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A b s t r a c t  

This paper presents a trainable rule-based 
algorithm for performing word segmen- 
tation. The algorithm provides a sim- 
ple, language-independent alternative to 
large-scale lexicai-based segmenters requir- 
ing large amounts of knowledge engineer- 
ing. As a stand-alone segmenter, we show 
our algorithm to produce high performance 
Chinese segmentation. In addition, we 
show the transformation-based algorithm 
to be effective in improving the output of 
several existing word segmentation algo- 
rithms in three different languages. 

1 I n t r o d u c t i o n  

This paper presents a trainable rule-based algorithm 
for performing word segmentation. Our algorithm is 
effective both as a high-accuracy stand-alone seg- 
menter and as a postprocessor that improves the 
output of existing word segmentation algorithms. 

In the writing systems of many languages, includ- 
ing Chinese, Japanese, and Thai, words are not de- 
limited by spaces. Determining the word bound- 
aries, thus tokenizing the text, is usually one of the 
first necessary processing steps, making tasks such as 
part-of-speech tagging and parsing possible. A vari- 
ety of methods have recently been developed to per- 
form word segmentation and the results have been 
published widely. 1 

A major difficulty in evaluating segmentation al- 
gorithms is that there are no widely-accepted guide- 
lines as to what constitutes a word, and there is 
therefore no agreement on how to "correctly" seg- 
ment a text in an unsegmented language. It is 

1Most published segmentation work has been done for 
Chinese. For a discussion of recent Chinese segmentation 
work, see Sproat et al. (1996). 

frequently mentioned in segmentation papers that 
native speakers of a language do not always agree 
about the "correct" segmentation and that the same 
text could be segmented into several very different 
(and equally correct) sets of words by different na- 
tive speakers. Sproat et a1.(1996) and Wu and Fung 
(1994) give empirical results showing that an agree- 
ment rate between native speakers as low as 75% is 
common. Consequently, an algorithm which scores 
extremely well compared to one native segmentation 
may score dismally compared to other, equally "cor- 
rect" segmentations. We will discuss some other is- 
sues in evaluating word segmentation in Section 3.1. 

One solution to the problem of multiple correct 
segmentations might be to establish specific guide- 
lines for what is and is not a word in unsegmented 
languages. Given these guidelines, all corpora could 
theoretically be uniformly segmented according to 
the same conventions, and we could directly compare 
existing methods on the same corpora. While this 
approach has been successful in driving progress in 
NLP tasks such as part-of-speech tagging and pars- 
ing, there are valid arguments against adopting it 
for word segmentation. For example, since word seg- 
mentation is merely a preprocessing task for a wide 
variety of further tasks such as parsing, information 
extraction, and information retrieval, different seg- 
mentations can be useful or even essential for the 
different tasks. In this sense, word segmentation is 
similar to speech recognition, in which a system must 
be robust enough to adapt to and recognize the mul- 
tiple speaker-dependent "correct" pronunciations of 
words. In some cases, it may also be necessary to 
allow multiple "correct" segmentations of the same 
text, depending on the requirements of further pro- 
cessing steps. However, many algorithms use exten- 
sive domain-specific word lists and intricate name 
recognition routines as well as hard-coded morpho- 
logical analysis modules to produce a predetermined 
segmentation output. Modifying or retargeting an 
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existing segmentation algorithm to produce a differ- 
ent segmentation can be difficult, especially if it is 
not clear what and where the systematic differences 
in segmentation are. 

It is widely reported in word segmentation 
papers, 2 that the greatest barrier to accurate word 
segmentation is in recognizing words that are not in 
the lexicon of the segmenter. Such a problem is de- 
pendent both on the source of the lexicon as well as 
the correspondence (in vocabulary) between the text 
in question and the lexicon. Wu and Fung (1994) 
demonstrate that segmentation accuracy is signifi- 
cantly higher when the lexicon is constructed using 
the same type of corpus as the corpus on which it 
is tested. We argue that rather than attempting to 
construct a single exhaustive lexicon or even a series 
of domain-specific lexica, it is more practical to de- 
velop a robust trainable means of compensating for 
lexicon inadequacies. Furthermore, developing such 
an algorithm will allow us to perform segmentation 
in many different languages without requiring ex- 
tensive morphological resources and domain-specific 
lexica in any single language. 

For these reasons, we address the problem of word 
segmentation from a different direction. We intro- 
duce a rule-based algorithm which can produce an 
accurate segmentation of a text, given a rudimentary 
initial approximation to the segmentation. Recog- 
nizing the utility of multiple correct segmentations of 
the same text, our algorithm also allows the output 
of a wide variety of existing segmentation algorithms 
to be adapted to different segmentation schemes. In 
addition, our rule-based algorithm can also be used 
to supplement the segmentation of an existing al- 
gorithm in order to compensate for an incomplete 
lexicon. Our algorithm is trainable and language in- 
dependent, so it can be used with any unsegmented 
language. 

2 T r a n s f o r m a t i o n - b a s e d  

S e g m e n t a t i o n  

The key component of our trainable segmenta- 
tion algorithm is Transformation-based Error-driven 
Learning, the corpus-based language processing 
method introduced by Brill (1993a). This technique 
provides a simple algorithm for learning a sequence 
of rules that can be applied to various NLP tasks. 
It differs from other common corpus-based methods 
in several ways. For one, it is weakly statistical, but 
not probabilistic; transformation-based approaches 
conseo,:~,tly require far less training data than most 
o;a~is~ical approaches. It is rule-based, but relies on 

2See, for example, Sproat et al. (1996). 

machine learning to acquire the rules, rather than 
expensive manual knowledge engineering. The rules 
produced can be inspected, which is useful for gain- 
ing insight into the nature of the rule sequence and 
for manual improvement and debugging of the se- 
quence. The learning algorithm also considers the 
entire training set at all learning steps, rather than 
decreasing the size of the training data as learning 
progresses, such as is the case in decision-tree in- 
duction (Quinlan, 1986). For a thorough discussion 
of transformation-based learning, see Ramshaw and 
Marcus (1996). 

Brill's work provides a proof of viability of 
transformation-based techniques in the form of 
a number of processors, including a (widely- 
distributed) part-of-speech tagger (Brill, 1994), 
a procedure for prepositional phrase attachment 
(Brill and Resnik, 1994), and a bracketing parser 
(Brill, 1993b). All of these provided performance 
comparable to or better than previous attempts. 
Transformation-based learning has also been suc- 
cessfully applied to text chunking (Ramshaw 
and Marcus, 1995), morphological disambiguation 
(Oflazer and Tur, 1996), and phrase parsing (Vilain 
and Day, 1996). 

2.1 T r a i n i n g  

Word segmentation can easily be cast as a 
transformation-based problem, which requires an 
initial model, a goal state into which we wish to 
transform the initial model (the "gold standard"), 
and a series of transformations to effect this improve- 
ment. The transformation-based algorithm involves 
applying and scoring all the possible rules to train- 
ing data and determining which rule improves the 
model the most. This rule is then applied to all ap- 
plicable sentences, and the process is repeated until 
no rule improves the score of the training data. In 
this manner a sequence of rules is built for iteratively 
improving the initial model. Evaluation of the rule 
sequence is carried out on a test set of data which is 
independent of the training data. 

If we treat the output of an existing segmentation 
algorithm 3 as the initial state and the desired seg- 
mentation as the goal state, we can perform a series 
of transformations on the initial state - removing ex- 
traneous boundaries and inserting new boundaries - 
to obtain a more accurate approximation of the goal 
state. We therefore need only define an appropriate 
rule syntax for transforming this initial approxima- 

3The "existing" algorithm does not need to be a large 
or even accurate system; the algorithm can be arbi- 
trarily simple as long as it assigns some form of initial 
segmentation. 
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tion and prepare appropriate training data. 
For our experiments, we obtained corpora which 

had been manually segmented by native or near- 
native speakers of Chinese and Thai. We divided the 
hand-segmented data randomly into training and 
test sets. Roughly 80% of the data was used to 
train the segmentation algorithm, and 20% was used 
as a blind test set to score the rules learned from 
the training data. In addition to Chinese and Thai, 
we also performed segmentation experiments using 
a large corpus of English in which all the spaces had 
been removed from the texts. Most of our English 
experiments were performed using training and test 
sets with roughly the same 80-20 ratio, but in Sec- 
tion 3.4.3 we discuss results of English experiments 
with different amounts of training data. Unfortu- 
nately, we could not repeat these experiments with 
Chinese and Thai due to the small amount of hand- 
segmented data available. 

2 .2  R u l e  s y n t a x  

There are three main types of transformations which 
can act on the current state of an imperfect segmen- 
tation: 

• Insert - place a new boundary between two char- 
acters 

• Delete - remove an existing boundary between 
two characters 

• Slide - move an existing boundary from its cur- 
rent location between two characters to a loca- 
tion 1, 2, or 3 characters to the left or right 4 

In our syntax, Insert and Delete transformations 
can be triggered by any two adjacent characters (a 
bigram) and one character to the left or right of the 
bigram. Slide transformations can be triggered by a 
sequence of one, two, or three characters over which 
the boundary is to be moved. Figure 1 enumerates 
the 22 segmentation transformations we define. 

3 R e s u l t s  

With the above algorithm in place, we can use the 
training data to produce a rule sequence to augment 
an initial segmentation approximation in order to 
obtain a better approximation of the desired segmen- 
tation. Furthermore, since all the rules are purely 
character-based, a sequence can be learned for any 
character set and thus any language. We used our 
rule-based algorithm to improve the word segmen- 
tation rate for several segmentation algorithms in 
three languages. 

4Note that a Slide transformation is equivalent to a 
Delete plus an Insert. 

3.1  E v a l u a t i o n  o f  s e g m e n t a t i o n  

Despite the number of papers on the topic, the eval- 
uation and comparison of existing segmentation al- 
gorithms is virtually impossible. In addition to the 
problem of multiple correct segmentations of the 
same texts, the comparison of algorithms is diffi- 
cult because of the lack of a single metric for re- 
porting scores. Two common measures of perfor- 
mance are recall and precision, where recall is de- 
fined as the percent of words in the hand-segmented 
text identified by the segmentation algorithm, and 
precision is defined as the percentage of words re- 
turned by the algorithm that  also occurred in the 
hand-segmented text in the same position. The com- 
ponent recall and precision scores are then used to 
calculate an F-measure (Rijsbergen, 1979), where 
F = (1 + / ~ ) P R / ( ~ P  + R). In this paper we will 
report all scores as a balanced F-measure (precision 
and recall weighted equally) with/~ = 1, such that  
F = 2PR/ (P  + R) 

3.2 C h i n e s e  

For our Chinese experiments, the training set con- 
sisted of 2000 sentences (60187 words) from a Xin- 
hun news agency corpus; the test set was a separate 
set of 560 sentences (18783 words) from the same 
corpus. 5 We ran four experiments using this corpus, 
with four different algorithms providing the starting 
point for the learning of the segmentation transfor- 
mations. In each case, the rule sequence learned 
from the training set resulted in a significant im- 
provement in the segmentation of the test set. 

3.2.1 C h a r a c t e r - a s - w o r d  ( C A W )  

A very simple initial segmentation for Chinese is 
to consider each character a distinct word. Since 
the average word length is quite short in Chinese, 
with most words containing only 1 or 2 characters, 6 
this character-as-word segmentation correctly iden- 
tified many one-character words and produced an 
initial segmentation score of F=40.3. While this is 
a low segmentation score, this segmentation algo- 
r i thm identifies enough words to provide a reason- 
able initial segmentation approximation. In fact, the 
CAW algorithm alone has been shown (Buckley et 
al., 1996; Broglio et al., 1996) to be adequate to be 
used successfully in Chinese information retrieval. 

Our algorithm learned 5903 transformations from 
the 2000 sentence training set. The 5903 transfor- 
mations applied to the test set improved the score 
from F=40.3 to 78.1, a 63.3% reduction in the error 

5The Chinese texts were prepared by Tom Keenan. 
6The average length of a word in our Chinese data 

was 1.60 characters. 

323 



Boundary Triggering 
Action Context Rule 

xABC y ~ x ABCy 

AB ¢==~ A B Insert (delete) between A and B any 
xB ¢=:¢, x B Insert (delete) before any B any 
Ay ~ A y Insert (delete) after any A any 

ABC ~ A B C Insert (delete) between A and B any 
AND Insert (delete) between B and C 

JAB ~ J A B  Insert (delete) between A and B J to left of A 
--JAB ~ -~JA B Insert (delete) between A and B no J to left of A 
ABK ~ A BK Insert (delete) between A and B K to right of B 

AB~K ~ A B-~K Insert (delete) between A and B no K to right of B 
xA y ~ x Ay Move from after A to before A any 

xAB y ~==e, x ABy Move from after bigram AB to before AB any 
Move from after tr igram ABC to before ABC any 

Figure 1: Possible transformations. A, B, C, J, and K are specific characters; x and y can be any character. 
~J  and ~K can be any character except J and K, respectively. 

rate. This is a very surprising and encouraging re- 
sult, in that ,  from a very naive initial approximation 
using no lexicon except that  implicit from the train- 
ing data, our rule-based algorithm is able to produce 
a series of transformations with a high segmentation 
accuracy. 

3.2.2 M a x i m u m  m a t c h i n g  ( g r e e d y )  
a l g o r i t h m  

A common approach to word segmentation is to 
use a variation of the maximum matching algorithm, 
frequently referred to as the "greedy algorithm." 
The greedy algorithm starts at the first character 
in a text and, using a word list for the language be- 
ing segmented, a t tempts  to find the longest word in 
the list s tart ing with that  character. If  a word is 
found, the maximum-matching algorithm marks a 
boundary at the end of the longest word, then be- 
gins the same longest match search starting at the 
character following the match. If no match is found 
in the word list, the greedy algorithm simply skips 
that  character and begins the search starting at the 
next character. In this manner, an initial segmen- 
tation can be obtained that  is more informed than 
a simple character-as-word approach. We applied 
the max imum matching algorithm to the test set 
using a list of 57472 Chinese words from the NMSU 
CHSEG segmenter (described in the next section). 
This greedy algorithm produced an initial score of 
F=64.4. 

A sequence of 2897 transformations was learned • 
from the training set; applied to the test set, they 
improved the score from F=64.4 to 84.9, a 57.8% 
error reduction. From a simple Chinese word list, 
the rule-based algorithm was thus able to produce a- 

segmentation score comparable to segmentation al- 
gorithms developed with a large amount of domain 
knowledge (as we will see in the next section). 

This score was improved further when combin- 
ing the character-as-word (CAW) and the maximum 
matching algorithms. In the maximum matching al- 
gori thm described above, when a sequence of char- 
acters occurred in the text, and no subset of the 
sequence was present in the word list, the entire 
sequence was treated as a single word. This of- 
ten resulted in words containing 10 or more char- 
acters, which is very unlikely in Chinese. In this 
experiment, when such a sequence of characters was 
encountered, each of the characters was treated as 
a separate word, as in the CAW algorithm above. 
This variation of the greedy algorithm, using the 
same list of 57472 words, produced an initial score 
of F=82.9. A sequence of 2450 transformations was 
learned from the training set; applied to the test 
set, they improved the score from F=82.9 to 87.7, 
a 28.1% error reduction. The score produced using 
this variation of the maximum matching algorithm 
combined with a rule sequence (87.7) is nearly equal 
to the score produced by the NMSU segmenter seg- 
menter (87.9) discussed in the next section. 

3 . 2 . 3  N M S U  s e g m e n t e r  

The previous three experiments showed that our 
rule sequence algorithm can produce excellent seg- 
mentat ion results given very simple initial segmen- 
tation algorithms. However, assisting in the adapta- 
tion of an existing algorithm to different segmenta- 
tion schemes, as discussed in Section 1, would most 
likely be performed with an already accurate, fully- 
developed algorithm. In this experiment we demon- 
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strate that  our algorithm can also improve the out- 
put of such a system. 

The Chinese segmenter CHSEG developed at the 
Computing Research Laboratory at New Mexico 
State University is a complete system for high- 
accuracy Chinese segmentation (Jin, 1994). In ad- 
dition to an initial segmentation module that finds 
words in a text based on a list of Chinese words, 
CHSEG additionally contains specific modules for 
recognizing idiomatic expressions, derived words, 
Chinese person names, and foreign proper names. 
The accuracy of CHSEG on an 8.6MB corpus has 
been independently reported as F=84.0 (Ponte and 
Croft, 1996). (For reference, Ponte and Croft re- 
port scores of F=86.1 and 83.6 for their probabilis- 
tic Chinese segmentation algorithms trained on over 
100MB of data.) 

On our test set, CHSEG produced a segmentation 
score of F=87.9. Our rule-based algorithm learned a 
sequence of 1755 transformations from the training 
set; applied to the test set, they improved the score 
from 87.9 to 89.6, a 14.0% reduction in the error rate. 
Our rule-based algorithm is thus able to produce an 
improvement to an existing high-performance sys- 
tem. 

Table 1 shows a summary of the four Chinese ex- 
periments. 

3.3 T h a i  

While Thai is also an unsegmented language, the 
Thai writing system is alphabetic and the average 
word length is greater than Chinese. ~ We would 
therefore expect that our character-based transfor- 
mations would not work as well with Thai, since a 
context of more than one character is necessary in 
many cases to make many segmentation decisions in 
alphabetic languages. 

The Thai corpus consisted of texts s from the Thai 
News Agency via NECTEC in Thailand. For our 
experiment, the training set consisted of 3367 sen- 
tences (40937 words); the test set was a separate 
set of 1245 sentences (13724 words) from the same 
corpus. 

The initial segmentation was performed using the 
maximum matching algorithm, with a lexicon of 
9933 Thai words from the word separation filter 
in ctte~,a Thai language Latex package. This 
greedy algorithm gave an initial segmentation score 
of F=48.2 on the test set. 

7The average length of a word in our Thai data was 
5.01 characters. 

8The Thai texts were manually segmented by 3o 
Tyler. 

Our rule-based algorithm learned a sequence of 
731 transformations which improved the score from 
48.2 to 63.6, a 29.7% error reduction. While the 
alphabetic system is obviously harder to segment, 
we still see a significant reduction in the segmenter 
error rate using the transformation-based algorithm. 
Nevertheless, it is doubtful that a segmentation with 
a score of 63.6 would be useful in too many appli- 
cations, and this result will need to be significantly 
improved. 

3.4 D e - s e g m e n t e d  Eng l i sh  

Although English is not an unsegmented language, 
the writing system is alphabetic like Thai and the 
average word length is similar. 9 Since English lan- 
guage resources (e.g. word lists and morphological 
analyzers) are more readily available, it is instruc- 
tive to experiment with a de-segmented English cor- 
pus, that  is, English texts in which the spaces have 
been removed and word boundaries are not explic- 
itly indicated. The following shows an example of 
an English sentence and its de-segmented version: 

About 20,000 years ago the last ice age ended. 

About20,000yearsagothelasticeageended. 

The results of such experiments can help us deter- 
mine which resources need to be compiled in order to 
develop a high-accuracy segmentation algorithm in 
unsegmented alphabetic languages such as Thai. In 
addition, we are also able to provide a more detailed 
error analysis of the English segmentation (since the 
author can read English but not Thai).  

Our English experiments were performed using a 
corpus of texts from the Wall Street Journal (WSJ). 
The training set consisted of 2675 sentences (64632 
words) in which all the spaces had been removed; the 
test set was a separate set of 700 sentences (16318 
words) from the same corpus (also with all spaces 
removed). 

3.4.1 M a x i m u m  m a t c h i n g  e x p e r i m e n t  

For an initial experiment, segmentation was per- 
formed using the maximum matching algorithm, 
with a large lexicon of 34272 English words com- 
piled from the WSJ. l° In contrast to the low initial 
Thai score, the greedy algorithm gave an initial En- 
glish segmentation score of F=73.2. Our rule-based 
algorithm learned a sequence of 800 transformations, 

9The average length of a word in our English data 
was 4.46. characters, compared to 5.01 for Thai and 1.60 
for Chinese. 

1°Note that the portion of the WSJ corpus used to 
compile the word list was independent of both the train- 
ing and test sets used in the segmentation experiments. 
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Initial 
algorithm 

Character-as-word 
Maximum matching 
Maximum matching + CAW 
NMSU segmenter 

l Initial I Rules 
score learned 

40.3 5903 
64.4 2897 
82.9 2450 
87.9 1755 

Improved I 
s c o r e  

78.1 
84.9 
87.7 
89.6 

Error 
reduction 

63.3% 
57.8% 
28.1% 
14.0% 

Table 1: Chinese results. 

which improved the score from 73.2 to 79.0, a 21.6% 
error reduction. 

The difference in the greedy scores for English and 
Thai  demonstrates the dependence on the word list 
in the greedy algorithm. For example, an exper- 
iment in which we randomly removed half of the 
words from the English list reduced the performance 
of the greedy algorithm from 73.2 to 32.3; although 
this reduced English word list was nearly twice the 
size of the Thai word list (17136 vs. 9939), the 
longest match segmentation utilizing the list was 
much lower (32.3 vs. 48.2). Successive experiments 
in which we removed different random sets of half 
the words from the original list resulted in greedy 
algorithm performance of 39.2, 35.1, and 35.5. Yet, 
despite the disparity in initial segmentation scores, 
the transformation sequences effect a significant er- 
ror reduction in all cases, which indicates that the 
transformation sequences are effectively able to com- 
pensate (to some extent) for weaknesses in the lexi- 
con. Table 2 provides a summary of the results using 
the greedy algorithm for each of the three languages. 

3.4.2 Bas ic  m o r p h o l o g i c a l  s e g m e n t a t i o n  
e x p e r i m e n t  

As mentioned above, lexical resources are more 
readily available for English than for Thai. We 
can use these resources to provide an informed ini- 
tial segmentation approximation separate from the 
greedy algorithm. Using our native knowledge of 
English as well as a short list of common English 
prefixes and suffixes, we developed a simple al- 
gorithm for initial segmentation of English which 
placed boundaries after any of the suffixes and before 
any of the prefixes, as well as segmenting punctua- 
tion characters. In most cases, this simple approach 
was able to locate only one of the two necessary 
boundaries for recognizing full words, and the ini- 
tial score was understandably low, F=29.8. Never- 
theless, even from this flawed initial approximation, 
our rule-based algorithm learned a sequence of 632 
transformations which nearly doubled the word re- 
call, improving the score from 29.8 to 53.3, a 33.5% 
error reduction. 

3.4.3 Amount of  training data 
Since we had a large amount of English data, we 

also performed a classic experiment to determine the 
effect the amount of training data had on the abil- 
ity of the rule sequences to improve segmentation. 
We started with a training set only slightly larger 
than the test set, 872 sentences, and repeated the 
maximum matching experiment described in Section 
3.4.1. We then incrementally increased the amount 
of training data and repeated the experiment. The 
results, summarized in Table 3, clearly indicate (not 
surprisingly) that more training sentences produce 
both a longer rule sequence and a larger error re- 
duction in the test data. 

Training 
sentences 

872 
1731 
2675 
3572 
4522 

Rules 
learned 

436 
653 
800 
902 

1015 

Improved Error 
score reduction 

78.2 18.9% 
78.9 21.3% 
79.0 21.6% 
79.4 23.1% 
80.3 26.5% 

Table 3: English training set sizes. Initial score of 
test data (700 sentences) was 73.2. 

3.4.4 E r r o r  analys is  

Upon inspection of the English segmentation er- 
rors produced by both the maximum matching algo- 
rithm and the learned transformation sequences, one 
major category of errors became clear. Most appar- 
ent was the fact that the limited context transforma- 
tions were unable to recover from many errors intro- 
duced by the naive maximum matching algorithm. 
For example, because the greedy algorithm always 
looks for the longest string of characters which can 
be a word, given the character sequence "economicsi- 
tuation", the greedy algorithm first recognized "eco- 
nomics" and several shorter words, segmenting the 
sequence as "economics it u at io n". Since our 
transformations consider only a single character of 
context, the learning algorithm was unable to patch 
the smaller segments back together to produce the 
desired output "economic situation". In some cases, 
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Lexicon 
Language size 

Chinese 57472 
Chinese (with CAW) 57472 
Thai 9939 
English 34272 

,oitial I I Imp.oved 11 
score learned score 

64.4 2897 84.9 
82.9 2450 87.7 
48.2 731 63.6 
73.2 800 79.0 

Error 
reduction 

57.8% 
28.1% 
29.7% 
21.6% 

Table 2: Summary of maximum matching results. 

the transformations were able to recover some of the 
word, but were rarely able to produce the full desired 
output. For example, in one case the greedy algo- 
rithm segmented "humanactivity" as "humana c ti 
vi ty". The rule sequence was able to transform this 
into "humana ctivity", but was not able to produce 
the desired "human activity". This suggests that 
both the greedy algorithm and the transformation 
learning algorithm need to have a more global word 
model, with the ability to recognize the impact of 
placing a boundary on the longer sequences of char- 
acters surrounding that point. 

4 D i s c u s s i o n  

The results of these experiments demonstrate that 
a transformation-based rule sequence, supplement- 
ing a rudimentary initial approximation, can pro- 
duce accurate segmentation. In addition, they are 
able to improve the performance of a wide range of 
segmentation algorithms, without requiring expen- 
sive knowledge engineering. Learning the rule se- 
quences can be achieved in a few hours and requires 
no language-specific knowledge. As discussed in Sec- 
tion 1, this simple algorithm could be used to adapt 
the output of an existing segmentation algorithm to 
different segmentation schemes as well as compen- 
sating for incomplete segmenter lexica, without re- 
quiring modifications to segmenters themselves. 

The rule-based algorithm we developed to improve 
word segmentation is very effective for segment- 
ing Chinese; in fact, the rule sequences combined 
with a very simple initial segmentation, such as 
that from a maximum matching algorithm, produce 
performance comparable to manually-developed seg- 
menters. As demonstrated by the experiment with 
the NMSU segmenter, the rule sequence algorithm 
can also be used to improve the output of an already 
highly-accurate segmenter, thus producing one of 
the best segmentation results reported in the litera- 
ture. 

In addition to the excellent overall results in Chi- 
nese segmentation, we also showed the rule sequence 
algorithm to be very effective in improving segmen- 
tation in Thai, an alphabetic language. While the 

scores themselves were not as high as the Chinese 
performance, the error reduction was nevertheless 
very high, which is encouraging considering the sim- 
ple rule syntax used. The current state of our algo- 
rithm, in which only three characters are considered 
at a time, will understandably perform better with 
a language like Chinese than with an alphabetic lan- 
guage like Thai, where average word length is much 
greater. The simple syntax described in Section 2.2 
can, however, be easily extended to consider larger 
contexts to the left and the right of boundaries; this 
extension would necessarily come at a corresponding 
cost in learning speed since the size of the rule space 
searched during training would grow accordingly. In 
the future, we plan to further investigate the ap- 
plication of our rule-based algorithm to alphabetic 
languages. 
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