
Three  Generative,  Lexicalised Mode l s  for Statistical Parsing 

M i c h a e l  Collins* 
Dept .  of C o m p u t e r  a n d  I n f o r m a t i o n  Science 

Un ive r s i t y  of  P e n n s y l v a n i a  

P h i l a d e l p h i a ,  PA,  19104, U.S.A.  

mcollins~gradient, cis. upenn, edu 

A b s t r a c t  

In this paper we first propose a new sta- 
tistical parsing model, which is a genera- 
tive model of lexicalised context-free gram- 
mar. We then extend the model to in- 
clude a probabilistic treatment of both sub- 
categorisation and wh-movement. Results 
on Wall Street Journal text show that the 
parser performs at 88.1/87.5% constituent 
precision/recall, an average improvement 
of 2.3% over (Collins 96). 

1 Introduction 
Generative models of syntax have been central in 
linguistics since they were introduced in (Chom- 
sky 57). Each sentence-tree pair (S,T) in a lan- 
guage has an associated top-down derivation con- 
sisting of a sequence of rule applications of a gram- 
mar. These models can be extended to be statisti- 
cal by defining probability distributions at points of 
non-determinism in the derivations, thereby assign- 
ing a probability 7)(S, T) to each (S, T) pair. Proba- 
bilistic context free grammar (Booth and Thompson 
73) was an early example of a statistical grammar. 
A PCFG can be lexicalised by associating a head- 
word with each non-terminal in a parse tree; thus 
far, (Magerman 95; Jelinek et al. 94) and (Collins 
96), which both make heavy use of lexical informa- 
tion, have reported the best statistical parsing per- 
formance on Wall Street Journal text. Neither of 
these models is generative, instead they both esti- 
mate 7)(T] S) directly. 

This paper proposes three new parsing models. 
M o d e l  1 is essentially a generative version of the 
model described in (Collins 96). In M o d e l  2, we 
extend the parser to make the complement/adjunct 
distinction by adding probabilities over subcategori- 
sation frames for head-words. In M o d e l  3 we give 
a probabilistic treatment of wh-movement, which 
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is derived from the analysis given in Generalized 
Phrase Structure Grammar (Gazdar et al. 95). The 
work makes two advances over previous models: 
First, Model 1 performs significantly better than 
(Collins 96), and Models 2 and 3 give further im- 
provements - -  our final results are 88.1/87.5% con- 
stituent precision/recall, an average improvement 
of 2.3% over (Collins 96). Second, the parsers 
in (Collins 96) and (Magerman 95; Jelinek et al. 
94) produce trees without information about wh- 
movement or subcategorisation. Most NLP applica- 
tions will need this information to extract predicate- 
argument structure from parse trees. 

In the remainder of this paper we describe the 3 
models in section 2, discuss practical issues in sec- 
tion 3, give results in section 4, and give conclusions 
in section 5. 

2 T h e  T h r e e  P a r s i n g  M o d e l s  

2.1 M o d e l  1 

In general, a statistical parsing model defines the 
conditional probability, 7)(T] S), for each candidate 
parse tree T for a sentence S. The parser itself is 
an algorithm which searches for the tree, Tb~st, that 
maximises 7~(T I S). A generative model uses the 
observation that maximising 7V(T, S) is equivalent 
to maximising 7~(T ] S): 1 

Tbe,t = argm~xT~(TlS) = argmTax ?~(T,S) 
~(s) 

= arg m~x 7~(T, S) (1) 

7~(T, S) is then estimated by attaching probabilities 
to a top-down derivation of the tree. In a PCFG, 
for a tree derived by n applications of context-free 
re-write rules LHSi  ~ RHSi,  1 < i < n, 

7~(T,S) = H 7)(RHSi I LHSi )  (2) 
i= l . . n  

The re-write rules are either internal to the tree, 
where L H S  is a non-terminal and R H S  is a string 

7~(T,S) 17~(S) is constant, hence maximising ~ is equiv- 
alent to maximising "P(T, S). 
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TOP 
i 

S(bought) 

N P ( w ~ o u g h t  ) 

t V B / ~ N p  m JJ NN NNP 
I I I ooks) 

Las t  week Marks I 1 
bought NNP 

f 
Brooks 

TOP -> S(bought) 
S(bought) -> NP(week) 
NP(week) -> JJ(Last) 
NP (Marks) -> NNP (Marks) 
VP (bought) -> VB (bought) 
NP (Brooks) -> NNP (Brooks) 

NP(Marks) VP(bought) 
NN(week) 

NP(Brooks) 

Figure 1: A lexicalised parse tree, and a list of the rules it contains. For brevity we omit the POS tag 
associated with each word. 

of one or more non-terminals; or lexical, where L H S  
is a par t  of speech tag and R H S  is a word. 

A P C F G  can be lexicalised 2 by associating a word 
w and a part-of-speech (POS) tag t with each non- 
terminal X in the tree. Thus we write a non- 
terminal as X(x) ,  where x = (w,t), and X is a 
const i tuent  label. Each rule now has the form3: 

P(h) -> Ln(In). . .ni( l l)H(h)Rl(rl) . . .Rm(rm) (3) 

H is the head-child of the phrase, which inherits 
the head-word h from its parent P. L1...L~ and 
R1...Rm are left and right modifiers of H.  Either 
n or m may be zero, and n = m = 0 for unary 
rules. Figure 1 shows a tree which will be used as 
an example throughout  this paper. 

The addit ion of lexical heads leads to an enormous 
number  of potential rules, making direct estimation 
of ?)(RHS { LHS)  infeasible because of sparse da ta  
problems. We decompose the generation of the RHS 
of a rule such as (3), given the LHS, into three steps 
- -  first generat ing the head, then making the inde- 
pendence assumptions that  the left and right mod- 
ifiers are generated by separate 0th-order markov 
processes 4: 

1. Generate  the head constituent label of the 
phrase, with probability 7)H(H I P, h). 

2. Generate  modifiers to the right of the head 
with probabili ty 1-Ii=1..m+1 ~n(Ri(ri)  { P, h, H). 
R,~+l(r ,~+l)  is defined as S T O P  - -  the S T O P  
symbol is added to the vocabulary of non- 
terminals, and the model stops generating right 
modifiers when it is generated. 

2We find lexical heads in Penn treebank data using 
rules which are similar to those used by (Magerman 95; 
Jelinek et al. 94). 

SWith the exception of the top rule in the tree, which 
has the form TOP --+ H(h). 

4An exception is the first rule in the tree, T0P -+ 
H (h), which has probability Prop (H, hlTOP ) 

3. Generate modifiers to the left of the head with 
probability rL=l..n+ l ?) L ( L~( li ) l P, h, H), where 
Ln+l (ln+l) = STOP.  

For example, the probability of the rule S (bough t )  
-> NP(week) NP(Marks) Y P ( b o u g h t ) w o u l d  be es- 
t imated as 

7~h(YP I S,bought) x ~l(NP(Marks) I S,YP,bought) x 

7~,(NP(week) { S,VP,bought) x 7~z(STOP I S,VP,bought) x 

~r(STOP I S, VP, bought) 

We have made the 0 th order markov assumptions 

7~,(Li(li) { H, P, h, L1 (ll)...Li-1 (/i-1)) = 

P~(Li(li) { H ,P ,h )  (4) 

Pr  (Ri (ri) { H, P, h, R1 (rl).. .R~- 1 ( r i -  1 )) = 

?~r(Ri(ri) { H, P, h) (5) 

but  in general the probabilities could be conditioned 
on any of the preceding modifiers. In fact, if the 
derivation order is fixed to be depth-first - -  that  
is, each modifier recursively generates the sub-tree 
below it before the next modifier is generated - -  
then the model can also condition on any structure 
below the preceding modifiers. For the moment  we 
exploit this by making the approximations 

7~l( Li(li ) { H, P, h, Ll ( ll )...Li_l (l~_l ) ) = 
?)l(ni(li) l H, P,h, distancez(i - 1)) (6) 

?)r( ai(ri) ] H, P, h, R1 (rl) . . .Ri-1 (ri- l  ) ) = 
?~T(Ri(ri) [ H,P .h ,  distancer(i - 1)) (7) 

where distancez and distancer are functions of the 
surface string from the head word to the edge of the 
constituent (see figure 2). The distance measure is 
the same as in (Collins 96), a vector with the fol- 
lowing 3 elements: (1) is the string of zero length? 
(Allowing the model to learn a preference for right- 
branching structures); (2) does the string contain a 
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verb? (Allowing the model to learn a preference for 
modification of the most recent verb). (3) Does the 
string contain 0, 1, 2 or > 2 commas? (where a 
comma is anything tagged as "," or ":"). 

P(h)  

d i s t a n c e  -I 

Figure 2: The next child, Ra(r3), is generated with 
probability 7~(R3(r3) [ P,H, h, distancer(2)). The 
distance is a function of the surface string from the 
word after h to the last word of R2, inclusive. In 
principle the model could condition on any struc- 
ture dominated by H, R1 or R2. 

2.2 M o d e l  2: T h e  c o m p l e m e n t / a d j u n c t  
dist inct ion and  s u b c a t e g o r i s a t i o n  

The tree in figure 1 is an example of the importance 
of the complement/adjunct distinction. It would be 
useful to identify "Marks" as a subject, and "Last 
week" as an adjunct (temporal modifier), but this 
distinction is not made in the tree, as both NPs are 
in the same position 5 (sisters to a VP under an S 
node). From here on we will identify complements 
by attaching a "-C" suffix to non-terminals - -  fig- 
ure 3 gives an example tree. 

TOP 
1 S(bought) 

N P ( w ~ o u g h t )  
Last week Marks 

VBD NP-C(Brooks) 
I l bought Brooks 

Figure 3: A tree with the "-C" suffix used to identify 
complements. "Marks" and "Brooks" are in subject 
and object position respectively. "Last week" is an 
adjunct. 

A post-processing stage could add this detail to 
the parser output, but we give two reasons for mak- 
ing the distinction while parsing: First, identifying 
complements is complex enough to warrant a prob- 
abilistic treatment.  Lexical information is needed 

5Except "Marks" is closer to the VP, but note that 
"Marks" is also the subject in "Marks last week bought 
Brooks". 

- -  for example, knowledge that  "week '' is likely to 
be a temporal modifier. Knowledge about subcat- 
egorisation preferences - -  for example that  a verb 
takes exactly one subject - -  is also required. These 
problems are not restricted to NPs, compare "The 
spokeswoman said (SBAR that the asbestos was 
dangerous)" vs. "Bonds beat short-term invest- 
ments (SBAR because the market is down)", where 
an SBAR headed by "that" is a complement, but an 
SBAI:t headed by "because" is an adjunct. 

The second reason for making the comple- 
ment/adjunct  distinction while parsing is that  it 
may help parsing accuracy. The assumption that  
complements are generated independently of each 
other often leads to incorrect parses - -  see figure 4 
for further explanation. 

2.2.1 I d e n t i f y i n g  C o m p l e m e n t s  a n d  
A d j u n c t s  in the  P e n n  T r e e b a n k  

We add the "-C" suffix to all non-terminals in 
training data which satisfy the following conditions: 

1. The non-terminal must be: (1) an NP, SBAR, 
or S whose parent is an S; (2) an NP, SBAR, S, 
or VP whose parent is a VP; or (3) an S whose 
parent is an SBAR. 

2. The non-terminal must not have one of the fol- 
lowing semantic tags: ADV, VOC, BNF, DIR, 
EXT, LOC, MNR, TMP, CLR or PRP. See 
(Marcus et al. 94) for an explanation of what 
these tags signify. For example, the NP "Last 
week" in figure 1 would have the TMP (tempo- 
ral) tag; and the SBAR in "(SBAR because the 
market is down)", would have the ADV (adver- 
bial) tag. 

In addition, the first child following the head of a 
prepositional phrase is marked as a complement. 

2.2.2 P r o b a b i l i t i e s  over  S u b c a t e g o r i s a t i o n  
F r a m e s  

The model could be retrained on training data 
with the enhanced set of non-terminals, and it 
might learn the lexical properties which distinguish 
complements and adjuncts ("Marks" vs "week", or 
"that" vs. "because"). However, it would still suffer 
from the bad independence assumptions illustrated 
in figure 4. To solve these kinds of problems, the gen- 
erative process is extended to include a probabilistic 
choice of left and right subcategorisation frames: 

1. Choose a head H with probability ~H(H[P, h). 

2. Choose left and right subcat frames, LC and 
RC, with probabilities 7)~c(LC [ P, H, h) and 
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I. (a) Incorrect S (b) Correct S 

NP-C VP 
NP-C NP-C VP 

I I ~ f ~ .  was ADJP 
NP NP Dreyfus the best fund was ADJP [ 

I I I l o w  
low Dreyfus the best fund 

2. (a) Incorrect S (b) Correct S 

NP-C VP 
NP-C VP l 

I ~ The issue / ~ 
The issue was NP-C 

w -C NP VP 

a bill a bill 
funding NP-C funding NP-C 

I I 
Congress Congress  

Figure 4: Two examples where the assumption that modifiers are generated independently of each 
other leads to errors. In (1) the probability of generating both "Dreyfus" and "fund" as sub- 
jects, 7~(NP-C(Dreyfus) I S,VP,was) * T'(NP-C(fund) I S,VP,was) is unreasonably high. (2) is similar: 
7 ~ (NP-C (bill), VP-C (funding) I VP, VB, was) = P(NP-C (bill) I VP, VB, was) * 7~(VP-C (funding) I VP, VB, was) 
is a bad independence assumption. 

Prc (RCIP ,  H,h ). Each subcat frame is a 
multiset 6 specifying the complements which the 
head requires in its left or right modifiers. 

3. Generate the left and right modifiers with prob- 
abilities 7)l(Li, li I H, P, h, distancet(i - 1), LC) 
and 7~r (R~, ri I H, P, h, distancer(i - 1), RC) re- 
spectively. Thus the subcat requirements are 
added to the conditioning context. As comple- 
ments are generated they are removed from the 
appropriate subcat multiset. Most importantly, 
the probability of generating the STOP symbol 
will be 0 when the subcat frame is non-empty, 
and the probability of generating a complement 
will be 0 when it is not in the subcat frame; 
thus all and only the required complements will 
be generated. 

The probability of the phrase S ( b o u g h t ) - >  
NP(week) NP-C(Marks) VP(bought)is  now: 

7)h(VPIS,bought) x 

 to({NP-C} I S,VP,bought) x t S,VP,bought) × 
7~/(NP-C(Marks) IS ,VP,bought, {NP-C}) x 

7:~I(NP(week) I S ,VP ,bought, {}) x 

7)l(STOe I S ,ve ,bought, {}) × 

Pr(STOP I S, VP,bought, {}) 

Here the head initially decides to take a sin- 
gle NP-C (subject) to its left, and no complements 

~A rnultiset, or bag, is a set which may contain du- 
plicate non-terminal labels. 

to its right. NP-C(Marks) is immediately gener- 
ated as the required subject, and NP-C is removed 
from LC, leaving it empty when the next modi- 
fier, NP(week) is generated. The incorrect struc- 
tures in figure 4 should now have low probabil- 
ity because ~Ic({NP-C,NP-C} [ S,VP,bought) and 
"Prc({NP-C,VP-C} I VP,VB,was) are small. 

2.3 M o d e l  3: Traces  and  W h - M o v e m e n t  

Another obstacle to extracting predicate-argument 
structure from parse trees is wh-movement. This 
section describes a probabilistic treatment of extrac- 
tion from relative clauses. Noun phrases are most of- 
ten extracted from subject position, object position, 
or from within PPs: 

E x a m p l e  1 The store (SBAR which TRACE 
bought Brooks Brothers) 

E x a m p l e  2 The store (SBAR which Marks bought 
TRACE) 

E x a m p l e  3 The store (SBAR which Marks bought 
Brooks Brothers/tom TRACE) 

It might be possible to write rule-based patterns 
which identify traces in a parse tree. However, we 
argue again that this task is best integrated into 
the parser: the task is complex enough to warrant 
a probabilistic treatment, and integration may help 
parsing accuracy. A couple of complexities are that 
modification by an SBAR does not always involve 
extraction (e.g., "the fact (SBAR that besoboru is 
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NP(store) 

NP(s to re )  SBAR(that)(+gap) 

The store 

WHNP(that) 

WDT 
I 

that 

(i) NP -> NP 
(2) SBAR(+gap) -> WHNP 
(3) S(+gap) -> NP-C 
(4) VP(+gap) -> VB 

S(bought )(-}-gap) 

N P - C ( ~ h t )  (--{-gap) 

I B ~ w  
Marks 

V eek) 
I I bought last week 

SBAR(+gap) 
S-C(+gap) 
VP(+gap) 
TRACE NP 

Figure 5: A +gap feature can be added to non-terminals to describe NP extraction. The top-level NP 
initially generates an SBAR modifier, but specifies that  it must contain an NP trace by adding the +gap 
feature. The gap is then passed down through the tree, until it is discharged as a TRACE complement to 
the right of bought. 

played with a ball and a bat)"),  and it is not un- 
common for extraction to occur through several con- 
stituents, (e.g., "The changes (SBAR that  he said 
the government was prepared to make TRACE)").  

The second reason for an integrated treatment 
of traces is to improve the parameterisation of the 
model. In particular, the subcategorisation proba- 
bilities are smeared by extraction. In examples 1, 2 
and 3 above 'bought '  is a transitive verb, but with- 
out knowledge of traces example 2 in training data 
will contribute to the probability of 'bought '  being 
an intransitive verb. 

Formalisms similar to GPSG (Gazdar et al. 95) 
handle NP extraction by adding a gap feature to 
each non-terminal in the tree, and propagating gaps 
through the tree until they are finally discharged as a 
trace complement (see figure 5). In extraction cases 
the Penn treebank annotation co-indexes a TRACE 
with the WHNP head of the SBAR, so it is straight- 
forward to add this information to trees in training 
data. 

Given that  the LHS of the rule has a gap, there 
are 3 ways that the gap can be passed down to the 

RHS: 

H e a d  The gap is passed to the head of the phrase, 
as in rule (3) in figure 5. 

Lef t ,  R i g h t  The gap is passed on recursively to one 
of the left or right modifiers of the head, or is 
discharged as a trace argument to the left/right 
of the head. In rule (2) it is passed on to a right 
modifier, the S complement. In rule (4) a trace 
is generated to the right of the head VB. 

We specify a parameter 7~c(GIP, h, H) where G 
is either H e a d ,  Lef t  or Righ t .  The generative pro- 
cess is extended to choose between these cases after 
generating the head of the phrase. The rest of the 
phrase is then generated in different ways depend- 
ing on how the gap is propagated: In the H e a d  
case the left and right modifiers are generated as 
normal. In the Lef t ,  R i g h t  cases a gap require- 
ment is added to either the left or right SUBCAT 
variable. This requirement is fulfilled (and removed 
from the subcat list) when a trace or a modifier 
non-terminal which has the +gap feature is gener- 
ated. For example, Rule (2), SBAR(that) (+gap) -> 
WHNP(that) S-C(bought)  (+gap), has probability 

~h (WHNP I SBAR, that) × 7~G (Right I SBAR, WHNP, that) x 

T~LC({} I SBAR,WHNP,that) x 

T'Rc({S-C} [ SBAR,WHNP, that) x 
7~R (S-C (bought) (+gap) [ SBAR, WHNP, that, {S-C, +gap}) x 
7~R(STOP I SBAR,WHNP,that, {}) x 
PC (STOP I SBAR, WHNP, that, { }) 

Rule (4), VP(bought) (+gap) -> VB(bought) 
TRACE NP (week), has probability 

7~h(VB I VP,bought) x PG(Right I VP,bought,VB) x 
PLC({} I VP,bought,VB) x ~PRc({NP-C} I vP,bought,VB) x 
7~R(TRACE I VP,bought,VB, {NP-C, +gap}) x 
PR(NP(week) I VP,bought ,VB, {}) × 
7)L(STOP I VP,bought,VB, {}) x 
7~R (STOP I VP ,bought ,VB, {}) 

In rule (2) Right is chosen, so the +gap requirement 
is added to RC. Generation of S - C ( b o u g h t ) ( + g a p )  

20 



(a) H(+)  =~ P(-) 

• H(+) 

Prob = X  Pr£b = X'X~H(HIP, . . .  ) 

(b) P(-) + Ri(+) =~ 

H R1 
Prob -= X Prob = Y 

Figure 6: The  life of a constituent in the chart. 

(c) P(-) =~ P(+)  

Prob = X Prob = X X'PL(STOP I .... ) 
xPR(STOP I .... ) 

P(-) 

• . H R1 Ri 
Prob = X x Y x ~R(Ri(ri) I P,H,...) 

(+) means a constituent is complete (i.e. it includes the 
stop probabilities), ( - )  means a constituent is incomplete. (a) a new constituent is started by projecting a 
complete rule upwards; (b) the constituent then takes left and right modifiers (or none if it is unary).  (c) 
finally, S T O P  probabilities are added to complete the constituent. 

Back-off "PH(H I"-) Pa(G I ...) PL~(Li(It,) I..-) 
Level PLc(LC t ...) Pm(Ri(rt i )  I...) 

7)Rc(RC I ...) 
1 P, w, t P, H, w, t P, H, w, t, A, LC 
2 P, t P, H, t P, H, t, A, LC 
3 P P, H P, H, &, LC 
4 - -  

PL2(lwi l ...) 
PR2(rwi I ...) 

Li, Iti, P, H, w, t, A, LC 
L,, lti, P, H, t, A, LC 

LI, lti 
It~ 

Table 1: The  conditioning variables for each level of back-off. For example, T'H estimation interpolates 
el = ~°H(H I P, w, t), e2 = 7~H(H I P, t), and e3 = P H ( H  I P).  A is the distance measure. 

:ulfills bo th  the S-C and +gap requirements in RC.  
In rule (4) R igh t  is chosen again. Note that  gen- 
eration of trace satisfies both  the NP-C and +gap 
subcat  requirements. 

3 P r a c t i c a l  I s s u e s  

3.1 S m o o t h i n g  a n d  U n k n o w n  W o r d s  

Table 1 shows the various levels of back-off for each 
type of parameter  in the model. Note that  we de- 
compose "PL(Li(lwi,lti) I P, H , w , t , ~ , L C )  (where 
lwi and Iti are the word and POS tag generated 
with non-terminal  Li, A is the distance measure) 
into the product  79L1(Li(lti) I P, H ,w , t ,  Zx,LC) x 

7~ L2(lwi ILi,  lti, 19, H, w, t, A, LC), and then smooth 
these two probabilities separately (Jason Eisner, 
p.c.). In each case 7 the final estimate is 

e----Ale1 + (1 - &l)(A2e2 + (1 - &2)ea) 

where ex, e2 and e3 are maximum likelihood esti- 
mates with the context at levels 1, 2 and 3 in the 
table, and ,kl, ,k2 and )~3 are smoothing parameters 
where 0 _< ,ki _< 1. All words occurring less than 5 
times in t raining data,  and words in test da ta  which 

rExcept cases L2 and R2, which have 4 levels, so that 
e = ~ l e t  + (1 --  *X1)()~2e2 + (1 - ,~2)(&3e3 + (1 - ~ 3 ) e 4 ) ) .  

have never been seen in training, are replaced with 
the "UNKNOWN" token. This allows the model to 
robustly handle the statistics for rare or new words. 

3.2 P a r t  o f  S p e e c h  T a g g i n g  a n d  P a r s i n g  

Par t  of speech tags are generated along with the 
words in this model. When parsing, the POS tags al- 
lowed for each word are limited to those which have 
been seen in training data  for that  word. For un- 
known words, the output  from the tagger described 
in (Ratnaparkhi  96) is used as the single possible tag 
for tha t  word. A CKY style dynamic programming 
chart  parser is used to find the maximum probability 
tree for each sentence (see figure 6). 

4 R e s u l t s  

The parser was trained on sections 02 - 21 of the Wall 
Street Journal  port ion of the Penn Treebank (Mar- 
cus et al. 93) (approximately 40,000 sentences), and 
tested on section 23 (2,416 sentences). We use the 
PAR.SEVAL measures (Black et al. 91) to compare 
performance: 

L a b e l e d  P r e c i s i o n  = 
number o f  correct consti tuents in proposed parse 

number o f  constituents in proposed parse 
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MODEL 

(Magerman 95) 
(Collins 96) 

Model 1 
Model 2 
Model 3 

~ c e ~ )  2 CBs 

84.6% 84.9% 1.26 56.6% 81.4% 84.0% 84.3% 1.46 54.0% 
85.8% 86.3% 1.14 59.9% 83.6% 85.3% 85.7% 1.32 57.2% 
87.4% 88.1% 0.96 65.7% 86.3% 86.8% 87.6% 1.11 63.1% 
88.1% 88.6% 0.91 66.5% 86.9% 87.5% 88.1% 1.07 63.9% 
88.1% 88.6% 0.91 66.4% 86.9% 87.5% 88.1% 1.07 63.9% 

78.8% 
80.8% 
84.1% 
84.6% 
84.6% 

Table 2: Results on Section 23 of the WSJ Treebank. L R / L P  = labeled recall/precision. C B s  is the average 
number of crossing brackets per sentence. 0 CBs,  < 2 CBs  are the percentage of sentences with 0 or < 2 
crossing brackets respectively. 

Labeled Recall  -~ 
number o /  correct constituents in proposed parse 

number o f  constituents in treebank parse 

Cross ing  Bracke t s  ---- number of con- 
stituents which violate constituent boundaries 
with a constituent in the treebank parse. 

For a constituent to be 'correct' it must span the 
same set of words (ignoring punctuation, i.e. all to- 
kens tagged as commas, colons or quotes) and have 
the same label s as a constituent in the treebank 
parse. Table 2 shows the results for Models 1, 2 and 
3. The precision/recall of the traces found by Model 
3 was 93.3%/90.1% (out of 436 cases in section 23 
of the treebank), where three criteria must be met 
for a trace to be "correct": (1) it must be an argu- 
ment to the correct head-word; (2) it must be in the 
correct position in relation to that head word (pre- 
ceding or following); (3) it must be dominated by the 
correct non-terminal label. For example, in figure 5 
the trace is an argument to bough t ,  which it fol- 
lows, and it is dominated by a VP.  Of the 436 cases, 
342 were string-vacuous extraction from subject po- 
sition, recovered with 97.1%/98.2% precision/recall; 
and 94 were longer distance cases, recovered with 
76%/60.6% precision/recall 9 

4.1 C o m p a r i s o n  to  p rev ious  work 

Model 1 is similar in structure to (Collins 96) - -  
the major differences being that the "score" for each 
bigram dependency is 7't(L{,liIH, P, h, distancet) 

8(Magerman 95) collapses ADVP and PRT to the same 
label, for comparison we also removed this distinction 
when calculating scores. 

9We exclude infinitival relative clauses from these fig- 
ures, for example "I called a plumber TRACE to fix the 
sink" where 'plumber' is co-indexed with the trace sub- 
ject of the infinitival. The algorithm scored 41%/18% 
precision/recall on the 60 cases in section 23 - -  but in- 
finitival relatives are extremely difficult even for human 
annotators to distinguish from purpose clauses (in this 
case, the infinitival could be a purpose clause modifying 
'called') (Ann Taylor, p.c.) 

rather than Pz(Li, P, H I li, h, distancel), and that 
there are the additional probabilities of generat- 
ing the head and the S T O P  symbols for each con- 
stituent. However, Model 1 has some advantages 
which may account for the improved performance. 
The model in (Collins 96) is deficient, that is for 
most sentences S, Y~T 7~( T ] S) < 1, because prob- 
ability mass is lost to dependency structures which 
violate the hard constraint that no links may cross. 
For reasons we do not have space to describe here, 
Model 1 has advantages in its treatment of unary 
rules and the distance measure. The generative 
model can condition on any structure that has been 
previously generated - -  we exploit this in models 2 
and 3 - -  whereas (Collins 96) is restricted to condi- 
tioning on features of the surface string alone. 

(Charniak 95) also uses a lexicalised genera- 
tive model. In our notation, he decomposes 
P ( R H S i  l LHSi)  as "P(R,~...R1HL1..Lm ] P,h) x 
1-L=I..~ 7~(r~l P, Ri, h) x I-L=l..m 7)(lil P, Li, h). The 
Penn treebank annotation style leads to a very 
large number of context-free rules, so that directly 
estimating 7~(R ... .  R1HL1..Lm I P, h) may lead to 
sparse data problems, or problems with coverage 
(a rule which has never been seen in training may 
be required for a test data sentence). The com- 
plement/adjunct distinction and traces increase the 
number of rules, compounding this problem. 

(Eisner 96) proposes 3 dependency models, and 
gives results that show that a generative model sim- 
ilar to Model 1 performs best of the three. However, 
a pure dependency model omits non-terminal infor- 
mation, which is important. For example, "hope" is 
likely to generate a VP(T0) modifier (e.g., I hope 
[VP to sleep]) whereas "'require" is likely to gen- 
erate an S(T0) modifier (e.g., I require IS Jim to 
sleep]), but omitting non-terminals conflates these 
two cases, giving high probability to incorrect struc- 
tures such as "I hope [Jim to sleep]" or "I require [to 
sleep]". (Alshawi 96) extends a generative depen- 
dency model to include an additional state variable 
which is equivalent to having non-terminals - -  his 
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suggestions may be close to our models 1 and 2, but 
he does not fully specify the details of his model, and 
doesn't give results for parsing accuracy. (Miller et 
al. 96) describe a model where the RHS of a rule is 
generated by a Markov process, although the pro- 
cess is not head-centered. They increase the set of 
non-terminals by adding semantic labels rather than 
by adding lexical head-words. 

(Magerman 95; Jelinek et al. 94) describe a 
history-based approach which uses decision trees to 
estimate 7a(T[S). Our models use much less sophis- 
ticated n-gram estimation methods, and might well 
benefit from methods such as decision-tree estima- 
tion which could condition on richer history than 
just surface distance. 

There has recently been interest in using 
dependency-based parsing models in speech recog- 
nition, for example (Stolcke 96). It is interesting to 
note that  Models 1, 2 or 3 could be used as lan- 
guage models. The probability for any sentence can 
be estimated as P(S) = ~~.TP(T,S), or (making 
a Viterbi approximation for efficiency reasons) as 
7)(S) .~ P(Tb~st, S). We intend to perform experi- 
ments to compare the perplexity of the various mod- 
els, and a structurally similar 'pure' PCFG 1°. 

5 Conclusions 

This paper has proposed a generative, lexicalised, 
probabilistic parsing model. We have shown that lin- 
guistically fundamental ideas, namely subcategori- 
sation and wh-movement, can be given a statistical 
interpretation. This improves parsing performance, 
and, more importantly, adds useful information to 
the parser's output. 
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