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A b s t r a c t  

Rambow, Wier and Vijay-Shanker (Rainbow et 
al., 1995) point out the differences between TAG 
derivation structures and semantic or predicate- 
argument dependencies, and Joshi and Vijay- 
Shanker (Joshi and Vijay-Shanker, 1999) de- 
scribe a monotonic compositional semantics 
based on at tachment  order that  represents the 
desired dependencies of a derivation without un- 
derspecifying predicate-argument relationships 
at any stage. In this paper, we apply the Joshi 
and Vijay-Shanker conception of compositional 
semantics to the problem of preserving seman- 
tic dependencies in Synchronous TAG transla- 
tion (Shieber and Schabes, 1990; Abeill~ et al., 
1990). In particular, we describe an algorithm 
to obtain the semantic dependencies on a TAG 
parse forest and construct a target derivation 
forest with isomorphic or locally non-isomorphic 
dependencies in O(n 7) time. 

1 I n t r o d u c t i o n  

The primary goal of this paper is to solve the 
problem of preserving semantic dependencies in 
Isomorphic Synchronous Tree Adjoining Gram- 
mar (ISTAG) (Shieber, 1994; Shieber and Sch- 
abes, 1990), a variant of Tree Adjoining Gram- 
mar (Joshi, 1985) in which source and target 
elementary trees are assembled into isomorphic 
derivations. The problem, first described in 
Rambow, Wier and Vijay-Shanker (Rainbow et 
al., 1995), stems from the fact that  the TAG 
derivation structure - even using a flat adjunc- 
tion of modifiers (Schabes and Shieber, 1994) 
- deviates from the appropriate dependency 
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structure in certain cases. This can result in 
translation errors. 

For example, if we parse sentence (1), 

(1) X is supposed to be able to fly. 

using the trees in Figure 1, we get the following 
derivation:l 

a:fly 
I 

131 :be-able-to(VP) 
I 

j32:is-supposed-to(VP) 

with the auxiliary is-supposed-to adjoining at 
the VP to predicate over be-able-to and the aux- 
iliary be-able-to adjoining at the VP to predi- 
cate over fly. If we then try to assemble an iso- 
morphic tree in a language such as Portuguese 
(which makes less use of raising verbs) using 
the ISTAG transfer rules in Figure 2, we will be 
forced into an ill-formed derivation: 

: voar 
I 

;31 :~-capaz-de (VP) 
I 

/~2 :~-pressuposto-que (S ?) 

because the raising construction is-supposed- 
to translates to a bridge construction d- 
pressuposto-que and cannot adjoin anywhere in 
the tree for ~-capaz-de (the translation of be- 
able-to) because there is no S-labeled adjunction 
site. 

The correct target derivation: 

a:voar 

~l:~-capaz-de(VP) ~2:~-pressuposto-que(S) 

1The subject is omitted to simplify the diagram. 
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Figure 1: Sample elementary trees for "supposed to be able to fly" 

which yields the translation in sentence (2), 

(2) t~ pressuposto que X 6 capaz de voar. 

is not isomorphic to the source. Worse, this 
non-isomorphism is unbounded,  because the 
bridge verb pressuposto may have to migrate 
across any number  of intervening raising verbs 
to find an ancestor that  contains an appropriate 
adjunction site: 

a:fly a:voar 
I 

fll :able(VP) 
[ fll :capaz(VP) fln:press•(S) 

• , . l 

I , o. 

fin--1 :going(VP) I 
[ fin--1 :vai(VP) 

fln:supp.(VP) 

This sort of non-local non-isomorphic transfer 
cannot be handled in a synchronous TAG that  
has an isomorphism restriction on derivation 
trees• On the other hand, we do not wish to 
re turn to the original non-local formulation of 
synchronous TAG (Shieber and Schabes, 1990) 
because the non-local inheritance of links on 
the derived tree is difficult to implement, and 
because the non-local formulation can recog- 
nize languages beyond the generative power of 
TAG. Rambow, Wier and Vijay-Shanker them- 
selves introduce D-Tree Grammar  (Rambow et 
al., 1995) and Candito and Kahane introduce 
the DTG variant Graph Adjunction Grammar  
(Candito and Kahane, 1998b) in order to solve 
this problem using a derivation process that  
mirrors composition more directly, but both in- 
volve potentially significantly greater recogni- 
tion complexity than TAG. 

2 O v e r v i e w  

Our solution is to retain ISTAG, but  move 
the isomorphism restriction from the deriva- 
tion structure to the predicate-argument  at- 
tachment  s t ructure described in (Joshi and 
Vijay-Shanker, 1999). 

This s t ructure represents the composition of 
semantic predicates for lexicalized elementary 
trees, each of which contains a 'predicate '  vari- 
able associated with the situation or enti ty that  
the predicate introduces, and a set of 'argument '  
variables associated with the foot node and sub- 
sti tution sites in the original elementary tree. 
The predicates are composed by identifying the 
predicate variable in one predicate with an ar- 
gument variable in another,  so that  the two vari- 
ables refer to the same situation or entity. 

Composition proceeds from the bo t tom up on 
the derivation tree, with adjuncts traversed in 
order from the lowest to the highest adjunction 
site in each elementary tree, in much the same 
way that  a parser produces a derivation. When- 
ever an initial tree is substi tuted,  its predicate 
variable is identified in the composed structure 
with an argument variable of the tree it substi- 
tutes into. Whenever an auxiliary tree is ad- 
joined, the predicate variable of the tree it ad- 
joins into is identified in the composed struc- 
ture with one of its own argument  variables. In 
cases of adjunction, an auxiliary tree's seman- 
tics can also specify which variable will become 
the predicate variable of the composed struc- 
ture for use in subsequent adjunctions at higher 
adjunction sites: a modifier auxiliary will re- 
turn  the host tree's original predicate variable, 
and a predicative auxiliary will re turn its own 
predicate variable. 2 Since the traversal must 

2See (Schabes and Shieber, 1994) for definitions of 
modifier and predicative auxiliaries. 
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Figure 2: Synchronous tree pairs for "supposed to be able to fly" 

proceed from the bo t tom up, the a t tachment  of 
predicates to arguments  is neither destructive 
nor underspecified at any stage in the interpre- 
tation. 

For example, assume the initial tree a:fly has 
a predicate variable s], representing the situa- 
tion of something flying, and an argument  vari- 
able xl,  representing the thing that  is flying; 
and assume the predicative auxiliary tree/31 :be- 
able-to has a predicate variable s2, represent- 
ing the situation of something being possible, 
and an argument  variable s3, representing the 
thing tha t  is possible. If fll is now adjoined 
into a,  the composed structure would have sl 
identified with s3 (since the situation of flying 
is the thing that  is possible), and s2 as an over- 
all predicate variable, so if another  tree later 
adjoins into this composed structure rooted on 
a, it will predicate over s2 (the situation that  
flying is possible) ra ther  than over a 's  original 
predicate variable sl (the situation of flying by 
itself). Note that  Joshi and Vijay-Shanker do 
not require the predicate and modifier distinc- 
tions, because they can explicitly specify the 
fates of any number  of predicate variables in 
a tree's semantic representation. For simplicity, 
we will limit our discussion to only the two pos- 
sibilities of predicative and modifier auxiliaries, 

using one predicate variable per tree. 
If we represent each such predicate-argument  

a t tachment  as an arc in a directed graph, we can 
view the predicate-argument a t tachment  struc- 
ture of a derivation as a dependency graph, in 
much the same way as Candito and Kahane 
interpret the original derivation trees (Candito 
and Kahane, 1998a). More importantly,  we can 
see that  this definition predicts the predicate- 
argument  dependencies for sentences (1) and (2) 
to be isomorphic: 

¢0:supposed-to ¢0:~-pressuposto-que 
i i 

¢1 :be-able-to ¢1 :&capaz-de 

¢2:flY ¢2:voar 

even though their derivation trees are not. 
This is because the predicative auxiliary for 

&capaz-de returns its predicate variable to the 
host tree for subsequent adjunctions, so the aux- 
iliary tree for g-pressuposto-que can a t tach  it as 
one of its arguments,  just  as if it had adjoined 
directly to the auxiliary, as supposed-to does in 
English. 

It is also important  to note that  Joshi and 
Vijay-Shanker's definition of TAG composi- 
tional semantics differs from that  of Shieber 
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and Schabes (Shieber and Schabes, 1990) using 
Synchronous TAG, in that  the former preserves 
the scope ordering of predicative adjunctions, 
which may be permuted in the latter, altering 
the meaning of the sentence. 3 It is precisely 
this scope-preserving property we hope to ex- 
ploit in our formulation of a dependency-based 
isomorphic synchronous TAG in the next two 
sections. However, as Joshi and Vijay-Shanker 
suggest, the proper t rea tment  of synchronous 
translat ion to logical form may require a multi- 
component  Synchronous TAG analysis in order 
to handle quantifiers, which is beyond the scope 
of this paper. For this reason, we will focus on 
examples in machine translation. 

3 O b t a i n i n g  S o u r c e  D e p e n d e n c i e s  

If we assume that  this a t tachment  structure 
captures a sentence's semantic dependencies, 
then in order to preserve semantic dependencies 
in synchronous TAG translation, we will need to 
obtain this s t ructure from a source derivation 
and then construct  a target derivation with an 
isomorphic structure.  

The first algorithm we present obtains se- 
mantic dependencies for derivations by keep- 
ing track of an additional field in each chart 
item during parsing, corresponding to the pred- 
icate variable from Section 2. Other  than the 
additional field, the algorithm remains essen- 
tially the same as the parsing algorithm de- 
scribed in (Schabes and Shieber, 1994), so it 
can be applied as a t ransducer  during recogni- 
tion, or as a post-process on a derivation forest 
(Vijay-Shanker and Weir, 1993). Once the de- 
sired dependencies are obtained, the forest may 
be filtered to select a single most-preferred tree 
using statistics or rule-based selectional restric- 
tions on those dependencies. 4 

For calculating dependencies, we define a 
function arg(~) to re turn the argument posi- 
tion associated with a substi tution site or foot 
node ~? in elementary tree V. Let a dependency 
be defined as a labeled arc (¢, l, ~b), from predi- 
cate ¢ to predicate ¢ with label I. 

• For each tree selected by ¢, set the predi- 
cate variable of each anchor item to ¢. 

3See (Joshi and Vijay-Shanker, 1999) for a complete 
description. 

4See (Schuler, 1998) for a discussion of statistically 
filtering TAG forests using semantic dependencies. 

• For each s u b s t i t u t i o n  of initial tree a¢  
with predicate variable w into "),¢ at node 
address U, emit (¢, arg(v , r/), w) 

• For each m o d i f i e r  a d j u n c t i o n  of auxil- 
iary tree/3¢ into tree V¢ with predicate vari- 
able X, emit (¢, arg(p, FOOT), X) and set 
the predicate variable of the composed i tem 
to X. 

• For each p r e d i c a t i v e  a d j u n c t i o n  of aux- 
iliary tree /3¢ with predicate variable w 
into tree "),¢ with predicate variable X, emit 
(¢, arg(/3, FOOT), X) and set the predicate 
variable of the composed item to w. 

• For all other productions, propagate the 
predicate variable up along the pa th  from 
the main anchor to the root. 

Since the number of possible values for the 
additional predicate variable field is bounded 
by n, where n is the number  of lexical items 
in the input sentence, and none of the produc- 
tions combine more than one predicate variable, 
the complexity of the dependency transducing 
algorithm is O(nT). 

This algorithm can be applied to the example 
derivation tree in Section 1, 

a:fly 
I 

/31 :be-able-to(VP) 
I 

/32 :is-supposed-to(VP) 

which resembles the stacked derivation tree for 
Candito and Kahane's  example 5a, "Paul claims 
Mary said Peter  left." 

First, we adjoin/32 :is-supposed-to at node VP 
of/31 :be-able-to, which produces the dependency 
(is-supposed-to,0,be-able-to}. Then  we adjoin 
~31:be-able-to at node VP of a:fly, which pro- 
duces the dependency (be-able-to,0,fly). The 
resulting dependencies are represented graphi- 
Cally in the dependency structure below: 

¢0 :supposed-to 
I 

¢] :be-able-to(0) 
I 

¢2:fly(0) 

This example is relatively straightforward, 
simply reversing the direction of adjunction de- 
pendencies as described in (Candito and Ka- 
hane, 1998a), but  this algorithm can t ransduce 

9 1  



the correct isomorphic dependency structure for 
the Portuguese derivation as well, similar to the 
distributed derivation tree in Candito and Ka- 
hane's example 5b, "Paul claims Mary seems to 
adore hot dogs," (Rambow et al., 1995), where 
there is no edge corresponding to the depen- 
dency between the raising and bridge verbs: 

c~:voar 

81:~-capaz-de(VP) ~2:fi-pressuposto-que(S) 

We begin by adjoining ~1 :g-capaz-de at node 
VP of c~:voar, which produces the dependency 
(~-capaz-de, 0,voar), just as before. Then we ad- 
join p2:~-pressuposto-que at node S of c~:voar. 
This time, however, we must observe the predi- 
cate variable of the chart item for c~:voar which 
was updated  in the previous adjunction, and 
now references ~-capaz-de instead of voar. Be- 
cause the transduction rule for adjunction uses 
the predicate variable of the parent instead of 
just  the predicate, the dependency produced by 
the adjunetion of ~2 is (~-pressuposto-que, 0,~- 
capaz-de), yielding the graph: 

As Candito and Kahane point out, this 
derivation tree does not match the dependency 
structure of the sentence as described in Mean- 
ing Text Theory (Mel'cuk, 1988), because there 
is no edge in the derivation corresponding to 
the dependency between surprise and have-to 
(the necessity of Paul 's staying is what  surprises 
Mary, not his staying in itself). Using the above 
algorithm, however, we can still produce the de- 
sired dependency structure: 

¢1 :surprise 

¢2:have-to(0) Cs:Mary(1) 
I 

Ca:stay(0) 
I 

¢4:Paul(0) 

by adjoining fl:have-to at node VP of c~2:stay 
to produce a composed item with have-to as 
its predicate variable, as well as the depen- 
dency (have-to, 0,stay/. When a2:stay substi- 
tutes at node So of c~l:surprise, the resulting 
dependency also uses the predicate variable of 
the argument, yielding (surprise, 0,have-to). 

¢0 :~-pressuposto-que 
I 

¢1 :~-capaz-de(0) 
I 

¢2:voar(0) 

The derivation examples above only address 
the preservation of dependencies through ad- 
junction. Let us now at tempt  to preserve 
both subst i tut ion and adjunction dependencies 
in transducing a sentence based on Candito and 
Kahane's example 5c, "That Paul has to stay 
surprised Mary," in order to demonstrate how 
they interact. 5 We begin with the derivation 
tree: 

al :surprise 

c~2 :stay(S0) c~4 :Mary(NPl) 

c~a:Paul(NP0) ~:have-to(VP) 

5We have replaced want to in the original example 
with have to in order to highlight the dependency struc- 
ture and set aside any translation issues related to PRO 
control. 

4 O b t a i n i n g  T a r g e t  D e r i v a t i o n s  

Once a source derivation is selected from the 
parse forest, the predicate-argument dependen- 
cies can be read off from the items in the forest 
that  constitute the selected derivation. The re- 
sulting dependency graph can then be mapped  
to a forest of target derivations, where each 
predicate node in the source dependency graph 
is linked to a set of possible elementary trees in 
the target grammar, each of which is instanti- 
ated with substi tution or adjunction edges lead- 
ing to other linked sets in the forest. The el- 
ementary trees in the target forest are deter- 
mined by the predicate pairs in the transfer lex- 
icon, and by the elementary trees that  can re- 
alize the translated targets. The subst i tut ion 
and adjunction edges in the target forest are 
determined by the argument links in the trans- 
fer lexicon, and by the substi tut ion and adjunc- 
tion configurations that  can realize the trans- 
lated targets' dependencies. 

Mapping dependencies into substi tutions is 
relatively straightforward, but we have seen in 
Section 2 that  different adjunction configura- 
tions (such as the raising and bridge verb ad- 
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junctions in sentences (1) and (2)) can corre- 
spond to the same dependency graph, so we 
should expect that  some dependencies in our 
target graph may correspond to more than one 
adjunction configuration in the target deriva- 
tion tree. Since a dependency may be realized 
by adjunctions at up to n different sites, an un- 
constrained algorithm would require exponen- 
tial t ime to find a target derivation in the worst 
case. In order to reduce this complexity, we 
present a dynamic  programming algorithm for 
constructing a target derivation forest in t ime 
proportional to O(n 4) which relies on a restric- 
tion that  the target derivations must preserve 
the relative scope ordering of the predicates in 
the source dependency graph. 

This restriction carries the linguistic implica- 
tion that  the scope ordering of adjuncts is part  
of the meaning of a sentence and should not 
be re-arranged in translation. Since we exploit 
a notion of locality similar to that  of Isomor- 
phic Synchronous TAG, we should not expect 
the generative power of our definition to exceed 
the generative power of TAG, as well. 

First, we define an ordering of predicates on 
the source dependency graph corresponding to a 
depth-first traversal of the graph, originating at 
the predicate variable of the root of the source 
derivation, and visiting arguments and modi- 
fiers in order from lowest to highest scope. In 
other words, arguments and modifiers will be 
ordered from the bot tom up on the elementary 
tree s t ructure of the parent,  such that  the foot 
node argument  of an elementary tree has the 
lowest scope among the arguments,  and the first 
adjunct  on the main (trunk) anchor has the low- 
est scope among the modifiers. 

Arguments,  which can safely be permuted 
in translation because their number is finitely 
bounded,  are traversed entirely before the par- 
ent; and modifiers, which should not be per- 
muted because they may be arbitrarily numer- 
ous, are traversed entirely after the parent. 
This enumerat ion will roughly correspond to 
the scoping order for the adjuncts in the source 
derivation, while preventing substi tuted trees 
from interrupting possible scoping configura- 
tions. We can now identify all the descendants 
of any elementary tree in a derivation because 
they will form a consecutive series in the enu- 
meration described above. It therefore provides 

a convenient way to generate a target derivation 
forest that  preserves the scoping information in 
the source, by 'parsing' the scope-ordered string 
of elementary trees, using indices on this enu- 
meration instead of on a string yield. 

It is important  to note that  in defining this 
algorithm, we assume that  all trees associated 
with a particular predicate will use the same 
argument structure as that  predicate. 6 We also 
assume that  the set of trees associated with a 
particular predicate may be filtered by transfer- 
ring information such as mood and voice from 
source to target predicates. 

Apart  from the different use of indices, the 
algorithm we describe is exactly the reverse of 
the transducer described in Section 3, taking 
a dependency graph 79 and producing a TAG 
derivation forest containing exactly the set of 
derivation trees for which those dependencies 
hold. Here, as in a parsing algorithm, we define 
forest items as tuples of (~/¢, 'q, _1_, i , j ,  X) where 
a, ~, and 7 are elementary trees with node'O, ¢ 
and ¢ are predicates, X and w be predicate vari- 
ables, and T and _1_ are delimiters tbr opening 
and closing adjunction, but  now let i, j ,  and k 
refer to the indices on the scoping enumerat ion 
described above, instead of on an input string. 
In order to reconcile scoping ranges for substi- 
tution, we must also define a function f i rs t (C)  
to re turn the leftmost (lowest) edge of the ¢'s 
range in the scope enumeration,  and last(C) to 
re turn the rightmost (highest) edge of the ¢'s 
range in the scope enumeration.  

• For each tree 7 mapped from predicate ¢ 
at scope i, introduce (~,¢, f i rs t (C) ,  i + 1, ¢}. 

• If (¢,arg(7,~),co) E 79, 
t ry s u b s t i t u t i o n  of c~ into 3': 

(c~¢, ROOT,  T, first(co), last(co), co) 
7, ±,  , , - )  

~Although this does not hold for certain relative 
clause elementary trees with wh-extractions as substi- 
tutions sites (since the wh-site is an argument of the 
main verb of the clause instead of the foot node), Can- 
dito and Kahane (Candito and Kahane, 1998b) suggest 
an alternative analysis which can be extended to TAG 
by adjoining the relative clause into its wh-word as a 
predicative adjunct, and adjoining the wh-word into the 
parent noun phrase as a modifier, so the noun phrase is 
treated as an argument of the wh-word rather than of 
the relative clause. 
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• If (¢, arg(/3, FOOT), X) E 79, 
t ry  m o d i f i e r  a d j u n c t i o n  of fl into -),: 

(V~,~h_l_,i,j,x) (/3¢,ROOT, T , j , k ,w)  
(V¢, ~, -l-, i, k, x) 

• If (¢, arg(/3, FOOT), X) E 79, 
t ry  p r e d i c a t i v e  a d j u n c t i o n  of/3 into V: 

(V¢,~,_I_,i,j,x) (/3¢,ROOT, T , j , k ,w)  
(V¢,~,T,i ,k,w) 

• Apply productions for nonterminal  projec- 
tion as in the t ransducer  algorithm, prop- 
agating index ranges and predicative vari- 
ables up along the pa th  from the main an- 
chor to the root. 

Since none of the productions combine more 
than three indices and one predicate variable, 
and since the indices and predicate variable may 
have no more than n distinct values, the algo- 
r i thm runs in O(n  4) time. Note that  one of 
the indices may be redundant  with the predi- 
cate variable, so a more efficient implementat ion 
might be possible in dO(n3). 

We can demonstra te  this algorithm by trans- 
lating the English dependency graph from Sec- 
tion 1 into a derivation tree for Portuguese. 
First, we enumerate  the predicates with their 
relative scoping positions: 

[3] ¢0:is-supposed-to 
I 

[2] ¢l:be-able-to 
I 

[i] ¢2:fly 

Then  we construct  a derivation forest based 
on the t ranslated elementary trees a:voar,/31 :d- 
capaz-de, and /32 :d-pressuposto-que. Beginning 
at the bot tom, we assign to these constituents 
the relative scoping ranges of 1-2, 2-3, and 3-$, 
respectively, where $ is a terminal  symbol. 

There is also a dependency from is-supposed- 
to to be-able-to allowing us to adjoin /32:d- 
pressuposto-que to /31:d-capaz-de to make it 
cover the range from 2 to $, but  there would 
be no S node to host its adjunction,  so this pos- 
sibility can not be added to the forest. We can, 
however, adjoin/32:d-pressuposto-que to the in- 
stance of a:voar extending to/31 :d-capaz-de that  
covers the range from 1 to 3, resulting in a com- 
plete analysis of the entire scope from 1 to $, 
(from (~:voar to/32:pressuposto) rooted on voar: 

(O~voar, l ,2 , . . )  (/3capaz, 2, 3, ..) (/3press, 3, $, ..) 
<O~voar ' 1, 3, capaz) 

<avoar, 1, $, press} 

which matches the distr ibuted derivation tree 
where both auxiliary trees adjoin to roar. 

[1-$]a:voar 

[2-3]/31:6-capaz-de(VP) [3-$]~2:6-pressup.-que(S) 

Let us compare this to a translat ion using the 
same dependency structure,  but  different words: 

[3] ¢0 :is-going-to 
I 

[2] ¢l :be-able-to 
I 

[1] ¢2:fly 

Once again we select trees in the target lan- 
guage, and enumerate  them with scoping ranges 
in a pre-order traversal, but  this t ime the con- 
struction at scope position 3 must  be t ranslated 
as a raising verb (vai) instead of as a bridge con- 
struction (d-pressuposto-que): 

(avoar, l,2,..> (/3capaz,2,3,..> (/3vai,3,$,..> 

(avoar, l,2,..) (/3capaz,2,3,..> (/3press, 3,$,..> 

Since there is a dependency from be-able-to to 
fly, we can adjoin/31:d-capaz-de to a:voar such 
that  it covers the range of scopes from 1 to 3 
(from roar to d-capaz-de), so we add this possi- 
bility to the forest. 

Although we can still adjoin/31 :ser-capaz-de at 
the VP node of a:voar, we will have nowhere 
to adjoin /32:vai, since the VP node of a:voar 
is now occupied, and only one predicative tree 
may adjoin at any node. 7 

(avoar, 1, 2,..) (t3capaz, 2, 3, ..) (/3vai, 3, $, ..) 
(avoar, 1, 3, capaz> 

(avoar , l ,  2, ..) (/3capaz, 2, 3, -.) (/3;ress, 3,$, . .)  
(avoar, 1, 3, capaz) 

7See (Schabes and Shieber, 1994) for the motivations 
of this restriction. 
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Fortunately,  we can also realize the depen- 
dency between vai and ser-capaz-de by adjoin- 
ing/32 :vai at the VP. 

<avo r, l, 2, ..) <13capaz, 2, 3, ..) (/3va , 3, $, ..) 
< capaz, 2, $, vai) 

The new instance spanning from 2 to $ (from 
~1 :capaz to/32 :vai) can then be adjoined at the 
VP node of roar, to complete the derivation. 

( avoar , 1, 2, ..) (flcapaz, 2, 3,..) (~vai, 3, $,..) 
(~cap~z, 2, $, vai) 

(Olvoar , 1, $, vai) 

This corresponds to the stacked derivation, 
with p2:vai adjoined to t31:ser-capaz-de and 
1~1 :ser-capaz-de adjoined to a:voar: 

[1-$] a:voar 
I 

[2-$] ~1 :ser-capaz-de(VP) 
I 

[3-$] ~2 :vai(VP) 

5 C o n c l u s i o n  

We have presented two algorithms - one for in- 
terpreting a derivation forest as a semantic de- 
pendency graph, and the other for realizing a 
semantic dependency graph as a derivation for- 
est - that  make use of semantic dependencies as 
adapted from the notion of predicate-argument 
a t tachment  in (Joshi and Vijay-Shanker, 1999), 
and we have described how these algorithms can 
be run together in a synchronous TAG trans- 
lation system, in CO(n 7) time, using transfer 
rules predicated on isomorphic or locally non- 
isomorphic dependency graphs rather than iso- 
morphic or locally non-isomorphic derivation 
trees. We have also demonstra ted how such 
a system would be necessary in translating a 
real-world example that  is isomorphic on de- 
pendency graphs bu t  globally non-isomorphic 
on derivation trees. This system is currently 
be ing  implemented as part  of the Xtag project 
at the Universi ty of Pennsylvania, and as nat- 
ural language interface in the Human Modeling 
and Simulation project,  also at Penn. 
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