
A Trainable Rule-based Algorithm for Word Segmentation

D a v i d D . P a l m e r
T h e M I T R E C o r p o r a t i o n

202 B u r l i n g t o n Rd.

B e d f o r d , M A 01730, U S A
palmer@mitre, org

A b s t r a c t

This paper presents a trainable rule-based
algorithm for performing word segmen-
tation. The algorithm provides a sim-
ple, language-independent alternative to
large-scale lexicai-based segmenters requir-
ing large amounts of knowledge engineer-
ing. As a stand-alone segmenter, we show
our algorithm to produce high performance
Chinese segmentation. In addition, we
show the transformation-based algorithm
to be effective in improving the output of
several existing word segmentation algo-
rithms in three different languages.

1 I n t r o d u c t i o n

This paper presents a trainable rule-based algorithm
for performing word segmentation. Our algorithm is
effective both as a high-accuracy stand-alone seg-
menter and as a postprocessor that improves the
output of existing word segmentation algorithms.

In the writing systems of many languages, includ-
ing Chinese, Japanese, and Thai, words are not de-
limited by spaces. Determining the word bound-
aries, thus tokenizing the text, is usually one of the
first necessary processing steps, making tasks such as
part-of-speech tagging and parsing possible. A vari-
ety of methods have recently been developed to per-
form word segmentation and the results have been
published widely. 1

A major difficulty in evaluating segmentation al-
gorithms is that there are no widely-accepted guide-
lines as to what constitutes a word, and there is
therefore no agreement on how to "correctly" seg-
ment a text in an unsegmented language. It is

1Most published segmentation work has been done for
Chinese. For a discussion of recent Chinese segmentation
work, see Sproat et al. (1996).

frequently mentioned in segmentation papers that
native speakers of a language do not always agree
about the "correct" segmentation and that the same
text could be segmented into several very different
(and equally correct) sets of words by different na-
tive speakers. Sproat et a1.(1996) and Wu and Fung
(1994) give empirical results showing that an agree-
ment rate between native speakers as low as 75% is
common. Consequently, an algorithm which scores
extremely well compared to one native segmentation
may score dismally compared to other, equally "cor-
rect" segmentations. We will discuss some other is-
sues in evaluating word segmentation in Section 3.1.

One solution to the problem of multiple correct
segmentations might be to establish specific guide-
lines for what is and is not a word in unsegmented
languages. Given these guidelines, all corpora could
theoretically be uniformly segmented according to
the same conventions, and we could directly compare
existing methods on the same corpora. While this
approach has been successful in driving progress in
NLP tasks such as part-of-speech tagging and pars-
ing, there are valid arguments against adopting it
for word segmentation. For example, since word seg-
mentation is merely a preprocessing task for a wide
variety of further tasks such as parsing, information
extraction, and information retrieval, different seg-
mentations can be useful or even essential for the
different tasks. In this sense, word segmentation is
similar to speech recognition, in which a system must
be robust enough to adapt to and recognize the mul-
tiple speaker-dependent "correct" pronunciations of
words. In some cases, it may also be necessary to
allow multiple "correct" segmentations of the same
text, depending on the requirements of further pro-
cessing steps. However, many algorithms use exten-
sive domain-specific word lists and intricate name
recognition routines as well as hard-coded morpho-
logical analysis modules to produce a predetermined
segmentation output. Modifying or retargeting an

321

existing segmentation algorithm to produce a differ-
ent segmentation can be difficult, especially if it is
not clear what and where the systematic differences
in segmentation are.

It is widely reported in word segmentation
papers, 2 that the greatest barrier to accurate word
segmentation is in recognizing words that are not in
the lexicon of the segmenter. Such a problem is de-
pendent both on the source of the lexicon as well as
the correspondence (in vocabulary) between the text
in question and the lexicon. Wu and Fung (1994)
demonstrate that segmentation accuracy is signifi-
cantly higher when the lexicon is constructed using
the same type of corpus as the corpus on which it
is tested. We argue that rather than attempting to
construct a single exhaustive lexicon or even a series
of domain-specific lexica, it is more practical to de-
velop a robust trainable means of compensating for
lexicon inadequacies. Furthermore, developing such
an algorithm will allow us to perform segmentation
in many different languages without requiring ex-
tensive morphological resources and domain-specific
lexica in any single language.

For these reasons, we address the problem of word
segmentation from a different direction. We intro-
duce a rule-based algorithm which can produce an
accurate segmentation of a text, given a rudimentary
initial approximation to the segmentation. Recog-
nizing the utility of multiple correct segmentations of
the same text, our algorithm also allows the output
of a wide variety of existing segmentation algorithms
to be adapted to different segmentation schemes. In
addition, our rule-based algorithm can also be used
to supplement the segmentation of an existing al-
gorithm in order to compensate for an incomplete
lexicon. Our algorithm is trainable and language in-
dependent, so it can be used with any unsegmented
language.

2 T r a n s f o r m a t i o n - b a s e d

S e g m e n t a t i o n

The key component of our trainable segmenta-
tion algorithm is Transformation-based Error-driven
Learning, the corpus-based language processing
method introduced by Brill (1993a). This technique
provides a simple algorithm for learning a sequence
of rules that can be applied to various NLP tasks.
It differs from other common corpus-based methods
in several ways. For one, it is weakly statistical, but
not probabilistic; transformation-based approaches
conseo,:~,tly require far less training data than most
o;a~is~ical approaches. It is rule-based, but relies on

2See, for example, Sproat et al. (1996).

machine learning to acquire the rules, rather than
expensive manual knowledge engineering. The rules
produced can be inspected, which is useful for gain-
ing insight into the nature of the rule sequence and
for manual improvement and debugging of the se-
quence. The learning algorithm also considers the
entire training set at all learning steps, rather than
decreasing the size of the training data as learning
progresses, such as is the case in decision-tree in-
duction (Quinlan, 1986). For a thorough discussion
of transformation-based learning, see Ramshaw and
Marcus (1996).

Brill's work provides a proof of viability of
transformation-based techniques in the form of
a number of processors, including a (widely-
distributed) part-of-speech tagger (Brill, 1994),
a procedure for prepositional phrase attachment
(Brill and Resnik, 1994), and a bracketing parser
(Brill, 1993b). All of these provided performance
comparable to or better than previous attempts.
Transformation-based learning has also been suc-
cessfully applied to text chunking (Ramshaw
and Marcus, 1995), morphological disambiguation
(Oflazer and Tur, 1996), and phrase parsing (Vilain
and Day, 1996).

2.1 T r a i n i n g

Word segmentation can easily be cast as a
transformation-based problem, which requires an
initial model, a goal state into which we wish to
transform the initial model (the "gold standard"),
and a series of transformations to effect this improve-
ment. The transformation-based algorithm involves
applying and scoring all the possible rules to train-
ing data and determining which rule improves the
model the most. This rule is then applied to all ap-
plicable sentences, and the process is repeated until
no rule improves the score of the training data. In
this manner a sequence of rules is built for iteratively
improving the initial model. Evaluation of the rule
sequence is carried out on a test set of data which is
independent of the training data.

If we treat the output of an existing segmentation
algorithm 3 as the initial state and the desired seg-
mentation as the goal state, we can perform a series
of transformations on the initial state - removing ex-
traneous boundaries and inserting new boundaries -
to obtain a more accurate approximation of the goal
state. We therefore need only define an appropriate
rule syntax for transforming this initial approxima-

3The "existing" algorithm does not need to be a large
or even accurate system; the algorithm can be arbi-
trarily simple as long as it assigns some form of initial
segmentation.

322

tion and prepare appropriate training data.
For our experiments, we obtained corpora which

had been manually segmented by native or near-
native speakers of Chinese and Thai. We divided the
hand-segmented data randomly into training and
test sets. Roughly 80% of the data was used to
train the segmentation algorithm, and 20% was used
as a blind test set to score the rules learned from
the training data. In addition to Chinese and Thai,
we also performed segmentation experiments using
a large corpus of English in which all the spaces had
been removed from the texts. Most of our English
experiments were performed using training and test
sets with roughly the same 80-20 ratio, but in Sec-
tion 3.4.3 we discuss results of English experiments
with different amounts of training data. Unfortu-
nately, we could not repeat these experiments with
Chinese and Thai due to the small amount of hand-
segmented data available.

2 .2 R u l e s y n t a x

There are three main types of transformations which
can act on the current state of an imperfect segmen-
tation:

• Insert - place a new boundary between two char-
acters

• Delete - remove an existing boundary between
two characters

• Slide - move an existing boundary from its cur-
rent location between two characters to a loca-
tion 1, 2, or 3 characters to the left or right 4

In our syntax, Insert and Delete transformations
can be triggered by any two adjacent characters (a
bigram) and one character to the left or right of the
bigram. Slide transformations can be triggered by a
sequence of one, two, or three characters over which
the boundary is to be moved. Figure 1 enumerates
the 22 segmentation transformations we define.

3 R e s u l t s

With the above algorithm in place, we can use the
training data to produce a rule sequence to augment
an initial segmentation approximation in order to
obtain a better approximation of the desired segmen-
tation. Furthermore, since all the rules are purely
character-based, a sequence can be learned for any
character set and thus any language. We used our
rule-based algorithm to improve the word segmen-
tation rate for several segmentation algorithms in
three languages.

4Note that a Slide transformation is equivalent to a
Delete plus an Insert.

3.1 E v a l u a t i o n o f s e g m e n t a t i o n

Despite the number of papers on the topic, the eval-
uation and comparison of existing segmentation al-
gorithms is virtually impossible. In addition to the
problem of multiple correct segmentations of the
same texts, the comparison of algorithms is diffi-
cult because of the lack of a single metric for re-
porting scores. Two common measures of perfor-
mance are recall and precision, where recall is de-
fined as the percent of words in the hand-segmented
text identified by the segmentation algorithm, and
precision is defined as the percentage of words re-
turned by the algorithm that also occurred in the
hand-segmented text in the same position. The com-
ponent recall and precision scores are then used to
calculate an F-measure (Rijsbergen, 1979), where
F = (1 + / ~) P R / (~ P + R). In this paper we will
report all scores as a balanced F-measure (precision
and recall weighted equally) with/~ = 1, such that
F = 2PR/ (P + R)

3.2 C h i n e s e

For our Chinese experiments, the training set con-
sisted of 2000 sentences (60187 words) from a Xin-
hun news agency corpus; the test set was a separate
set of 560 sentences (18783 words) from the same
corpus. 5 We ran four experiments using this corpus,
with four different algorithms providing the starting
point for the learning of the segmentation transfor-
mations. In each case, the rule sequence learned
from the training set resulted in a significant im-
provement in the segmentation of the test set.

3.2.1 C h a r a c t e r - a s - w o r d (C A W)

A very simple initial segmentation for Chinese is
to consider each character a distinct word. Since
the average word length is quite short in Chinese,
with most words containing only 1 or 2 characters, 6
this character-as-word segmentation correctly iden-
tified many one-character words and produced an
initial segmentation score of F=40.3. While this is
a low segmentation score, this segmentation algo-
r i thm identifies enough words to provide a reason-
able initial segmentation approximation. In fact, the
CAW algorithm alone has been shown (Buckley et
al., 1996; Broglio et al., 1996) to be adequate to be
used successfully in Chinese information retrieval.

Our algorithm learned 5903 transformations from
the 2000 sentence training set. The 5903 transfor-
mations applied to the test set improved the score
from F=40.3 to 78.1, a 63.3% reduction in the error

5The Chinese texts were prepared by Tom Keenan.
6The average length of a word in our Chinese data

was 1.60 characters.

323

Boundary Triggering
Action Context Rule

xABC y ~ x ABCy

AB ¢==~ A B Insert (delete) between A and B any
xB ¢=:¢, x B Insert (delete) before any B any
Ay ~ A y Insert (delete) after any A any

ABC ~ A B C Insert (delete) between A and B any
AND Insert (delete) between B and C

JAB ~ J A B Insert (delete) between A and B J to left of A
--JAB ~ -~JA B Insert (delete) between A and B no J to left of A
ABK ~ A BK Insert (delete) between A and B K to right of B

AB~K ~ A B-~K Insert (delete) between A and B no K to right of B
xA y ~ x Ay Move from after A to before A any

xAB y ~==e, x ABy Move from after bigram AB to before AB any
Move from after tr igram ABC to before ABC any

Figure 1: Possible transformations. A, B, C, J, and K are specific characters; x and y can be any character.
~J and ~K can be any character except J and K, respectively.

rate. This is a very surprising and encouraging re-
sult, in that , from a very naive initial approximation
using no lexicon except that implicit from the train-
ing data, our rule-based algorithm is able to produce
a series of transformations with a high segmentation
accuracy.

3.2.2 M a x i m u m m a t c h i n g (g r e e d y)
a l g o r i t h m

A common approach to word segmentation is to
use a variation of the maximum matching algorithm,
frequently referred to as the "greedy algorithm."
The greedy algorithm starts at the first character
in a text and, using a word list for the language be-
ing segmented, a t tempts to find the longest word in
the list s tart ing with that character. If a word is
found, the maximum-matching algorithm marks a
boundary at the end of the longest word, then be-
gins the same longest match search starting at the
character following the match. If no match is found
in the word list, the greedy algorithm simply skips
that character and begins the search starting at the
next character. In this manner, an initial segmen-
tation can be obtained that is more informed than
a simple character-as-word approach. We applied
the max imum matching algorithm to the test set
using a list of 57472 Chinese words from the NMSU
CHSEG segmenter (described in the next section).
This greedy algorithm produced an initial score of
F=64.4.

A sequence of 2897 transformations was learned •
from the training set; applied to the test set, they
improved the score from F=64.4 to 84.9, a 57.8%
error reduction. From a simple Chinese word list,
the rule-based algorithm was thus able to produce a-

segmentation score comparable to segmentation al-
gorithms developed with a large amount of domain
knowledge (as we will see in the next section).

This score was improved further when combin-
ing the character-as-word (CAW) and the maximum
matching algorithms. In the maximum matching al-
gori thm described above, when a sequence of char-
acters occurred in the text, and no subset of the
sequence was present in the word list, the entire
sequence was treated as a single word. This of-
ten resulted in words containing 10 or more char-
acters, which is very unlikely in Chinese. In this
experiment, when such a sequence of characters was
encountered, each of the characters was treated as
a separate word, as in the CAW algorithm above.
This variation of the greedy algorithm, using the
same list of 57472 words, produced an initial score
of F=82.9. A sequence of 2450 transformations was
learned from the training set; applied to the test
set, they improved the score from F=82.9 to 87.7,
a 28.1% error reduction. The score produced using
this variation of the maximum matching algorithm
combined with a rule sequence (87.7) is nearly equal
to the score produced by the NMSU segmenter seg-
menter (87.9) discussed in the next section.

3 . 2 . 3 N M S U s e g m e n t e r

The previous three experiments showed that our
rule sequence algorithm can produce excellent seg-
mentat ion results given very simple initial segmen-
tation algorithms. However, assisting in the adapta-
tion of an existing algorithm to different segmenta-
tion schemes, as discussed in Section 1, would most
likely be performed with an already accurate, fully-
developed algorithm. In this experiment we demon-

324

strate that our algorithm can also improve the out-
put of such a system.

The Chinese segmenter CHSEG developed at the
Computing Research Laboratory at New Mexico
State University is a complete system for high-
accuracy Chinese segmentation (Jin, 1994). In ad-
dition to an initial segmentation module that finds
words in a text based on a list of Chinese words,
CHSEG additionally contains specific modules for
recognizing idiomatic expressions, derived words,
Chinese person names, and foreign proper names.
The accuracy of CHSEG on an 8.6MB corpus has
been independently reported as F=84.0 (Ponte and
Croft, 1996). (For reference, Ponte and Croft re-
port scores of F=86.1 and 83.6 for their probabilis-
tic Chinese segmentation algorithms trained on over
100MB of data.)

On our test set, CHSEG produced a segmentation
score of F=87.9. Our rule-based algorithm learned a
sequence of 1755 transformations from the training
set; applied to the test set, they improved the score
from 87.9 to 89.6, a 14.0% reduction in the error rate.
Our rule-based algorithm is thus able to produce an
improvement to an existing high-performance sys-
tem.

Table 1 shows a summary of the four Chinese ex-
periments.

3.3 T h a i

While Thai is also an unsegmented language, the
Thai writing system is alphabetic and the average
word length is greater than Chinese. ~ We would
therefore expect that our character-based transfor-
mations would not work as well with Thai, since a
context of more than one character is necessary in
many cases to make many segmentation decisions in
alphabetic languages.

The Thai corpus consisted of texts s from the Thai
News Agency via NECTEC in Thailand. For our
experiment, the training set consisted of 3367 sen-
tences (40937 words); the test set was a separate
set of 1245 sentences (13724 words) from the same
corpus.

The initial segmentation was performed using the
maximum matching algorithm, with a lexicon of
9933 Thai words from the word separation filter
in ctte~,a Thai language Latex package. This
greedy algorithm gave an initial segmentation score
of F=48.2 on the test set.

7The average length of a word in our Thai data was
5.01 characters.

8The Thai texts were manually segmented by 3o
Tyler.

Our rule-based algorithm learned a sequence of
731 transformations which improved the score from
48.2 to 63.6, a 29.7% error reduction. While the
alphabetic system is obviously harder to segment,
we still see a significant reduction in the segmenter
error rate using the transformation-based algorithm.
Nevertheless, it is doubtful that a segmentation with
a score of 63.6 would be useful in too many appli-
cations, and this result will need to be significantly
improved.

3.4 D e - s e g m e n t e d Eng l i sh

Although English is not an unsegmented language,
the writing system is alphabetic like Thai and the
average word length is similar. 9 Since English lan-
guage resources (e.g. word lists and morphological
analyzers) are more readily available, it is instruc-
tive to experiment with a de-segmented English cor-
pus, that is, English texts in which the spaces have
been removed and word boundaries are not explic-
itly indicated. The following shows an example of
an English sentence and its de-segmented version:

About 20,000 years ago the last ice age ended.

About20,000yearsagothelasticeageended.

The results of such experiments can help us deter-
mine which resources need to be compiled in order to
develop a high-accuracy segmentation algorithm in
unsegmented alphabetic languages such as Thai. In
addition, we are also able to provide a more detailed
error analysis of the English segmentation (since the
author can read English but not Thai).

Our English experiments were performed using a
corpus of texts from the Wall Street Journal (WSJ).
The training set consisted of 2675 sentences (64632
words) in which all the spaces had been removed; the
test set was a separate set of 700 sentences (16318
words) from the same corpus (also with all spaces
removed).

3.4.1 M a x i m u m m a t c h i n g e x p e r i m e n t

For an initial experiment, segmentation was per-
formed using the maximum matching algorithm,
with a large lexicon of 34272 English words com-
piled from the WSJ. l° In contrast to the low initial
Thai score, the greedy algorithm gave an initial En-
glish segmentation score of F=73.2. Our rule-based
algorithm learned a sequence of 800 transformations,

9The average length of a word in our English data
was 4.46. characters, compared to 5.01 for Thai and 1.60
for Chinese.

1°Note that the portion of the WSJ corpus used to
compile the word list was independent of both the train-
ing and test sets used in the segmentation experiments.

325

Initial
algorithm

Character-as-word
Maximum matching
Maximum matching + CAW
NMSU segmenter

l Initial I Rules
score learned

40.3 5903
64.4 2897
82.9 2450
87.9 1755

Improved I
s c o r e

78.1
84.9
87.7
89.6

Error
reduction

63.3%
57.8%
28.1%
14.0%

Table 1: Chinese results.

which improved the score from 73.2 to 79.0, a 21.6%
error reduction.

The difference in the greedy scores for English and
Thai demonstrates the dependence on the word list
in the greedy algorithm. For example, an exper-
iment in which we randomly removed half of the
words from the English list reduced the performance
of the greedy algorithm from 73.2 to 32.3; although
this reduced English word list was nearly twice the
size of the Thai word list (17136 vs. 9939), the
longest match segmentation utilizing the list was
much lower (32.3 vs. 48.2). Successive experiments
in which we removed different random sets of half
the words from the original list resulted in greedy
algorithm performance of 39.2, 35.1, and 35.5. Yet,
despite the disparity in initial segmentation scores,
the transformation sequences effect a significant er-
ror reduction in all cases, which indicates that the
transformation sequences are effectively able to com-
pensate (to some extent) for weaknesses in the lexi-
con. Table 2 provides a summary of the results using
the greedy algorithm for each of the three languages.

3.4.2 Bas ic m o r p h o l o g i c a l s e g m e n t a t i o n
e x p e r i m e n t

As mentioned above, lexical resources are more
readily available for English than for Thai. We
can use these resources to provide an informed ini-
tial segmentation approximation separate from the
greedy algorithm. Using our native knowledge of
English as well as a short list of common English
prefixes and suffixes, we developed a simple al-
gorithm for initial segmentation of English which
placed boundaries after any of the suffixes and before
any of the prefixes, as well as segmenting punctua-
tion characters. In most cases, this simple approach
was able to locate only one of the two necessary
boundaries for recognizing full words, and the ini-
tial score was understandably low, F=29.8. Never-
theless, even from this flawed initial approximation,
our rule-based algorithm learned a sequence of 632
transformations which nearly doubled the word re-
call, improving the score from 29.8 to 53.3, a 33.5%
error reduction.

3.4.3 Amount of training data
Since we had a large amount of English data, we

also performed a classic experiment to determine the
effect the amount of training data had on the abil-
ity of the rule sequences to improve segmentation.
We started with a training set only slightly larger
than the test set, 872 sentences, and repeated the
maximum matching experiment described in Section
3.4.1. We then incrementally increased the amount
of training data and repeated the experiment. The
results, summarized in Table 3, clearly indicate (not
surprisingly) that more training sentences produce
both a longer rule sequence and a larger error re-
duction in the test data.

Training
sentences

872
1731
2675
3572
4522

Rules
learned

436
653
800
902

1015

Improved Error
score reduction

78.2 18.9%
78.9 21.3%
79.0 21.6%
79.4 23.1%
80.3 26.5%

Table 3: English training set sizes. Initial score of
test data (700 sentences) was 73.2.

3.4.4 E r r o r analys is

Upon inspection of the English segmentation er-
rors produced by both the maximum matching algo-
rithm and the learned transformation sequences, one
major category of errors became clear. Most appar-
ent was the fact that the limited context transforma-
tions were unable to recover from many errors intro-
duced by the naive maximum matching algorithm.
For example, because the greedy algorithm always
looks for the longest string of characters which can
be a word, given the character sequence "economicsi-
tuation", the greedy algorithm first recognized "eco-
nomics" and several shorter words, segmenting the
sequence as "economics it u at io n". Since our
transformations consider only a single character of
context, the learning algorithm was unable to patch
the smaller segments back together to produce the
desired output "economic situation". In some cases,

326

Lexicon
Language size

Chinese 57472
Chinese (with CAW) 57472
Thai 9939
English 34272

,oitial I I Imp.oved 11
score learned score

64.4 2897 84.9
82.9 2450 87.7
48.2 731 63.6
73.2 800 79.0

Error
reduction

57.8%
28.1%
29.7%
21.6%

Table 2: Summary of maximum matching results.

the transformations were able to recover some of the
word, but were rarely able to produce the full desired
output. For example, in one case the greedy algo-
rithm segmented "humanactivity" as "humana c ti
vi ty". The rule sequence was able to transform this
into "humana ctivity", but was not able to produce
the desired "human activity". This suggests that
both the greedy algorithm and the transformation
learning algorithm need to have a more global word
model, with the ability to recognize the impact of
placing a boundary on the longer sequences of char-
acters surrounding that point.

4 D i s c u s s i o n

The results of these experiments demonstrate that
a transformation-based rule sequence, supplement-
ing a rudimentary initial approximation, can pro-
duce accurate segmentation. In addition, they are
able to improve the performance of a wide range of
segmentation algorithms, without requiring expen-
sive knowledge engineering. Learning the rule se-
quences can be achieved in a few hours and requires
no language-specific knowledge. As discussed in Sec-
tion 1, this simple algorithm could be used to adapt
the output of an existing segmentation algorithm to
different segmentation schemes as well as compen-
sating for incomplete segmenter lexica, without re-
quiring modifications to segmenters themselves.

The rule-based algorithm we developed to improve
word segmentation is very effective for segment-
ing Chinese; in fact, the rule sequences combined
with a very simple initial segmentation, such as
that from a maximum matching algorithm, produce
performance comparable to manually-developed seg-
menters. As demonstrated by the experiment with
the NMSU segmenter, the rule sequence algorithm
can also be used to improve the output of an already
highly-accurate segmenter, thus producing one of
the best segmentation results reported in the litera-
ture.

In addition to the excellent overall results in Chi-
nese segmentation, we also showed the rule sequence
algorithm to be very effective in improving segmen-
tation in Thai, an alphabetic language. While the

scores themselves were not as high as the Chinese
performance, the error reduction was nevertheless
very high, which is encouraging considering the sim-
ple rule syntax used. The current state of our algo-
rithm, in which only three characters are considered
at a time, will understandably perform better with
a language like Chinese than with an alphabetic lan-
guage like Thai, where average word length is much
greater. The simple syntax described in Section 2.2
can, however, be easily extended to consider larger
contexts to the left and the right of boundaries; this
extension would necessarily come at a corresponding
cost in learning speed since the size of the rule space
searched during training would grow accordingly. In
the future, we plan to further investigate the ap-
plication of our rule-based algorithm to alphabetic
languages.

A c k n o w l e d g e m e n t s This work would not have
been possible without the assistance and encour-
agement of all the members of the MITRE Natural
Language Group. This paper benefited greatly from
discussions with and comments from Marc Vilain,
Lynette Hirschman, Sam Bayer, and the anonymous
reviewers.

R e f e r e n c e s

Eric Brill and Philip Resnik. 1994. A rule-based ap-
proach to prepositional phrase attachment disam-
biguation. In Proceedings of the Fifteenth Interna-
tional Conference on Computational Linguistics
(COLING-1994).

Eric Brill. 1993a. A corpus-based approach to lan-
guage learning. Ph.D. Dissertation, University of
Pennsylvania, Department of Computer and In-
formation Science.

Eric Brill. 1993b. Transformation-based error-
driven parsing. In Proceedings of the Third In-
ternational Workshop on Parsing Technologies.

Eric Brill. 1994. Some advances in transformation-
based part of speech tagging. In Proceedings of
~he Twelfth National Conference on Artificial In-
telligence, pages 722-727.

327

John Broglio, Jamie Callan, and W. Bruce Croft.
1996. Technical issues in building an information
retrieval system for chinese. CIIR Technical Re-
port IR-86, University of Massachusetts, Amherst.

Chris Buckley, Amit Singhal, and Mandar Mitra.
1996. Using query zoning and correlation within
smart: Trec 5. In Proceedings of the Fifth Text
Retrieval Conference (TREC-5).

Wanying Jin. 1994. Chinese segmentation disam-
biguation. In Proceedings of the Fifteenth Interna.
tional Conference on Computational Linguistics
(COLING-94), Japan.

Judith L. Klavans and Philip P~snik. 1996. The
Balancing Act: Combining Symbolic and Statis-
tical Approaches to Language. MIT Press, Cam-
bridge, MA.

Kemal Oflazer and Gokhan Tur. 1996. Combin-
ing hand-crafted rules and unsupervised learn-
ing in constraint-based morphological disambigua-
tion. In Proceedings of the Conference on Empir-
ical Methods in Language Processing (EMNLP).

Jay M. Ponte and W. Bruce Croft. 1996. Useg:
A retargetable word segmentation procedure for
information retrieval. In Proceedings of SDAIR96,
Las Vegas, Nevada.

J.R. Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1(1):81-106.

Lance Ramshaw and Mitchell Marcus. 1995. Text
chunking using transformation-based learning. In
Proceedings of the Third Workshop on Very Large
Corpora (WVLC-3), pages 82-94.

Lance A. Ramshaw and Mitchell P. Marcus. 1996.
Exploring the nature of transformation-based
learning. In Klavans and Resnik (1996).

C. J. Van Rijsbergen. 1979. Information Retrieval.
Butterworths, London.

Giorgio Satta and Eric Brill. 1996. Efficient
transformation-based parsing. In Proceedings of
the Thirty-fourth Annual Meeting of the Associa-
tion for Computational Linguistics (ACL-96).

Richard W. Sprout, Chilin Shih, William Gale, and
Nancy Chang. 1996. A stochastic finite-state
word-segmentation algorithm for chinese. Com-
putational Linguistics, 22(3):377-404.

Marc Vilain and David Day. 1996. Finite-state
phrase parsing by rule sequences. In Proceed-
ings of the Sixteenth International Conference on
Computational Linguistics (COLING-96).

Marc Vilain and David
Palmer. 1996. Transformation-based bracketing:
Fast algorithms and experimental results. In Pro-
ceedings of the Workshop on Robust Parsing, held
at ESSLLI 1996.

Dekai Wu and Pascale Fung. 1994. Improving chi-
nese tokenization with linguistic filters on sta-
tistical lexical acquisition. In Proceedings of the
Fourth ACL Conference on Applied Natural Lan-
guage Processing (ANLP94), Stuttgart, Germany.

Zimin Wu and Gwyneth Tseng. 1993. Chinese text
segmentation for text retrieval: Achievements and
problems. Journal of the American Society for
Information Science, 44(9):532-542.

328

