~ ~ is interpreted as a bi- 
nary, functional relation F z and where sort symbols 

We will not differentiate between p fl q and q ~ p. 

are interpreted as unary, disjoint predicates (hence 
A z O B z =  0 for A 5£ B). A valuation is a pair 
(Vx,  VT~), where Vx is a s tandard first order valu- 
ation of the variables in X and Vv is a function 
V~v : P ---+ ~'+.  We define V~,(a.fl) to be VT,(a)V~,(13), 

The validity of  an atomic constraint in an inter- 
pretation 2" under a valuation (Vx,  V~,) is defined as 
follows: 

(Vx, V~,) ~z  Ax :¢=:~ Vx(x) e A z 
(Vx, Vr) Pz  = - Y :¢=~ Vx(=) = Vx(U) 
( vx , v r )  ~ z  z p y  
(vx, vv) ~ z  =.u 
(vx, vT~) ~ z  p e L 
(Vx, VT~) ~z  pbq  

:¢=, vx(~) F? 0 . . . o  F, ~ Vx(y) 
:¢:=~ (Vx, Vv) ~ z  • Vv(a) y 
:¢==~ V~,(p) C L 
:¢::~ Vp(p) o VT~(q) 

for a C  {u,k,--" }, 

where p is the path f l " . . . ' f ,  and F/z are the inter- 
pretations of fi in Z. 

For a set ~ C X we define =£ to be the following 
relation on first order valuation: 

Vx =~ V/~ iff W e ~ : Vx(~) = V/~(x). 

Similarly, we define =~ with 7r C 79 for path valua- 
tions. Let 0 C_ XU79 be a set of variables. For a given 
interpretation 7: we say that  a valuation (Vx,  V~) is 
a O-solution of a clause ¢ in 2" if there is a valuation 
(V~, V~) in 2" such that  Vx =a'ne V~:, Vp =~,no V~ 
and (V~:, V~) ~ z  ¢. The set of all 0-solutions of ¢ in 
2: is denoted by [¢]~. We will call X-solutions just 
solutions and write [¢ ]z  instead of [¢],~. 

For checking satisfiability we will use transfor- 
mation rules. A rule R is O-sound ¢ --*n 7 
[¢ ]z  D [7]~ z for every interpretation 2". R is called 
O-preserving if ¢ "+R 3' :¢" [¢]Z C [7]~. R is globally 

O-preservingif [¢ ]z  C_ U [7]$- 
¢--*n7 

4 T h e  F i r s t  P h a s e  

4.1 A Set  o f  R u l e s  

Recall that  we have switched from the original syntax 
to a (two-sorted) syntax by translating constraints 
z L y  into {zay ,  ~ ~ L}, where a is new. The result of 
the translation constitutes a special class of clauses, 
namely the class of prime clauses, which will be de- 
fined below. Hence, it suffices to show decidability 
of consistency of prime clauses. They  are the input 
clauses for the first phase. 

Let ¢ be some clause and z, y be different vari- 
ables. We say that  ¢ binds y t0 z if z - y E ¢ and y 
occurs only once in ¢. Here it is impor tant  that  we 
consider equations as directed, i.e. we assume that  
z -" y is different from y - x. We say that  ¢ elimi- 
nates y if ¢ binds y to some variable x. A clause is 
called basic if 

1. x - y appears in ¢ iff ¢ eliminates y, 

2. For every path variable a used in ¢ there is at 
most one constraint zc~y E ¢. 
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(Eq) {c~ - /3 ,  zay, x/3z) U ¢ 
{v - z, ~ v }  u ¢[/3.---, ~.--u] 

(Pre) {'~ "~ /3' z~y, x/3z) U ¢ 
{x~,v} u {v/3z} u ¢[/3.- ~./3] 

(Join) {a  ~ L, ~ ~ L'} U ¢ L :/: L' 
{,~ ~ (L n L')} U ¢ 

(Divl) {a fi/3') U {a./3 fi/3'} U ¢ 
{~ ii y }  u ¢ 

(Div2) {a-/3 fi ~./3'} U ¢ 
{/3fi y} u ¢  

J_ 

(DClashl) {a'/3 fi a} U ¢ 
_L 

(DClash2) {o~ fi a} U ¢ 
J_ 

(Empty) {a ~ 0) O ¢ 
_L 

Figure 1: Simplification rules. Note that (Pre) does not introduce a new variable. 

A basic clause ¢ is called prime if ¢ does not contain 
an atomic constraint of the form p fl q, c~ -~/3 or ot - 
/3. Every clause ¢ in the original Kaplan/Maxwell 
syntax can be translated into a prime clause 7 such 
that ¢ is consistent iff 9' is consistent. 

Now let's turn to the output clauses of the first 
step. A basic clause is said to be pre-soived if the 
following holds: 

1. Ax 6 ¢ and Bz  6 ¢5 implies A - B. 

2. c~ d L 6 ¢ and a d L' 6 ¢ implies L = L*. 
Furthermore, a d O is not in ¢. 

3. a-/3, c~ - / 3  or a ~/3 are not contained in ¢. 

4. a f l / 3 6 ¢ i f f a ~ / 3 ,  x ( ~ y 6 ¢ a n d z / 3 z 6 ¢ .  

L e m m a  4.1 A pre-soived clause ¢ is consistent iff 
there is a path valuation V~, with VT~ ~ Cp, where Cp 
is the set of path constraints in ~. 

Now let's turn to the rule system. As we 
have explained informally, the first rule adds non- 
deterministiely relational constraints between path 
variables. In one step we will add the relations be- 
tween one fixed variable a and all other path vari- 
ables/3 which are used under the same node x as a.  
Furthermore, we will consider only the constraints 

- /3, c~ fl /3 and a ~ /3 and not additionally the 
constraint a 9/3. 

For better readability we will use pseudo-code for 
describing this rule (using the usual don't  care/don' t  
know distinction for non-determinism): 

(PathRel) 
C h o o s e  x 6 l)arsx(¢) (don't  care) 

C h o o s e  xay 6 ¢ (don't  know) 
For  each  x/3z 6 ¢ w i t h  c~ # / 3  and c~ fl/3 ~ ¢ 
a d d  a 6~/3 with 5Z 6 { - ,  4~, fl} (don't  know) 

"don' t  care non-determinism" means that one is 
free to choose an arbitrary alternative at this choose 
point, whereas "don't  know" means that one has to 
consider every alternative in parallel (i.e. for every al- 
ternative of the don' t  care non-determinism a clause 
¢ is equivalent to the set of all don't  know alterna- 
tives that  can be generated by applying the rule to 
¢). Note that the order of rule application is another 
example for don't  care non-determinism in our rule 
system. 

Although we have restricted the relations 6~ to 
{ - ,  :(, u}, this rule is globally preserving since we 
have non-deterministically chosen zay. To see this 
let ¢ be a clause, 27 be an interpretation and (Vx, VT~) 
be a valuation in 27 with (Vx, V~) ~ z  ¢. To find an 
instance of (PathRel) such that  (Vx, V~,) ~ z  7 where 
3' is the result of applying this instance, we choose 
xay 6 ¢ with V~(a) is prefix minimal in 

{v~@ 1~/3z ~ ¢}. 
Then for each x/3z 6 ¢ with a # / 3  and ~ fi /3 ~ ¢ 
we add a 6~ /3 where Vp(a) o~ V~(/3) holds. Note 
that  5 0 equals ~ will not occur since we have cho- 
sen a path variable a whose interpretation is prefix 
minimal. Therefore, the restriction 6~ 6 { - ,  k, fi} is 
satisfied. 

We have defined (PathRel) in a very special way. 
The reason for this is that only by using this spe- 
cial definition we can maintain the condition that 
concatenation of path variables is restricted to bi- 
nary concatenation. E.g. assume that  we would have 
added both /31 "~ O~ and a :¢ /32 to a clause 7. Then 
first splitting up the variable a into/31 .a '  and then 
132 into a./3~ will result in a substitution of/32 in 7 
by/31"a"/3~. By the definition of (PathRel) we have 
ensured that  this does not occur. 

The second non-deterministic rule is used in the 
decomposition of regular languages. For decomposi- 
tion we have the following rules: 

(DecClash) {a./3~L} O ¢ {w e L llwl > 1} = g _L 

(LangDecn) {a.fl ~ L) U ¢ P.S C L 
{o~P}  U {/3~S} U¢ 

where P, S, L C F + and A is a finite set of 
reg. languages with L, P, S 6 A. L must 
contain a word w with [w[ > 1. 

The clash rule is needed since we require regular lan- 
guages not to contain the empty path. The remain- 
ing rules are listed in Figure 1. 

We use A in (LangDecA) as a global restriction, 
i.e. for every A we get an different rule (LangDecA) 
(and hence a different rule system 7~A). This is done 
because the rule system is quasi-terminating. By 
restricting (LangDeca) we can guarantee that  only 
finitely many regular languages are produced. 
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For (LangDec^) to be globally preserving we need 
to find a suitable pair P, S in A for every possible 
valuation of (~ and ]3. Therefore, we require A to 
satisfy 

VL E A, Vwl, w2 ~ e : [WlW 2 E L =:~ 
BP, S e A : (P.S C_ L A Wl E P A w 2  e S)]. 

We will call A closed under decomposition if it sat- 
isfies this condition. Additionally we have to ensure 
that  L E A for every L that  is contained in some 
clause ¢. We will call such a set A C-closed. Surely, 
we will not find a finite A that  is closed under de- 
composition and C-closed for arbitrary ¢. But the 
next lemma states some weaker condition that suf- 
fices. We say that  7 is a (¢,TiA)-derivative if 7 is 
derivable from C by using only rules from 7~h. If R ^  
is clear from the context, we will just say that  7 is a 
C-derivative. 

L e m m a  4.2 

1. If A is C-closed and closed under intersection, 
then A is 7-closed for all (C, T~h)-derivaLives 7. 

2. For every prime clause C there is a finite A such 
that A is C-closed and closed under intersection 
and decomposition. 

The proof of this lemma (containing the construc- 
tion of the set A) can be found in the appendix. 

4.2 C o m p l e t e n e s s  a n d  Q u a s i - T e r m i n a t i o n  

The rule system serves for an algorithm to transform 
a prime clause into an equivalent set of pre-solved 
clauses. The rules are applied in arbitrary order un- 
til a pre-solved clause has been derived. If one of the 
non-deterministic rules is applied, a clause is sub- 
stituted by a whole set of clauses, one for each of 
the don't  know alternatives. Since the rule system 
is quasi-terminating, we may encounter cycles dur- 
ing the application of the rules. In this case we skip 
the corresponding alternative, since every pre-solved 
clause that can be produced via a cyclic derivation 
can also be produced via a derivation that  does not 
contain a cycle. 

T h e o r e m  4.3 Let ¢ be a prime clause. If  A is C- 
closed, closed under intersection and decomposition, 
then [[C] z = U.y~ [[7] z for every interpretation Z, 
where ¢b is the set of pre-solved (C, T~^)-derivatives. 
The set (9 is finite and effectively computable. 

To prove this theorem we have to show that the 
rule system is sound and complete. Sound means, 
that  we do not add new solutions during the pro- 
cessing, whereas complete means that  we find all so- 
lutions in the set of pre-solved derivatives. 

For the completeness it normally suffices to show 
that  (1) every rule preserves (or globally preserves) 
the initial solutions and (2) the pre-solved clauses 
are exactly the T~h-irreducible clause (i.e. if a clause 
is not pre-solved, then one rule applies). But in our 
case this is not sufficient as the rule system is quasi- 
terminating. A prime clause ¢ may have a solution 
Vx which is a solution of all (C, T~A)-derivatives in 

some cyclic derivation, but can not be found in any 
pre-solved (¢, T~h)-derivative. We have to show that  
this cannot happen. Since this part  of the proof is 
unusual, we will explain the main idea (see the ap- 
pendix for a more detailed outline of the proofs). 

Let ¢ be some (consistent) prime clause and let 
Vx E ~¢]z for some Z. Then there exists a path val- 
uation Vp such that  (Vx, V~) ~ z  ¢. We will find a 
pre-solved C-derivative that  has Vx as a solution by 
imposing an additional control that  depends on V~,. 
This control will guarantee (1) finiteness of deriva- 
tions, (2) that  each derivation ends with a pre-solved 
clause, (3) the initial solution is a solution of every 
clause that  is derivable under this control. Since the 
(Pre) rule does not preserve the initial path valua- 
tion V~, (recall that  the variable fl is substituted by 
the term a.~),  we have to change the path valuation 
V~, every time (Pre) is applied. It  is important  to no- 
tice that this control is only used for proof purposes 
and not part  of the algorithm. For the algorithm it 
suffices to encounter all pre-solved e-derivatives. 

To understand this control, we will compare 
derivations in our syntax to derivations in standard 
feature logic. Recall that  we have a two-level inter- 
pretation. A constraint xay is valid under Vx and 
V~ if xV~(c~)y is valid under Vx. Hence, for each 
clause ¢ and each valuation Vx, Vp with C valid un- 
der Vx and Vp there is a clause Cv~ in standard 
feature logic syntax (not containing functional un- 
certainty) such that  ¢v~ is valid under Vx. E.g. for 
the clause {xax, a~ f ,  xflz, fl~f*g} and a path val- 
uation V~, with VT,(a) = f and V~,(j3) = g the clause 
Cv~, is {xfx ,  xgy}. The control we have mentioned 
requires (by and large) that  only those rewrite rules 
will be applied, that  are compatible to the clause 
Cv~ and thus preserve Vx. If one of the rules (Eq) 
or (Pre) is applied, we also have to rewrite Cv~. Tak- 
ing the above example, we are only allowed to add 
a l i  fl to C (using (PathRel)), since ev~ is already in 
pre-solved form. 

Now let's vary the example and let Vp be a path 
valuation with V~,(a) = f and V~,(f~) = H g .  Then 
we have to add a ~ /3 in the first step, since this 
relation holds between a and ft. The next step is 
to apply (Pre) on a :~ /3. Here we have to rewrite 
both ¢ and Cv~. Hence, the new clauses ¢1 and evv 
are {xax, a~ f ,  x/3z, a./3~ f*g} and {x f x, x fgy}  
respectively. Note that  the constraint x f f g y  has 
been reduced to x fg y by the application of (Pre). 
Since infinite derivations must infinitely often use 
(Pre), this control guarantees that  we find a pre- 
solved clause that  has Vx as a solution. 

5 T h e  S e c o n d  P h a s e  

In the second phase we have to check consistency 
of pre-solved clauses. As we have mentioned, a pre- 
solved clause is consistent if we find some appropri- 
ate path valuation. This means that  we have to 
check the consistency of divergence constraints of 
the form a l  fi a2 together with path restrictions 
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a l  ~ L1 and a2 ~ L2. A constraint a l  ti a2 is 
va|id under some valuation V~, if there are (possi- 
bly empty)  words w, wl, w2 and fea tu res ' f  ~ g such 
that  V~,(al) = WfWl and V~,(c~2) = wgw2. This def- 
inition could directly be used for a rewrite rule that  
solves a single divergence constraint, which gives us 

{a l  fi ct2} U ¢  f # g ,  ~,~1 2new 

where ¢ '  = ¢ [ a l  ~--/?.a~,a2 ~ /3 .a~] .  By the ap- 
plication of  this rule we will get constraints of  the 
form j3.a~ ~ L1 and fl.a~ ~ L2. Decomposing these 
restriction constraints and joining the correspond- 
ing path restrictions for ~ and ~ , ~  will result in 

{fl~ (Pl n P 2 ) ,  ~i  ~ ( S ~ : * n s , ) ,  , ~  (g~'*MS2)} 
with PI.S~ C L~ and P2.S2 C_ L~, which completes 
the consistency check. 

Additionally, one has to consider the effects of  in- 
troducing the path terms/~.a~. The main part  of  this 
task is to resolve constraints of the form fl.tr~ li tr. 
There are two possibilities: Either a has also f~ as 
an prefix, in which case we have to add fl ~ a;  or 
fl is not a prefix of  c~, which means that  we have to 
add c~ fl ft. After doing this, the introduced prefix 
constraints have to be evaluated using (Pre). (In the 
appendix we present a solution which is more appro- 
priate for proofing termination).  

6 K a p l a n  a n d  M a x w e l l ' s  M e t h o d  

We are now able to compare our method with the 
one used by Kaplan and Maxwell. In our method,  
the non-deterministic addition of  path relation and 
the evaluation of these relations are done at different 
times. The evaluation of  the introduced constraints 
c~ - fl and o~ :¢ fl are done after (PathRel)  in the first 
phase of the algorithm, whereas the evaluation of the 
divergence constraints is done in a separate second 
phase. 

In Kaplan and Maxwell's algorithm all these 
steps are combined into one single rule. Roughly, 
they substitute a clause {xL~y, xL2z, } O ¢ non- 
deterministicly by one of  the following clauses: ~ 

{ x(L~f3L~)y, x - y } U ¢  
{ x(L~f3P)y, y S z  } U ¢  P.SC_L~ 
{ x (L~NP)z ,  z S y  } U ¢  P.S C L1 
{ x(P1NP2)u, u( f .S1)y ,  u(g.S2)z } U ¢  with 

PI'f'S~ C_ L~, P2"g'S~ C_ L~, f # g, u new 

Recall tha t  {XLly, xL2z} is expressed in our syntax 
by the clause 3' = {xay, o~ ~ L1, x~z, j~ ~ L2}, which 
is the example we have used on page 2. The first 
three cases correspond exactly to the result of the 

2This is not the way their algorithm was originally 
described in [5] as they use a slightly different syntax. 
Furthermore, they don't use non-deterministic rules, but 
use a single rule that produces a disjunction. However, 
the way we describe their method seems to be more ap- 
propriate in comparing both approaches. 

derivations that  have been described for 72, 73 and 
3'4. By and large, the last case is achieved if we first 
add c~ [I ~ to 3' and then turn over to the second 
phase as described in the last section. 

The problem with Kaplan/Maxwell ' s  algorithm is 
that  one has to introduce a new variable u in the last 
case, since there is no other possibility to express di- 
vergence. If  their rule system is applied to a cyc!ic 
description, it will not terminate as the last par t  in- 
troduces new variables. Hence it cannot  be  used for 
an algorithm in case of  cyclic descriptions. 

The delaying of  the evaluation of  divergence con- 
straint may  not only be useful when applied to 
cyclic feature descriptions. As Kaplan and Maxwell 
pointed out,  it is in general useful to postpone the 
consistency check for functional uncertainty. With 
the algorithm we have described it is also possible 
to delay single parts  of  the evaluation of  constraints 
containing functional uncertainty. 

A p p e n d i x  

P r o o f  o f  L e m m a  4.2.  The first claim is easy 
to prove. For the second claim let { L 1 , . . . , L n }  C 
P ( ~ + )  be the set of  regular languages used in ¢ and 
let .Ai = (Q.4~, i.4~, cr a~, Fin.4~) be finite, determinis- 
tic au tomatons  such that  .A i recognizes Li. For each 
.Ai we define dec(.Ai) to be the set 

dee(A/) = {L~ ]p,q E QJt,}, 

whereL~ = {w E 2 "+ I a~ , (p ,w)  = q}. It  is easy 
to show that  dec(.Ai) is a set of  regular languages 
that  contains Li and is closed under decomposition. 
Hence, the set A0 = [.Jinx dec (Ai) contains each Li 
and is closed under decomposition. Let A = fi (A0) 
be the least set tha t  contains A0 and is closed under 
intersection. Then A is finite and e-closed, since it 
contains each Li. 

We will prove that  A is also closed under decompo- 
sition. Given some L E A and a word w = wlw2 E L, 
we have to find an appropriate decomposition P, S 
in A. Since each L in A can be written as a finite 

m L intersection L = Nk=l  i~ where Lik is in A0, we 
know that  w = wlw2 is in Li~ for 1..m. As A0 is 
closed under decomposition, there are languages Pi~ 
and Si~ for k = 1..m with wl E Pi~, w2 E Si~ and 
Pik'Sik C Li~. Let P = M~n=l Pik and S = s,~. 
Clearly, wl 6 P ,  w2 6 S and P.S C L. Furthermore, 
P, S 6 A as A is closed under intersection. This im- 
plies that  P, S is an appropriate decomposition for 
W l  W 2  . I"1 

A.1 Phase I: Soundness,  Completeness  and 
Quasi-Termination 

P r o p o s i t i o n  A.1  The rule (PathRel)  is X U 12- 
sound and globally X U 12-preserving. I f  A is closed 
under decomposition, then (LangDec^) is X U 12- 
sound and globally X U IJ-preserving. The (Pre) rule 
is X-sound and X-preserving. All other rules are 
X U 13-sound and X U 13-preserving. 
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Next we will prove some syntactic properties of the 
clauses derivable by the rule system. For the rest of 
the paper we will call clauses that are derivable from 
prime clauses admissible. 

P r o p o s i t i o n  A.2 Every admissible clause is basic. 
I r a  -~ 13, o~ -- [3 or c~ (I 13 is contained in some 
admissible clause ¢, then there is a variable z such 
that zc~y and z f lz  is in ¢. 

Note that (by this proposition) (Pre) (resp. (Eq)) 
can always be applied if a constraint c~ 4 [3 (resp. 

- / 3 )  is contained in some admissible clause. The 
next lemma will show that different applications of 
(Pre) or (Eq) will not interact. This means the 
application of one of these rule to some prefix or 
path equality constraint will not change any other 
prefix or path equality constraint contained in the 
same clause. This is a direct consequence of the way 
(PathP~el) was defined. 

L e m m a  A.3 Given two admissible clauses 7, 7' 
with 7 ---~r 7' and r different from (PathRel). Then 
c~ "- 13 E 7' (resp. ~ 4 13 E 7 I) implies ~ -- 13 E 7 
(resp. a :¢ [3 E 7). Furthermore, i f  a.13 is contained 
in 7', then either a.f l  or a -~ 13 is contained in 7. 

Note that this lemma implies that new path 
equality or prefix constraints are only introduced 
by (PathRel). We can derive from this lemma 
some syntactic properties of admissible clauses which 
are needed for proving completeness and quasi- 
termination. 

L e m m a  A.4 I f  ¢ is an admissible clause, then 

1. I f  c~ :< 13 is contained in ¢, then there is no other 
prefix or equality constraint in ¢ involving 13. 
Furthermore, neither 13.[3~ nor 13~.[3 is contained 
in ¢. 

e. ira.13 fi 13' is in ¢, then either 13' equals a or ¢ 
contains a constraint of form a f i  t3', a - 13' or 

:~ ~' .  

The first property will guarantee that concatena- 
tion does not occur in prefix or equality constraints 
and that the length of path concatenation is re- 
stricted to 2. The second property ensures that a 
constraint c~.13 fi 13' is always reducible. 

T h e o r e m  A.5 For every finite A the rule system 
7~a is quasi-terminating. 

Proof .  The rule system produces only finitely many 
different clauses since the rules introduce no addi- 
tional variables or sort symbols and the set of used 
languages is finite. Additionally, the length of con- 
catenation is restricted to 2. [] 

L e m m a  A.6 There are no infinite derivations using 
only finitely many instances of (Pre). 

Since the rule system is quasi-terminating, the 
completeness proof consists of two parts. In the first 
part we will proof that pre-solved clauses are just the 
irreducible clauses. In the second part we will show 

that one finds for each solution Vx of a prime clause 
¢ a pre-solved e-derivative 7 such that Vx is also a 
solution of 7. 

T h e o r e m  A.7 ( C o m p l e t e n e s s  I) Given an ad- 
missible clause ¢ ~ _1_ such that ¢ is not in pre-solved 
form.  I f  A is e-closed and closed under decomposi- 
tion, then ¢ is T~A-reducible. 

T h e o r e m  A.8 ( C o m p l e t e n e s s  I I )  For ev- 
ery prime clause ¢ and for  every A that is e-closed, 
closed under decomposition and intersection we have 

I¢] _c U b]  z 
7 E pre-solved (¢,R^) 

where pre-solved(¢,R^) is the set of pre-solved 
(¢, R A )-derivat ives. 

P r o o f  (Ske tch)  We have to show, that for each 
prime clause ¢ and each Vx,  V~ ,Z  with (Vx ,  V~) ~ z  
¢ there is a pre-solved (¢, T~A)-derivative 7 such that 
Vx E ~7] z.  We will do this by controlling deriva- 
tion using the valuation (Vx,  VT~). The control will 
guarantee finiteness of derivations and will maintain 
the first completeness property, namely that the ir- 
reducible clauses are exactly the pre-solved clauses. 

We allow only those instances of the non- 
deterministic rules (PathRel) and (LangDecA), 
which preserve exactly the valuation (Vx,  V~). That 
means if ( V x , V ~ )  ~ z  ¢ and ¢ --~r 7 for one of 
these rules, then (Va', V~) ~ z  7 must hold. Note 
that the control depends only on VT,. E.g. for the 
clause ¢ = {xc~y, a ~ L1, x13z, 13~ L2} and arbitray Z, 
Vx this means that if VT,(a) = f ,  V~,(13) = g and 
(Vx, VT,) ~ z  ¢, the rule (PathRel) can transform ¢ 
only into {a h 13} U ¢. 

If V~, satisfies V~, (tr) 7~ V~, (13) for ~ different from fl 
with zcry E ¢ and 213z E ¢, we cannot add any prefix 
constraint using this control. Hence, (Pre) cannot be 
applied, which implies (by lemma A.6) that in this 
case there is no infinite controlled derivation. We will 
call such path valuations prefix-free with respect to 
¢. 

If V~, is not prefix-free, then (Pre) will be applied 
during the derivations. In this case we have to change 
the path valuation, since (Pre) is not P-preserving. 
If (Vx ,  V~) ~ z  ¢ = {a k 13} U ¢ and we apply (Pre) 
on cr -~ fl yielding 7, then the valuation V¢ with 
v (13) = and = for # 

will satisfy (Vx, pz % We will use for 
controlling the further derivations. 

If we change the path valuation in this way, there 
will again be only finite derivations. To see this, 
note that every time (Pre) is applied and the path 
valuation is changed, the valuation of one variable is 
shortened by a non-empty path. As the number of 
variables used in clauses does not increase, this short- 
ening can only be done finitely many times. This 
implies, that (Pre) can only finitely often be applied 
under this control. Hence (by lemma A.6), there are 
again only finite controlled derivations. 1:3 
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A . 2  C o n s i s t e n c y  o f  P r e - S o l v e d  C l a u s e s  

We will first do a minor  redefinition of divergence. 
We say tha t  two paths  u, v are directly diverging 
(writ ten u u0 v) if there are features f ~ g such 
tha t  u E f / ' *  and v 6 g / '* .  Then u n v holds if 
there are a possible emp ty  prefix w and paths  u ' ,  v '  
such tha t  u = wu' and v = wC and u '  n0 v'. 

We will reformulate  the reduction of divergence 
constraints in order to avoid constraints of  form 
a.f l  fi fl '. Handling such constraints would make the 
terminat ion proof  somewhat  complicated.  For the 
reformulat ion we use a special proper ty  of pre-solved 
clauses, namely  tha t  a fi fl is in a pre-solved clause 
¢ iff z a y  and zflz is in ¢. Hence, if a fi /? and ~ fi df 
is in ¢, then a Ii df is also in ¢. This  implies, tha t  
we can write e p  as f i (At )  ~ . . . ~  f l ( A , )  t9 ¢, where 
fl (A) is a syntact ic  sugar for 

fi(A) = {a  f i a '  I a # a ' A a ,  a '  6 A}, 

A s , . . . , A n  are disjoint sets of  pa th  variables and 
¢ does not contain divergence constraints. Note 
tha t  for every Ai = { a l , . . . , a , }  there are vari- 
ables x, Y t , . . . , y n  such tha t  { x a t y t , . . . , x ~ , y , }  C_ 
¢. Now given such tha t  a constraint  fi (A), we as- 
sume tha t  a whole set of  pa th  variables A1 C A di- 
verges with the same prefix ft. T h a t  means we can 
replace f l (At )  C fl(A) by 

As = fl.A',O fi0(A~), 

where fl is new, A~ = { a ~ , . . . ,  a~} is a disjoint copy 
of A1 = {o r1 , . . . , an}  and A - fi.A~ is an abbre- 
viation for the clause {a l  - f l ' a ~ , . . . ,  c~, - fl .a~}. 
fl 0(A) is defined similar to fl (A). Assuming addi- 
t ionally tha t  the common prefix fl is max imal  implies 
tha t  fl fl a holds for a E ( A - A 1 ) .  If we also consider 
the effects of A1 = fl'A'l on the subterm agreements 
in ¢ tha t  involves variables of At,  then we result in 
the following rule: 

.A ,  YxU fi(A) u 
(Red1) {xflz} U zA'IY1 U fi0(A~) U Ii({fl}UA2) U ¢ '  

where ¢ '  = ¢ [ a l  ~-- f l ' a ~ , . . . ,  a ,  ~ f l . a ' ] ,  
A I ~ A 2  = A ,  IAll > 1 and z, fl new. A~ is 
a disjoint copy of A1. xAtY1 is short  for 
{ z a l m , . . . , z a , y , } .  ¢ m a y  not contain 
constraints of  form 6.6 ~ L in ¢. 

Note tha t  we have avoided constraints of the form 
a-fl  fi f i t  The  rules 

(Reds) fl (A) U %b 
fi0(A) U ¢  

u ¢  
(so,v) o f~#f~, for a#~' 

together with the rules (LangDech),  (Join) and 
(Empty)  completes the rule system 7 ~  °iv. (Reds) 
is needed as pa th  variables always denote non-empty  

paths.  We will view (Redz) and (Red2) as one single 
rule (Reduce). 

A clause ~ is said to be solved if (1) a.fl ~ L and 
ot~0 is not in e p ;  (2) a~L1 in e p  and a~L~ in e p  
implies Lz = L2; (3) ¢ does not contain constraints 
of  form a f l  fl, a Ii0 fl, oL :< fl, or a -" fl; and (4) for 
every {xay, z/~z} _C ~ with a ¢ / ?  there are features 
f # g  with { a ~ f L s , f l ~ g L 2 }  _C ¢. It  is easy to 
see tha t  every solved clause is consistent. Note tha t  
every solved clause is also prime. 
L e m m a  A.9  The rules (Reduce) = (Redt)  + 
(Reds) and (Solv) are X-sound and globally X -  
preserving. Furthermore, 7~ s°lv is terminating. 

L e m m a  A . 1 0  Let ¢ be a pre-soived clause. I f  A is 
e-closed, closed under intersection and decomposi- 
tion, then a (¢, TiS°lv)-derivative different from 1 is 
irreducible if  and only if  it is solved. 
Finally we can combine bo th  phases of  the algori thm. 

T h e o r e m  A.11  Consistency of prime clauses is de- 
cidable. 
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