
Preserv ing Semant ic D e p e n d e n c i e s in
Synchronous Tree Adjo in ing Grammar*

W i l l i a m S c h u l e r
Universi ty of Pennsylvania

200 South 33rd Street
Phi ladelphia , PA 19104 USA

s c h u l e r @ l i n c , c i s . upenn , edu

A b s t r a c t

Rambow, Wier and Vijay-Shanker (Rainbow et
al., 1995) point out the differences between TAG
derivation structures and semantic or predicate-
argument dependencies, and Joshi and Vijay-
Shanker (Joshi and Vijay-Shanker, 1999) de-
scribe a monotonic compositional semantics
based on at tachment order that represents the
desired dependencies of a derivation without un-
derspecifying predicate-argument relationships
at any stage. In this paper, we apply the Joshi
and Vijay-Shanker conception of compositional
semantics to the problem of preserving seman-
tic dependencies in Synchronous TAG transla-
tion (Shieber and Schabes, 1990; Abeill~ et al.,
1990). In particular, we describe an algorithm
to obtain the semantic dependencies on a TAG
parse forest and construct a target derivation
forest with isomorphic or locally non-isomorphic
dependencies in O(n 7) time.

1 I n t r o d u c t i o n

The primary goal of this paper is to solve the
problem of preserving semantic dependencies in
Isomorphic Synchronous Tree Adjoining Gram-
mar (ISTAG) (Shieber, 1994; Shieber and Sch-
abes, 1990), a variant of Tree Adjoining Gram-
mar (Joshi, 1985) in which source and target
elementary trees are assembled into isomorphic
derivations. The problem, first described in
Rambow, Wier and Vijay-Shanker (Rainbow et
al., 1995), stems from the fact that the TAG
derivation structure - even using a flat adjunc-
tion of modifiers (Schabes and Shieber, 1994)
- deviates from the appropriate dependency

*The author would like to thank Karin Kipper,
Aravind Joshi, Martha Palmer, Norm Badler, and
the anonymous reviewers for their valuable comments.
This work was partially supported by NSF Grant
SBP~8920230 and ARO Grant DAAH0404-94-GE-0426.

structure in certain cases. This can result in
translation errors.

For example, if we parse sentence (1),

(1) X is supposed to be able to fly.

using the trees in Figure 1, we get the following
derivation:l

a:fly
I

131 :be-able-to(VP)
I

j32:is-supposed-to(VP)

with the auxiliary is-supposed-to adjoining at
the VP to predicate over be-able-to and the aux-
iliary be-able-to adjoining at the VP to predi-
cate over fly. If we then try to assemble an iso-
morphic tree in a language such as Portuguese
(which makes less use of raising verbs) using
the ISTAG transfer rules in Figure 2, we will be
forced into an ill-formed derivation:

: voar
I

;31 :~-capaz-de (VP)
I

/~2 :~-pressuposto-que (S ?)

because the raising construction is-supposed-
to translates to a bridge construction d-
pressuposto-que and cannot adjoin anywhere in
the tree for ~-capaz-de (the translation of be-
able-to) because there is no S-labeled adjunction
site.

The correct target derivation:

a:voar

~l:~-capaz-de(VP) ~2:~-pressuposto-que(S)

1The subject is omitted to simplify the diagram.

88

VP VP

Vo VP Vo VP

is Vo VP [

[~ able Vo VP*
supposed Vo VP* [

[to
to

S

NP$ VP
I

Vo
I

fly

Figure 1: Sample elementary trees for "supposed to be able to fly"

which yields the translation in sentence (2),

(2) t~ pressuposto que X 6 capaz de voar.

is not isomorphic to the source. Worse, this
non-isomorphism is unbounded, because the
bridge verb pressuposto may have to migrate
across any number of intervening raising verbs
to find an ancestor that contains an appropriate
adjunction site:

a:fly a:voar
I

fll :able(VP)
[fll :capaz(VP) fln:press•(S)

• , . l

I , o.

fin--1 :going(VP) I
[fin--1 :vai(VP)

fln:supp.(VP)

This sort of non-local non-isomorphic transfer
cannot be handled in a synchronous TAG that
has an isomorphism restriction on derivation
trees• On the other hand, we do not wish to
re turn to the original non-local formulation of
synchronous TAG (Shieber and Schabes, 1990)
because the non-local inheritance of links on
the derived tree is difficult to implement, and
because the non-local formulation can recog-
nize languages beyond the generative power of
TAG. Rambow, Wier and Vijay-Shanker them-
selves introduce D-Tree Grammar (Rambow et
al., 1995) and Candito and Kahane introduce
the DTG variant Graph Adjunction Grammar
(Candito and Kahane, 1998b) in order to solve
this problem using a derivation process that
mirrors composition more directly, but both in-
volve potentially significantly greater recogni-
tion complexity than TAG.

2 O v e r v i e w

Our solution is to retain ISTAG, but move
the isomorphism restriction from the deriva-
tion structure to the predicate-argument at-
tachment s t ructure described in (Joshi and
Vijay-Shanker, 1999).

This s t ructure represents the composition of
semantic predicates for lexicalized elementary
trees, each of which contains a 'predicate ' vari-
able associated with the situation or enti ty that
the predicate introduces, and a set of 'argument '
variables associated with the foot node and sub-
sti tution sites in the original elementary tree.
The predicates are composed by identifying the
predicate variable in one predicate with an ar-
gument variable in another, so that the two vari-
ables refer to the same situation or entity.

Composition proceeds from the bo t tom up on
the derivation tree, with adjuncts traversed in
order from the lowest to the highest adjunction
site in each elementary tree, in much the same
way that a parser produces a derivation. When-
ever an initial tree is substi tuted, its predicate
variable is identified in the composed structure
with an argument variable of the tree it substi-
tutes into. Whenever an auxiliary tree is ad-
joined, the predicate variable of the tree it ad-
joins into is identified in the composed struc-
ture with one of its own argument variables. In
cases of adjunction, an auxiliary tree's seman-
tics can also specify which variable will become
the predicate variable of the composed struc-
ture for use in subsequent adjunctions at higher
adjunction sites: a modifier auxiliary will re-
turn the host tree's original predicate variable,
and a predicative auxiliary will re turn its own
predicate variable. 2 Since the traversal must

2See (Schabes and Shieber, 1994) for definitions of
modifier and predicative auxiliaries.

8 9

VP

Vo VP

is Vo VP

supposed Vo VP*
I

to

VP

Vo VP

be Vo VP

able Vo VP*
I

to

S

Vo S

Vo S

pressuposto Vo S*
I

que

VP

Vo VP

Vo VP

capaz Vo VP*
I

de

S

NP$ VP
I

Vo
t

fly

S

NP.I. VP
I

Vo
i

voar

Figure 2: Synchronous tree pairs for "supposed to be able to fly"

proceed from the bo t tom up, the a t tachment of
predicates to arguments is neither destructive
nor underspecified at any stage in the interpre-
tation.

For example, assume the initial tree a:fly has
a predicate variable s], representing the situa-
tion of something flying, and an argument vari-
able xl, representing the thing that is flying;
and assume the predicative auxiliary tree/31 :be-
able-to has a predicate variable s2, represent-
ing the situation of something being possible,
and an argument variable s3, representing the
thing tha t is possible. If fll is now adjoined
into a, the composed structure would have sl
identified with s3 (since the situation of flying
is the thing that is possible), and s2 as an over-
all predicate variable, so if another tree later
adjoins into this composed structure rooted on
a, it will predicate over s2 (the situation that
flying is possible) ra ther than over a 's original
predicate variable sl (the situation of flying by
itself). Note that Joshi and Vijay-Shanker do
not require the predicate and modifier distinc-
tions, because they can explicitly specify the
fates of any number of predicate variables in
a tree's semantic representation. For simplicity,
we will limit our discussion to only the two pos-
sibilities of predicative and modifier auxiliaries,

using one predicate variable per tree.
If we represent each such predicate-argument

a t tachment as an arc in a directed graph, we can
view the predicate-argument a t tachment struc-
ture of a derivation as a dependency graph, in
much the same way as Candito and Kahane
interpret the original derivation trees (Candito
and Kahane, 1998a). More importantly, we can
see that this definition predicts the predicate-
argument dependencies for sentences (1) and (2)
to be isomorphic:

¢0:supposed-to ¢0:~-pressuposto-que
i i

¢1 :be-able-to ¢1 :&capaz-de

¢2:flY ¢2:voar

even though their derivation trees are not.
This is because the predicative auxiliary for

&capaz-de returns its predicate variable to the
host tree for subsequent adjunctions, so the aux-
iliary tree for g-pressuposto-que can a t tach it as
one of its arguments, just as if it had adjoined
directly to the auxiliary, as supposed-to does in
English.

It is also important to note that Joshi and
Vijay-Shanker's definition of TAG composi-
tional semantics differs from that of Shieber

9{)

and Schabes (Shieber and Schabes, 1990) using
Synchronous TAG, in that the former preserves
the scope ordering of predicative adjunctions,
which may be permuted in the latter, altering
the meaning of the sentence. 3 It is precisely
this scope-preserving property we hope to ex-
ploit in our formulation of a dependency-based
isomorphic synchronous TAG in the next two
sections. However, as Joshi and Vijay-Shanker
suggest, the proper t rea tment of synchronous
translat ion to logical form may require a multi-
component Synchronous TAG analysis in order
to handle quantifiers, which is beyond the scope
of this paper. For this reason, we will focus on
examples in machine translation.

3 O b t a i n i n g S o u r c e D e p e n d e n c i e s

If we assume that this a t tachment structure
captures a sentence's semantic dependencies,
then in order to preserve semantic dependencies
in synchronous TAG translation, we will need to
obtain this s t ructure from a source derivation
and then construct a target derivation with an
isomorphic structure.

The first algorithm we present obtains se-
mantic dependencies for derivations by keep-
ing track of an additional field in each chart
item during parsing, corresponding to the pred-
icate variable from Section 2. Other than the
additional field, the algorithm remains essen-
tially the same as the parsing algorithm de-
scribed in (Schabes and Shieber, 1994), so it
can be applied as a t ransducer during recogni-
tion, or as a post-process on a derivation forest
(Vijay-Shanker and Weir, 1993). Once the de-
sired dependencies are obtained, the forest may
be filtered to select a single most-preferred tree
using statistics or rule-based selectional restric-
tions on those dependencies. 4

For calculating dependencies, we define a
function arg(~) to re turn the argument posi-
tion associated with a substi tution site or foot
node ~? in elementary tree V. Let a dependency
be defined as a labeled arc (¢, l, ~b), from predi-
cate ¢ to predicate ¢ with label I.

• For each tree selected by ¢, set the predi-
cate variable of each anchor item to ¢.

3See (Joshi and Vijay-Shanker, 1999) for a complete
description.

4See (Schuler, 1998) for a discussion of statistically
filtering TAG forests using semantic dependencies.

• For each s u b s t i t u t i o n of initial tree a¢
with predicate variable w into "),¢ at node
address U, emit (¢, arg(v , r/), w)

• For each m o d i f i e r a d j u n c t i o n of auxil-
iary tree/3¢ into tree V¢ with predicate vari-
able X, emit (¢, arg(p, FOOT), X) and set
the predicate variable of the composed i tem
to X.

• For each p r e d i c a t i v e a d j u n c t i o n of aux-
iliary tree /3¢ with predicate variable w
into tree "),¢ with predicate variable X, emit
(¢, arg(/3, FOOT), X) and set the predicate
variable of the composed item to w.

• For all other productions, propagate the
predicate variable up along the pa th from
the main anchor to the root.

Since the number of possible values for the
additional predicate variable field is bounded
by n, where n is the number of lexical items
in the input sentence, and none of the produc-
tions combine more than one predicate variable,
the complexity of the dependency transducing
algorithm is O(nT).

This algorithm can be applied to the example
derivation tree in Section 1,

a:fly
I

/31 :be-able-to(VP)
I

/32 :is-supposed-to(VP)

which resembles the stacked derivation tree for
Candito and Kahane's example 5a, "Paul claims
Mary said Peter left."

First, we adjoin/32 :is-supposed-to at node VP
of/31 :be-able-to, which produces the dependency
(is-supposed-to,0,be-able-to}. Then we adjoin
~31:be-able-to at node VP of a:fly, which pro-
duces the dependency (be-able-to,0,fly). The
resulting dependencies are represented graphi-
Cally in the dependency structure below:

¢0 :supposed-to
I

¢] :be-able-to(0)
I

¢2:fly(0)

This example is relatively straightforward,
simply reversing the direction of adjunction de-
pendencies as described in (Candito and Ka-
hane, 1998a), but this algorithm can t ransduce

9 1

the correct isomorphic dependency structure for
the Portuguese derivation as well, similar to the
distributed derivation tree in Candito and Ka-
hane's example 5b, "Paul claims Mary seems to
adore hot dogs," (Rambow et al., 1995), where
there is no edge corresponding to the depen-
dency between the raising and bridge verbs:

c~:voar

81:~-capaz-de(VP) ~2:fi-pressuposto-que(S)

We begin by adjoining ~1 :g-capaz-de at node
VP of c~:voar, which produces the dependency
(~-capaz-de, 0,voar), just as before. Then we ad-
join p2:~-pressuposto-que at node S of c~:voar.
This time, however, we must observe the predi-
cate variable of the chart item for c~:voar which
was updated in the previous adjunction, and
now references ~-capaz-de instead of voar. Be-
cause the transduction rule for adjunction uses
the predicate variable of the parent instead of
just the predicate, the dependency produced by
the adjunetion of ~2 is (~-pressuposto-que, 0,~-
capaz-de), yielding the graph:

As Candito and Kahane point out, this
derivation tree does not match the dependency
structure of the sentence as described in Mean-
ing Text Theory (Mel'cuk, 1988), because there
is no edge in the derivation corresponding to
the dependency between surprise and have-to
(the necessity of Paul 's staying is what surprises
Mary, not his staying in itself). Using the above
algorithm, however, we can still produce the de-
sired dependency structure:

¢1 :surprise

¢2:have-to(0) Cs:Mary(1)
I

Ca:stay(0)
I

¢4:Paul(0)

by adjoining fl:have-to at node VP of c~2:stay
to produce a composed item with have-to as
its predicate variable, as well as the depen-
dency (have-to, 0,stay/. When a2:stay substi-
tutes at node So of c~l:surprise, the resulting
dependency also uses the predicate variable of
the argument, yielding (surprise, 0,have-to).

¢0 :~-pressuposto-que
I

¢1 :~-capaz-de(0)
I

¢2:voar(0)

The derivation examples above only address
the preservation of dependencies through ad-
junction. Let us now at tempt to preserve
both subst i tut ion and adjunction dependencies
in transducing a sentence based on Candito and
Kahane's example 5c, "That Paul has to stay
surprised Mary," in order to demonstrate how
they interact. 5 We begin with the derivation
tree:

al :surprise

c~2 :stay(S0) c~4 :Mary(NPl)

c~a:Paul(NP0) ~:have-to(VP)

5We have replaced want to in the original example
with have to in order to highlight the dependency struc-
ture and set aside any translation issues related to PRO
control.

4 O b t a i n i n g T a r g e t D e r i v a t i o n s

Once a source derivation is selected from the
parse forest, the predicate-argument dependen-
cies can be read off from the items in the forest
that constitute the selected derivation. The re-
sulting dependency graph can then be mapped
to a forest of target derivations, where each
predicate node in the source dependency graph
is linked to a set of possible elementary trees in
the target grammar, each of which is instanti-
ated with substi tution or adjunction edges lead-
ing to other linked sets in the forest. The el-
ementary trees in the target forest are deter-
mined by the predicate pairs in the transfer lex-
icon, and by the elementary trees that can re-
alize the translated targets. The subst i tut ion
and adjunction edges in the target forest are
determined by the argument links in the trans-
fer lexicon, and by the substi tut ion and adjunc-
tion configurations that can realize the trans-
lated targets' dependencies.

Mapping dependencies into substi tutions is
relatively straightforward, but we have seen in
Section 2 that different adjunction configura-
tions (such as the raising and bridge verb ad-

9 2

junctions in sentences (1) and (2)) can corre-
spond to the same dependency graph, so we
should expect that some dependencies in our
target graph may correspond to more than one
adjunction configuration in the target deriva-
tion tree. Since a dependency may be realized
by adjunctions at up to n different sites, an un-
constrained algorithm would require exponen-
tial t ime to find a target derivation in the worst
case. In order to reduce this complexity, we
present a dynamic programming algorithm for
constructing a target derivation forest in t ime
proportional to O(n 4) which relies on a restric-
tion that the target derivations must preserve
the relative scope ordering of the predicates in
the source dependency graph.

This restriction carries the linguistic implica-
tion that the scope ordering of adjuncts is part
of the meaning of a sentence and should not
be re-arranged in translation. Since we exploit
a notion of locality similar to that of Isomor-
phic Synchronous TAG, we should not expect
the generative power of our definition to exceed
the generative power of TAG, as well.

First, we define an ordering of predicates on
the source dependency graph corresponding to a
depth-first traversal of the graph, originating at
the predicate variable of the root of the source
derivation, and visiting arguments and modi-
fiers in order from lowest to highest scope. In
other words, arguments and modifiers will be
ordered from the bot tom up on the elementary
tree s t ructure of the parent, such that the foot
node argument of an elementary tree has the
lowest scope among the arguments, and the first
adjunct on the main (trunk) anchor has the low-
est scope among the modifiers.

Arguments, which can safely be permuted
in translation because their number is finitely
bounded, are traversed entirely before the par-
ent; and modifiers, which should not be per-
muted because they may be arbitrarily numer-
ous, are traversed entirely after the parent.
This enumerat ion will roughly correspond to
the scoping order for the adjuncts in the source
derivation, while preventing substi tuted trees
from interrupting possible scoping configura-
tions. We can now identify all the descendants
of any elementary tree in a derivation because
they will form a consecutive series in the enu-
meration described above. It therefore provides

a convenient way to generate a target derivation
forest that preserves the scoping information in
the source, by 'parsing' the scope-ordered string
of elementary trees, using indices on this enu-
meration instead of on a string yield.

It is important to note that in defining this
algorithm, we assume that all trees associated
with a particular predicate will use the same
argument structure as that predicate. 6 We also
assume that the set of trees associated with a
particular predicate may be filtered by transfer-
ring information such as mood and voice from
source to target predicates.

Apart from the different use of indices, the
algorithm we describe is exactly the reverse of
the transducer described in Section 3, taking
a dependency graph 79 and producing a TAG
derivation forest containing exactly the set of
derivation trees for which those dependencies
hold. Here, as in a parsing algorithm, we define
forest items as tuples of (~/¢, 'q, _1_, i , j , X) where
a, ~, and 7 are elementary trees with node'O, ¢
and ¢ are predicates, X and w be predicate vari-
ables, and T and _1_ are delimiters tbr opening
and closing adjunction, but now let i, j , and k
refer to the indices on the scoping enumerat ion
described above, instead of on an input string.
In order to reconcile scoping ranges for substi-
tution, we must also define a function f i rs t (C)
to re turn the leftmost (lowest) edge of the ¢'s
range in the scope enumeration, and last(C) to
re turn the rightmost (highest) edge of the ¢'s
range in the scope enumeration.

• For each tree 7 mapped from predicate ¢
at scope i, introduce (~,¢, f i rs t (C) , i + 1, ¢}.

• If (¢,arg(7,~),co) E 79,
t ry s u b s t i t u t i o n of c~ into 3':

(c~¢, ROOT, T, first(co), last(co), co)
7, ±, , , -)

~Although this does not hold for certain relative
clause elementary trees with wh-extractions as substi-
tutions sites (since the wh-site is an argument of the
main verb of the clause instead of the foot node), Can-
dito and Kahane (Candito and Kahane, 1998b) suggest
an alternative analysis which can be extended to TAG
by adjoining the relative clause into its wh-word as a
predicative adjunct, and adjoining the wh-word into the
parent noun phrase as a modifier, so the noun phrase is
treated as an argument of the wh-word rather than of
the relative clause.

93

• If (¢, arg(/3, FOOT), X) E 79,
t ry m o d i f i e r a d j u n c t i o n of fl into -),:

(V~,~h_l_,i,j,x) (/3¢,ROOT, T , j , k ,w)
(V¢, ~, -l-, i, k, x)

• If (¢, arg(/3, FOOT), X) E 79,
t ry p r e d i c a t i v e a d j u n c t i o n of/3 into V:

(V¢,~,_I_,i,j,x) (/3¢,ROOT, T , j , k ,w)
(V¢,~,T,i ,k,w)

• Apply productions for nonterminal projec-
tion as in the t ransducer algorithm, prop-
agating index ranges and predicative vari-
ables up along the pa th from the main an-
chor to the root.

Since none of the productions combine more
than three indices and one predicate variable,
and since the indices and predicate variable may
have no more than n distinct values, the algo-
r i thm runs in O(n 4) time. Note that one of
the indices may be redundant with the predi-
cate variable, so a more efficient implementat ion
might be possible in dO(n3).

We can demonstra te this algorithm by trans-
lating the English dependency graph from Sec-
tion 1 into a derivation tree for Portuguese.
First, we enumerate the predicates with their
relative scoping positions:

[3] ¢0:is-supposed-to
I

[2] ¢l:be-able-to
I

[i] ¢2:fly

Then we construct a derivation forest based
on the t ranslated elementary trees a:voar,/31 :d-
capaz-de, and /32 :d-pressuposto-que. Beginning
at the bot tom, we assign to these constituents
the relative scoping ranges of 1-2, 2-3, and 3-$,
respectively, where $ is a terminal symbol.

There is also a dependency from is-supposed-
to to be-able-to allowing us to adjoin /32:d-
pressuposto-que to /31:d-capaz-de to make it
cover the range from 2 to $, but there would
be no S node to host its adjunction, so this pos-
sibility can not be added to the forest. We can,
however, adjoin/32:d-pressuposto-que to the in-
stance of a:voar extending to/31 :d-capaz-de that
covers the range from 1 to 3, resulting in a com-
plete analysis of the entire scope from 1 to $,
(from (~:voar to/32:pressuposto) rooted on voar:

(O~voar, l ,2 , . .) (/3capaz, 2, 3, ..) (/3press, 3, $, ..)
<O~voar ' 1, 3, capaz)

<avoar, 1, $, press}

which matches the distr ibuted derivation tree
where both auxiliary trees adjoin to roar.

[1-$]a:voar

[2-3]/31:6-capaz-de(VP) [3-$]~2:6-pressup.-que(S)

Let us compare this to a translat ion using the
same dependency structure, but different words:

[3] ¢0 :is-going-to
I

[2] ¢l :be-able-to
I

[1] ¢2:fly

Once again we select trees in the target lan-
guage, and enumerate them with scoping ranges
in a pre-order traversal, but this t ime the con-
struction at scope position 3 must be t ranslated
as a raising verb (vai) instead of as a bridge con-
struction (d-pressuposto-que):

(avoar, l,2,..> (/3capaz,2,3,..> (/3vai,3,$,..>

(avoar, l,2,..) (/3capaz,2,3,..> (/3press, 3,$,..>

Since there is a dependency from be-able-to to
fly, we can adjoin/31:d-capaz-de to a:voar such
that it covers the range of scopes from 1 to 3
(from roar to d-capaz-de), so we add this possi-
bility to the forest.

Although we can still adjoin/31 :ser-capaz-de at
the VP node of a:voar, we will have nowhere
to adjoin /32:vai, since the VP node of a:voar
is now occupied, and only one predicative tree
may adjoin at any node. 7

(avoar, 1, 2,..) (t3capaz, 2, 3, ..) (/3vai, 3, $, ..)
(avoar, 1, 3, capaz>

(avoar , l , 2, ..) (/3capaz, 2, 3, -.) (/3;ress, 3,$, . .)
(avoar, 1, 3, capaz)

7See (Schabes and Shieber, 1994) for the motivations
of this restriction.

94

Fortunately, we can also realize the depen-
dency between vai and ser-capaz-de by adjoin-
ing/32 :vai at the VP.

<avo r, l, 2, ..) <13capaz, 2, 3, ..) (/3va , 3, $, ..)
< capaz, 2, $, vai)

The new instance spanning from 2 to $ (from
~1 :capaz to/32 :vai) can then be adjoined at the
VP node of roar, to complete the derivation.

(avoar , 1, 2, ..) (flcapaz, 2, 3,..) (~vai, 3, $,..)
(~cap~z, 2, $, vai)

(Olvoar , 1, $, vai)

This corresponds to the stacked derivation,
with p2:vai adjoined to t31:ser-capaz-de and
1~1 :ser-capaz-de adjoined to a:voar:

[1-$] a:voar
I

[2-$] ~1 :ser-capaz-de(VP)
I

[3-$] ~2 :vai(VP)

5 C o n c l u s i o n

We have presented two algorithms - one for in-
terpreting a derivation forest as a semantic de-
pendency graph, and the other for realizing a
semantic dependency graph as a derivation for-
est - that make use of semantic dependencies as
adapted from the notion of predicate-argument
a t tachment in (Joshi and Vijay-Shanker, 1999),
and we have described how these algorithms can
be run together in a synchronous TAG trans-
lation system, in CO(n 7) time, using transfer
rules predicated on isomorphic or locally non-
isomorphic dependency graphs rather than iso-
morphic or locally non-isomorphic derivation
trees. We have also demonstra ted how such
a system would be necessary in translating a
real-world example that is isomorphic on de-
pendency graphs bu t globally non-isomorphic
on derivation trees. This system is currently
be ing implemented as part of the Xtag project
at the Universi ty of Pennsylvania, and as nat-
ural language interface in the Human Modeling
and Simulation project, also at Penn.

R e f e r e n c e s

Anne Abeill6, Yves Schabes, and Aravind K. Joshi.
1990. Using lexicalized tree adjoining grammars
for machine translation. In Proceedings of the

13th International Conference on Coraputatio'nal
Linguistics (COLING '90), Helsinki, Finland, Au-
gust.

Marie-Helene Candito and Sylvain Kahane. 1998a.
Can the TAG derivation tree represent a semantic
graph? In Proceedings of the TAG+4 Workshop,
University of Pennsylvania, August.

Marie-Helene Candito and Sylvain Kahane. 1998b.
Defining DTG derivations to get semantic graphs.
In Proceedings of the TAG+~ Workshop, Univer-
sity of Pennsylvania, August.

Aravind Joshi and K. Vijay-Shanker. 1999. Com-
positional Semantics with Lexicalized Tree-
Adjoining Grammar (LTAG): How Much Under-
specification is Necessary? In Proceedings of the
2nd International Workshop on Computational
Semantics.

Aravind K. Joshi. 1985. How much context sensitiv-
ity is necessary for characterizing structural de-
scriptions: Tree adjoining grammars. In L. Kart-
tunen D. Dowty and A. Zwicky, editors, Natural
language parsing: Psychological, computational
and theoretical perspectives, pages 206-250. Cam-
bridge University Press, Cambridge, U.K.

Anthony S. Kroch. 1989. Asymmetries in long dis-
tance extraction in a TAG grammar. In M. Baltin
and A. Kroch, editors, Alternative Conceptions
of Phrase Structure, pages 66-98. University of
Chicago Press.

Igor Mel'cuk. 1988. Dependency syntax: theory and
practice . State University of NY Press, Albany.

Owen Rainbow and Giorgio Satta. 1996. Syn-
chronous Models of Language. In Proceedings of
the 34th Annual Meeting of the Association for
Computational Linguistics (A CL '96).

Owen Rambow, David Weir, and K. Vijay-Shanker.
1995. D-tree grammars. In Proceedings of the
33rd Annual Meeting of the Association for Com-
putational Linguistics (A CL '95).

Yves Schabes and Stuart M. Shieber. 1994. An al-
ternative conception of tree-adjoining derivation.
Computational Linguistics, 20(1):91-124.

William Schuler. 1998. Expoiting semantic depen-
dencies in parsing. Proceedings of the TAG+4
Workshop.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree adjoining grammars. In Proceedings
of the 13th International Conference on Compu-
tational Linguistics (COLING '90), Helsinki, Fin-
land, August.

Stuart M. Shieber. 1994. Restricting the weak-
generative capability of synchronous tree adjoin-
ing grammars. Computational Intelligence, 10(4).

K. Vijay-Shanker and D.J. Weir. 1993. The use of
shared forests in tree adjoining grammar parsing.
In Proceedings of EA CL '93, pages 384-393.

95

