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Abstract

Grammars for machine translation can be
materialized on demand by finding source
phrases in an indexed parallel corpus and
extracting their translations. This approach
is limited in practical applications by the
computational expense of online lookup and
extraction. For phrase-based models, recent
work has shown that on-demand grammar
extraction can be greatly accelerated by
parallelization on general purpose graphics
processing units (GPUs), but these algorithms
do not work for hierarchical models, which
require matching patterns that contain gaps.
We address this limitation by presenting
a novel GPU algorithm for on-demand
hierarchical grammar extraction that is at
least an order of magnitude faster than a
comparable CPU algorithm when processing
large batches of sentences. In terms of
end-to-end translation, with decoding on the
CPU, we increase throughput by roughly
two thirds on a standard MT evaluation
dataset. The GPU necessary to achieve these
improvements increases the cost of a server
by about a third. We believe that GPU-based
extraction of hierarchical grammars is an
attractive proposition, particularly for MT
applications that demand high throughput.

1 Introduction

Most machine translation systems extract a large,
fixed translation model from parallel text that is
accessed from memory or disk. An alternative is to
store the indexed parallel text in memory and extract
translation units on demand only when they are

needed to decode new input. This architecture has
several advantages: It requires only a few gigabytes
to represent a model that would otherwise require a
terabyte (Lopez, 2008b). It can adapt incrementally
to new training data (Levenberg et al., 2010), mak-
ing it useful for interactive translation (González-
Rubio et al., 2012). It supports rule extraction that is
sensitive to the input sentence, enabling leave-one-
out training (Simianer et al., 2012) and the use of
sentence similarity features (Philips, 2012).

On-demand extraction can be slow, but for
phrase-based models, massive parallelization on
general purpose graphics processing units (GPUs)
can dramatically accelerate performance. He et al.
(2013) demonstrated orders of magnitude speedup
in exact pattern matching with suffix arrays, the
algorithms at the heart of on-demand extraction
(Callison-Burch et al., 2005; Zhang and Vogel,
2005). However, some popular translation models
use “gappy” phrases (Chiang, 2007; Simard et al.,
2005; Galley and Manning, 2010), and the GPU
algorithm of He et al. does not work for these
models since it is limited to contiguous phrases.
Instead, we need pattern matching and phrase
extraction that is able to handle variable-length
gaps (Lopez, 2007).

This paper presents a novel GPU algorithm for
on-demand extraction of hierarchical translation
models based on matching and extracting gappy
phrases. Our experiments examine both grammar
extraction and end-to-end translation, comparing
quality, speed, and memory use. We compare
against the GPU system for phrase-based translation
by He et al. (2013) and cdec, a state-of-the-art
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CPU system for hierarchical translation (Dyer et
al., 2010). Our system outperforms the former
on translation quality by 2.3 BLEU (replicating
previously-known results) and outperforms the latter
on speed, improving grammar extraction throughput
by at least an order of magnitude on large batches
of sentences while maintaining the same level of
translation quality. Our contribution is to show,
complete with an open-source implementation,
how GPUs can vastly increase the speed of
hierarchical grammar extraction, particularly for
high-throughput MT applications.

2 Algorithms

GPU architectures, which are optimized for mas-
sively parallel operations on relatively small streams
of data, strongly influence the design of our algo-
rithms, so we first briefly review some key proper-
ties. Our NVIDIA Tesla K20c GPU (Kepler Gen-
eration) provides 2496 thread processors (CUDA
cores), and computation proceeds concurrently in
groups of 32 threads called warps. Each thread in
a warp carries out identical instructions in lockstep.
When a branching instruction occurs, only threads
meeting the branch condition execute, while the
rest idle—this is called warp divergence and is a
source of poor performance. Consequently, GPUs
are poor at “irregular” computations that involve
conditionals, pointer manipulation, and complex
execution sequences.

Our pattern matching algorithm is organized
around two general design principles: brute force
scans and fine-grained parallelism. Brute force array
scans avoid warp divergence since they access data
in regular patterns. Rather than parallelize larger
algorithms that use these scans as subroutines, we
parallelize the scans themselves in a fine-grained
manner to obtain high throughput.

The relatively small size of the GPU memory also
affects design decisions. Data transfer between the
GPU and the CPU has high latency, so we want
to avoid shuffling data as much as possible. To
accomplish this, we must fit all our data structures
into the 5 GB memory available on our particular
GPU. As we will show, this requires some tradeoffs
in addition to careful design of algorithms and
associated data structures.

2.1 Translation by Pattern Matching

Lopez (2008b) provides a recipe for “translation by
pattern matching” that we use as a guide for the
remainder of this paper (Algorithm 1).

Algorithm 1 Translation by pattern matching
1: for each input sentence do
2: for each phrase in the sentence do
3: Find its occurrences in the source text
4: for each occurrence do
5: Extract any aligned target phrase
6: for each extracted phrase pair do
7: Compute feature values
8: Decode as usual using the scored rules

We encounter a computational bottleneck in lines
2–7, since there are many query phrases, matching
occurrences, and extracted phrase pairs to process.
Below, we tackle each challenge in turn.

To make our discussion concrete, we will use a
toy English-Spanish translation example. At line 3
we search for phrases in the source side of a parallel
text. Suppose that it contains two sentences: it makes
him and it mars him, and it sets him on and it takes
him off. We map each unique word to an integer id,
and call the resulting array of integers that encodes
the source text under this transformation the text
T . Let |T | denote the total number of tokens, T [i]
denote its ith element, and T [i]...T [j] denote the
substring starting with its ith element and ending
with its jth element. Since T encodes multiple
sentences, we use special tokens to denote the end of
a sentence and the end of the corpus. In our example
we use # and $, respectively, as shown in Figure 1.
Now suppose we want to translate the sentence it
persuades him and it disheartens him. We encode it
under the same mapping as T and call the resulting
array the query Q.

Our goal is to materialize all of the hierarchical
phrases that could be used to translate Q based on
training data T . Our algorithm breaks this process
into a total of 14 distinct passes, each performing a
single type of computation in parallel. Five of these
passes are based on the algorithm described by He
et al. (2013), and we review them for completeness.
The nine new passes are identified as such.
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i T [i]
1 #
2 it
3 makes
4 him
5 and
6 it
7 mars
8 him
9 #

10 it
11 sets
12 him
13 on
14 and
15 it
16 takes
17 him
18 off
19 #
20 $

ST [i] suffix ST [i]: T [ST [i]]...T [|T |]
5 and it mars him # it sets him on and it takes him off # $

14 and it takes him off # $
4 him and it mars him # it sets him on and it takes him off # $

17 him off # $
12 him on and it takes him off # $
8 him # it sets him on and it takes him off # $
2 it makes him and it mars him # it sets him on and it takes him off # $
6 it mars him # it sets him on and it takes him off # $

10 it sets him on and it takes him off # $
15 it takes him off # $
3 makes him and it mars him # it sets him on and it takes him off # $
7 mars him # it sets him on and it takes him off # $

18 off # $
13 on and it takes him off # $
11 sets him on and it takes him off # $
16 takes him off # $
1 # it makes him and it mars him # it sets him on and it takes him off # $
9 # it sets him on and it takes him off # $

19 # $
20 $

Figure 1: Example text T (showing words rather than than their integer encodings for clarity) and suffix
array ST with corresponding suffixes.

2.2 Finding Every Phrase

Line 3 of Algorithm 1 searches T for all occurrences
of all phrases in Q. We call each phrase a pattern,
and our goal is to find all phrases of T that match
each pattern, i.e., the problem of pattern matching.
Our translation model permits phrases with at most
two gaps, soQ is a source ofO(|Q|6) patterns, since
there are up to six possible subphrase boundaries.

Passes 1-2: Finding contiguous patterns
To find contiguous phrases (patterns without gaps),
we use the algorithm of He et al. (2013). It requires
a suffix array (Manber and Myers, 1990) computed
from T . The ith suffix of a 1-indexed text T is
the substring T [i]...T [|T |] starting at position i and
continuing to the end of T . The suffix array ST is
a permutation of the integers 1, ..., |T | ordered by
a lexicographic sort of the corresponding suffixes
(Figure 1). Given ST , finding a pattern P is simply
a matter of binary search for the pair of integers
(`, h) such that for all i from ` to h, P is a prefix
of the ST [i]th suffix of T . Thus, each integer ST [i]

identifies a unique match of P . In our example, the
pattern it returns (7, 10), corresponding to matches
at positions 2, 6, 10, and 15; while him and it returns
(3, 3), corresponding to a match at position 4. A
longest common prefix (LCP) array enables us to
find h or ` inO(|Q|+log |T |) comparisons (Manber
and Myers, 1990).

Every substring ofQ is a contiguous pattern, but if
we searched T for all of them, most searches would
fail, wasting computation. Instead, He et al. (2013)
use two passes. The first computes, concurrently
for every position i in 1, ..., |Q|, the endpoint j of
the longest substring Q[i]...Q[j] that appears in T .
It also computes the suffix array range of the one-
word substring Q[i]. Taking this range as input,
for all k from i to j the second pass concurrently
queries T for pattern Q[i]...Q[k]. This pass uses
two concurrent threads per pattern—one to find the
lowest index of the suffix array range, and one to
find the highest index.

Passes 3-4: Finding one-gap patterns (New)
Passes 1 and 2 find contiguous phrases, but we must
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also find phrases that contain gaps. We use the
special symbol ? to denote a variable-length gap.
The set of one-gap patterns in Q thus consists of
Q[i]...Q[j] ? Q[i′]...Q[j′] for all i, j, i′, and j′ such
that i ≤ j < i′ − 1 and i′ ≤ j′. When the position
in Q is not important we use strings u, v, and w
to denote contiguous patterns; for example, u ? v
denotes an arbitrary one-gap pattern. We call the
contiguous strings u and v of u ? v its subpatterns,
e.g., it ? him is a pattern with subpatterns it and him.

When we search for a gappy pattern, ? can match
any non-empty substring of T that does not contain
$ or #. Such a match may not be uniquely identified
by the index of its first word, so we specify it
with a tuple of indices, one for the match of each
subpattern. Pattern it ? him has six matches in T :
(2, 4), (2, 8), (6, 8), (10, 12), (10, 17), and (15, 17).
Passes 3 and 4 search T for all one-gap patterns
using the novel GPU algorithm described below.

A pattern u ? v cannot match in T unless both
u and v match in T , so we use the output of pass
1, which returns all (i, j) pairs such that Q[i]...Q[j]
matches in T . Concurrently for every such i and
j, pass 3 enumerates all i′ and j′ such that j <
i′ − 1 and Q[i′]...Q[j′] matches in T , returning each
pattern Q[i]...Q[j] ? Q[i′]...Q[j′]. Pass 3 then sorts
and deduplicates the combined results of all threads
to obtain a set of unique patterns. These operations
are carried out on the GPU using the algorithms of
Hoberock and Bell (2010).

Pass 4 searches for matches of each pattern iden-
tified by pass 3. We first illustrate with it ? him.
Pass 2 associates it with suffix array range (7, 10).
A linear scan of ST in this range reveals that it
matches at positions 2, 6, 10, and 15 in T . Likewise,
him maps to range (3, 6) of ST and matches at 4,
17, 12, and 8 in T . Concurrently for each match
of the less frequent subpattern, we scan T to find
matches of the other subpattern until reaching a
sentence boundary or the maximum phrase length,
an idea we borrow from the CPU implementation of
Baltescu and Blunsom (2014). In our example, both
it and him occur an equal number of times, so we
arbitrarily choose one—suppose we choose it. We
assign each of positions 2, 6, 10, and 15 to a separate
thread. The thread assigned position 2 scans T for
matches of him until the end of sentence at position
9, finding matches (2, 4) and (2, 8).

As a second example, consider it ? and. In this
case, it has four matches, but and only two. So,
we need only two threads, each scanning backwards
from matches of and. Since most patterns are
infrequent, allocating threads this way minimizes
work. However, very large corpora contain one-gap
patterns for which both subpatterns are frequent. We
simply precompute all matches for these patterns
and retrieve them at runtime, as in Lopez (2007).
This precomputation is performed once given T and
therefore it is a one-time cost.

Materializing every match of u ? v would con-
sume substantial memory, so we only emit those for
which a translation of the substring matching ? is
extractable using the check in §2.3. The success
of this check is a prerequisite for extracting the
translation of u ? v or any pattern containing it, so
pruning in this way conserves GPU memory without
affecting the final grammar.

Passes 5-7: Finding two-gap patterns (New)
We next find all patterns with two gaps of the form
u ? v ? w. The search is similar to passes 3 and 4. In
pass 5, concurrently for every pattern u ? v matched
in pass 4, we enumerate the pattern u?v?w for every
w such that u?v?w is a pattern inQ and w matched
in pass 1. In pass 6, concurrently for every match
(i, j) of u ? v for every u ? v ?w enumerated in pass
5, we scan T from position j + |v| + 1 for matches
of w until we reach the end of sentence. As with
the one-gap patterns, we apply the extraction check
on the second ? of the two-gap patterns u ? v ? w to
avoid needlessly materializing matches that will not
yield translations.

2.3 Extracting Every Target Phrase

In line 5 of Algorithm 1 we must extract the aligned
translation of every match of every pattern found in
T . Efficiency is crucial since some patterns may
occur hundreds of thousands of times.

We extract translations from word alignments
using the consistency check of Och et al. (1999).
A pair of substrings is consistent only if no word
in either substring is aligned to any word outside
the pair. For example, in Figure 2 the pair (it sets
him on, los excita) is consistent. The pair (him on
and, los excita y) is not, because excita also aligns
to the words it sets. Only consistent pairs can be
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L R P
# 9 7
it 10 2 2 1

sets 11 2 2 2
him 12 1 1 3

on 13 2 2 4
and 14 3 3 5

it 15 5 5 6
takes 16 5 5 7
him 17 4 4 8
off 18 5 5 9

8 9 10 11 12

L′ 3 1 5 8 6
R′ 3 4 5 8 9

Figure 2: An example alignment and the corre-
sponding L, R, P , L′ and R′ arrays.

translations of each other in our model.
Given a specific source substring, our algorithm

asks: is it part of a consistent pair? To answer
this question, we first compute the minimum target
substring to which all words in the substring align.
We then compute the minimum substring to which
all words of this candidate translation align. If this
substring matches the input, the candidate transla-
tion is returned; otherwise, extraction fails. For
example, it sets him on in range (10, 13) aligns to los
excita in range (8, 9), which aligns back to (10, 13).
So this is a consistent pair. However, him on and in
range (12, 14) aligns to los excita y in range (8, 10),
which aligns back to it sets him on and at (10, 14).
So him on and is not part of a consistent pair and has
no extractable translation.

To extract gappy translation units, we subtract
consistent pairs from other consistent pairs (Chiang,
2007). For example, (him, los) is a consistent pair.
Subtracting it from (it sets him on, los excita) yields
the translation unit (it sets ? on, ? excita).

Our basic building block is the EXTRACT func-
tion of He et al. (2013), which performs the above
check using byte arrays denoted L, R, P , L′, and
R′ (Figure 2) to identify extractable target phrases
in target text T ′. When T [i] is a word, L[i] and R[i]

store the sentence-relative positions of the leftmost
and rightmost words it aligns to in T ′, and P [i]
stores T [i]’s sentence-relative position. When T [i] is
a sentence boundary, the concatenation of bytesL[i],
R[i], and P [i], denoted LRP [i], stores the position
of the corresponding sentence in T ′. Bytes L′[i′]
and R′[i′] store the sentence-relative positions of the
leftmost and rightmost words T ′[i′] aligns to.

We first calculate the start position p of the source
sentence containing T [i]...T [j], and the start posi-
tion p′ of the corresponding target sentence:

p = i− P [i]

p′ = LRP [p]

We then find target indices i′ and j′ for the candidate
translation T ′[i′]...T ′[j′]:

i′ = p′ + min
k∈i,...,j

L[k]

j′ = p′ + max
k∈i,...,j

R[k]

We can similarly find the translation T [i′′]...T [j′′] of
T ′[i′]...T ′[j′]:

i′′ = p+ min
k′∈i′,...,j′

L′[k′]

j′′ = p+ max
k′∈i′,...,j′

R′[k′]

If i = i′′ and j = j′′, EXTRACT(i, j) returns (i′, j′),
the position of T [i]...T [j]’s translation. Otherwise
the function signals that there is no extractable
translation. Given this function, extraction proceeds
in three passes.

Pass 8: Extracting contiguous patterns
Each match of pattern u is assigned to a concurrent
thread. The thread receiving the match at position i
returns the pair consisting of u and its translation
according to EXTRACT(i, i + |u| − 1), if any. It
also returns translations for patterns in which u is
the only contiguous subpattern: ? u, u ?, and ? u ?.
We extract translations for these patterns even if u
has no translation itself. To see why, suppose that
we reverse the translation direction of our example.
In Figure 2, excita is not part of a consistent pair, but
both ? excita and ? excita ? are.

Consider ? u. Since ? matches any substring in T
without boundary symbols, the leftmost position of
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? u is not fixed. So, we seek the smallest match with
an extractable translation, returning its translation
with the following algorithm.

1: k ← i
2: while T [k − 1] 6= # do
3: k ← k − 1
4: if EXTRACT(k, i+ |u| − 1) succeeds then
5: (i′, j′)← EXTRACT(k, i+ |u| − 1)
6: if EXTRACT(k, i− 1) succeeds then
7: (p′, q′)← EXTRACT(k, i− 1)
8: return T ′[i′]...T ′[p′] ? T ′[q′]...T ′[j′]

9: if T [k − 1] = # then
10: return failure

The case of u ? is symmetric.
We extend this algorithm to handle ? u ?. The

extension considers increasingly distant pairs (k, `)
for which ? u ? matches T [k]...T [`], until it either
finds an extractable translation, or it encounters both
sentence boundaries and fails.

Pass 9: Extracting one-gap patterns (New)
In this pass, each match of pattern u ? v is
assigned to a thread. The thread receiving match
(i, j) attempts to assign i′, j′, p′ and q′ as follows.

(i′, j′) = EXTRACT(i, j + |v| − 1)

(p′, q′) = EXTRACT(i+ |u|, j − 1)

If both calls succeed, we subtract to obtain the
translation T ′[i′]...T ′[p′] ? T ′[q′]...T ′[j′]. We extract
translations for ? u ? v and u ? v ?, using the same
algorithm as in pass 7.

Pass 10: Extracting two-gap patterns (New)
In this pass, we extract a translation for each match
of u ? v ? w concurrently, using a straightforward
extension of the subtraction algorithm in pass 8.
Since we only need patterns with up to two gaps,
we do not consider other patterns.

To optimize GPU performance, for the passes above,
we assign all matches of a gappy pattern to the same
thread block. This allows threads in the same thread
block to share the same data during initialization,
therefore improving memory access coherence.

2.4 Computing Every Feature
In line 7 of Algorithm 1 we compute features of
every extracted phrase pair. We use α and β to

denote arbitrary strings of words and ? symbols, and
our input is a multiset of (α, β) pairs collected by
passes 7-9, which we denote by Π. We compute the
following features for each unique (α, β) pair.

Log-count features. We need two aggregate statis-
tics: The count of (α, β) in Π, and the count of all
pairs in Π for which α is the source pattern. We then
compute the two features as log(1 + count(α, β))
and log(1 + count(α)).

Translation log-probability. Given the aggregate
counts above, this feature is log count(α,β)

count(α) .

Singleton indicators. We compute two features,
to indicate whether (α, β) occurs only once, i.e.,
count(α, β) = 1, and whether α occurs only once,
i.e., count(α) = 1.

Lexical weight. Consider word pairs a, bwith a ∈ α,
b ∈ β, and neither a nor b are ?. Given a global word
translation probability table p(a|b), which is exter-
nally computed from the word alignments directly,
the feature is

∑
a∈α maxb∈β log p(a|b).

Since Π is the result of parallel computation, we
must sort it. We can then compute aggregate statis-
tics by keeping running totals in a scan of the
sorted multiset. With many instantiated patterns,
we would quickly exhaust GPU memory, so this
sort is performed on the CPU. We compute the
log-count features, translation log-probability, and
singleton indicators this way. However, the lexical
weight feature is a function only of the aligned
translation pair itself and corresponding word-level
translation possibilities calculated externally from
word alignment. Thus, the computation of this
feature can be parallelized on the GPU. So, we
have multiple feature extraction passes based on the
number of gaps:

Pass 11 (CPU): One-gap features (New).
Pass 12 (CPU): Two-gap features (New).
Pass 13 (CPU): Contiguous features.
Pass 14 (GPU): Lexical weight feature (New).

2.5 Sampling

In serial implementations of on-demand extraction,
very frequent patterns are a major computational
bottleneck (Callison-Burch et al., 2005; Lopez,
2008b). Thus, for patterns occurring more
than n times, for some fixed n (typically
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between 100 and 1000), these implementations
deterministically sample n matches, and only
extract translations of these matches. To compare
with these implementations, we also implement an
optional sampling step. Though we use the same
sampling rate, the samples themselves are not the
same, since our extraction checks in passes 4 and 6
alter the set of matches that are actually enumerated,
thus sampled from. The CPU algorithms do not use
this check.

3 Experimental Setup

We tested our algorithms in an end-to-end Chinese-
English translation task using data conditions simi-
lar to those of Lopez (2008b) and He et al. (2013).
Our implementation of hierarchical grammar extrac-
tion on the GPU, as detailed in the previous section,
is written in C, using CUDA library v5.5 and GCC
v4.8, compiled with the -O3 optimization flag. Our
code is open source and available for researchers to
download and try out.1

Hardware. We used NVIDIA’s Tesla K20c GPU
(Kepler Generation), which has 2496 CUDA cores
and 5 GB memory, with a peak memory bandwidth
of 208 GB/s. The server hosting the GPU has two
Intel Xeon E5-2690 CPUs, each with eight cores at
2.90 GHz (a total of 16 physical cores; 32 logical
cores with hyperthreading). Both were released in
2012 and represent comparable generation hardware
technology. All GPU and CPU experiments were
conducted on the same machine, which runs Red Hat
Enterprise Linux (RHEL) 6.

Training Data. We used two training sets: The first
consists of news articles from the Xinhua Agency,
with 27 million words of Chinese (around one mil-
lion sentences). The second adds parallel text from
the United Nations, with 81 million words of Chi-
nese (around four million sentences).

Test Data. For performance evaluations, we ran
tests on sentence batches of varying sizes: 100, 500,
1k, 2k, 4k, 6k, 8k, 16k and 32k. These sentences are
drawn from the NIST 2002–2008 MT evaluations
(on average 27 words each) and then the Chinese
side of the Hong Kong Parallel Text (LDC2004T08)
when the NIST data are smaller than the target batch

1http://hohocode.github.io/cgx/

size. Large batch sizes are necessary to saturate
the processing power of the GPU. The size of the
complete batch of 32k test sentences is 4892 KB.

Baselines. We compared our GPU implementa-
tion for on-demand extraction of hierarchical gram-
mars against the corresponding CPU implementa-
tion (Lopez, 2008a) found in pycdec (Chahuneau
et al., 2012), an extension of cdec (Dyer et al.,
2010).2 We also compared our GPU algorithms
against Moses (Koehn et al., 2007), representing a
standard phrase-based SMT baseline. Phrase tables
generated by Moses are essentially the same as the
GPU implementation of on-demand extraction for
phrase-based translation by He et al. (2013).

4 Results

4.1 Translation quality
We first verified that our GPU implementation
achieves the same translation quality as the
corresponding CPU baseline. This is accomplished
by comparing system output against the baseline
systems, training on Xinhua, tuning on NIST03,
and testing on NIST05. In all cases, we used
MIRA (Chiang, 2012) to tune parameters. We ran
experiments three times and report the average as
recommended by Clark et al. (2011). Hierarchical
grammars were extracted with sampling at a rate of
300; we also bound source patterns at a length of 5
and matches at a length of 15. For Moses we used
default parameters.

Our BLEU scores, shown in Table 1, replicate
well-known results where hierarchical models out-
perform pure phrase-based models on this task. The
difference in quality is partly because the phrase-
based baseline system does not use lexicalized re-
ordering, which provides similar improvements to
hierarchical translation (Lopez, 2008b). Such lex-
icalized reordering models cannot be produced by
the GPU-based system of He et al. (2013). This
establishes a clear translation quality improvement
between our work and that of He et al. (2013).
2The Chahuneau et al. (2012) implementation is in Cython, a
language for building Python applications with performance-
critical components in C. All of the pattern matching code that
we instrumented for these experiments is compiled to C/C++.
The implementation is a port of the original code written by
Lopez (2008a) in Pyrex, a precursor to Cython. Much of the
code is unchanged.
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System BLEU
Moses phrase-based baseline 31.11
Hierarchical with online CPU extraction 33.37
Hierarchical with online GPU extraction 33.46

Table 1: Comparison of translation quality. The
hierarchical system is cdec. Online CPU extraction
is the baseline, part of the standard cdec package.
Online GPU extraction is this work.

We see that the BLEU score obtained by our GPU
implementation of hierarchical grammar extraction
is nearly identical to cdec’s, evidence that our im-
plementation is correct. The minor differences in
score are due to non-determinism in tuning and the
difference in sampling algorithms (§2.5).

4.2 Extraction Speed

Next, we focus on the performance of the hierar-
chical grammar extraction component, comparing
the CPU and GPU implementations. For both
implementations, our timings include preparation of
queries, pattern matching, extraction, and feature
computation. For the GPU implementation, we
include the time required to move data to and from
the GPU. We do not include time for construction of
static data structures (suffix arrays and indexes) and
initial loading of the parallel corpus with alignment
data, as those represent one-time costs. Note that the
CPU implementation includes indexes for frequent
patterns in the form u ? v and u ? v ? w, while our
GPU implementation indexes only the former.

We compared performance varying the number of
queries, and following Lopez (2008a), we compared
sampling at a rate of 300 against runs without sam-
pling. Our primary evaluation metric is throughput:
the average number of processed words per second
(i.e., batch size in words divided by total time).

We first establish throughput baselines on the
CPU, shown in Table 2. Experiments used different
numbers of threads under different data conditions
(Xinhua or Xinhua + UN), with and without sam-
pling. Our server has a total of 16 physical cores,
but supports 32 logical cores via hyperthreading. We
obtained the CPU sampling results by running cdec
over 16k query sentences. For the non-sampling
runs, since the throughput is so low, we measured

+Sampling −Sampling
threads X X+U X X+U

1 12.7 4.8 0.32 0.05
16 190.7 65.3 4.81 0.70
32 248.1 76.0 6.23 0.89

Table 2: CPU extraction performance (throughput
in words/second) using different numbers of threads
under different data conditions (X: Xinhua, X+U:
Xinhua+UN), with and without sampling.

performance over 2.6k sentences for Xinhua and 500
sentences for Xinhua + UN. We see that throughput
scaling is slightly less than linear: with sampling,
using 16 threads increases throughput by 15× on
the Xinhua data (compared to a single thread) and
13.6× on Xinhua + UN data. Going from 16
to 32 threads further increase throughput by 15%-
30% and saturates the processing capacity of our
server. The 32 thread condition provides a fair
baseline for comparing the performance of the GPU
implementation.

Table 3 shows GPU hierarchical grammar
extraction performance in terms of throughput
(words/second); these results are averaged over
three trials. We varied the number of query
sentences, and in each case, also report the speedup
with respect to the CPU condition with 32 threads.
GPU throughput increases with larger batch sizes
because we are increasingly able to saturate the
GPU and take full advantage of the massive
parallelism it offers. We do not observe this effect
on the CPU since we saturate the processors early.

With a batch size of 100 sentences, the GPU
is slightly slower than the 32-thread CPU imple-
mentation on Xinhua and faster on Xinhua + UN,
both with sampling. Without sampling, the GPU
is already an order of magnitude faster at a batch
size of 100 sentences. At a batch size of 500
sentences, the GPU implementation is substantially
faster than the 32-thread CPU version across all
conditions. With the largest batch size in our exper-
iments of 32k sentences, the GPU is over an order
of magnitude faster than the fully-saturated CPU
with sampling, and over two orders of magnitude
faster without sampling. Although previous work
does not show decreased translation quality due

94



Batch Size
Number of Sentences 100 500 1k 2k 4k 6k 8k 16k 32k

Number of Tokens 2.8k 14.5k 28.8k 57.9k 117.9k 161.9k 214.2k 436.5k 893.9k
+

Sa
m

pl
in

g

Xinhua
Throughput (words/s) 236 667 914 1356 1613 1794 2001 2793 3998

Speedup 1.0× 2.7× 3.7× 5.5× 6.5× 7.2× 8.1× 11.3× 16.1×
Xinhua+UN

Throughput (words/s) 106 223 287 400 454 514 571 709 1016
Speedup 1.4× 2.9× 3.8× 5.3× 6.0× 6.8× 7.5× 9.3× 13.4×

−
Sa

m
pl

in
g

Xinhua
Throughput (words/s) 84 280 405 690 929 1200 1414 2135 3240

Speedup 13× 45× 65× 111× 149× 193× 227× 343× 520×
Xinhua+UN

Throughput (words/s) 19 62 99 172 248 304 357 509 793
Speedup 22× 69× 112× 193× 279× 342× 401× 572× 891×

Table 3: GPU grammar extraction throughput (words/second) under different batch sizes, data conditions,
with and without sampling. Speedup is computed with respect to the CPU baseline running on 32 threads.

+Sampling −Sampling
X X+U X X+U

GPU one-by-one 7.23 4.7 2.39 0.71
CPU single-thread 12.7 4.8 0.32 0.05

Table 4: Sentence-by-sentence GPU grammar
extraction throughput (words/second) vs. a single
thread on the CPU (X: Xinhua, X+U: Xinhua + UN).

to sampling (Callison-Burch et al., 2005; Lopez,
2008b), these results illustrate the raw computa-
tional potential of GPUs, showing that we can elim-
inate heuristics that make CPU processing tractable.
We believe future work can exploit these untapped
processing cycles to improve translation quality.

How does the GPU fare for translation tasks that
demand low latency, such as sentence-by-sentence
translation on the web? To find out, we conducted
experiments where the sentences are fed, one by one,
to the GPU grammar extraction algorithm. Results
are shown in Table 4, with a comparison to a single-
threaded CPU baseline. To be consistent with the
other results, we also measure speed in terms of
throughput here. Note that we are not aware of
any freely available multi-threaded CPU algorithm
to process an individual sentence in parallel, so
the single-thread CPU comparison is reasonable.3

We observe that the GPU is slower only with sam-
pling on the smaller Xinhua data. In all other

3Parallel sub-sentential parsing has been known for many years
(Chandwani et al., 1992) although we don’t know of an
implementation in any major open-source MT systems.

Queries 2k 4k 6k 8k
GPU PBMT 15s 25s 29s 33s
GPU Hiero 43s 73s 90s 107s
Slowdown 2.8× 2.9× 3.1× 3.2×

Table 5: Grammar extraction time comparing this
work (GPU Hiero) and the work of He et al. (2013)
(GPU PBMT).

cases, sentence-by-sentence processing on the GPU
achieves a similar level of performance or is faster.

Next, we compare the performance of hierarchical
grammar extraction to phrase-based extraction on
the GPU with sampling. We replicated the test data
condition of He et al. (2013) so that our first 8k query
sentences are the same as those used in their exper-
iments. The results are shown in Table 5, where
we report grammar extraction time for batches of
different sizes; the bottom row shows the slowdown
of the hierarchical vs. non-hierarchical grammar
conditions. This quantifies the performance penalty
to achieve the translation quality gains reported in
Table 1. Hierarchical grammar extraction is about
three times slower, primarily due to the computa-
tional costs of the new passes presented in §2.

Another aspect of performance is memory foot-
print. We report the memory use (CPU RAM) of all
four conditions in Table 6. The values reported for
the CPU implementation use a single thread only.
At runtime, our hierarchical GPU system exhibits
peak CPU memory use of 8 GB on the host machine.
Most of this memory is consumed by batching ex-
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CPU GPU
PBMT 1.6 GB 2.3 GB
Hiero 1.9 GB 8.0 GB

Table 6: Memory consumption (CPU RAM) for
different experimental conditions.

tracted phrases before scoring in passes 10 through
14. Since the phrase-based GPU implementation
processes far fewer phrases, the memory footprint
is much smaller. The CPU implementations pro-
cess extracted phrases in small batches grouped by
source phrase, and thus exhibit less memory usage.
However, these levels of memory consumption are
modest considering modern hardware. In all other
respects, memory usage is similar for all systems,
since the suffix array and associated data structures
are all linear in the size of the indexed parallel text.

4.3 Per-Pass Speed

To obtain a detailed picture of where the GPU
speedups and bottlenecks are, we collected per-pass
timing statistics. Table 7 shows results for grammar
extraction on 6k queries using the Xinhua data with
no sampling and default length constraints (passes
in gray occur on the GPU; all others on the CPU).
These numbers explain the decreased speed of hi-
erarchical extraction compared to He et al. (2013),
with the new passes (shown in italics) accounting
for more than 75% of the total computation time.
However, even passes that are nominally the same
actually require more time in the hierarchical case:
in extracting and scoring phrases associated with a
contiguous pattern u, we must now also extract and
score patterns ? u, u ?, and ? u ?.

Interestingly, the CPU portions of our algorithm
account for around half of the total grammar ex-
traction time. One way to interpret this observation
is that the massive parallelization provided by the
GPU is so effective that we are bottlenecked by
the CPU. In our current design, the CPU portions
are those that cannot be easily parallelized on the
GPU or those that require too much memory to fit
on the GPU. The former is a possible target for
optimization in future work, though the latter will
likely be solved by hardware advances alone: for
example, the Tesla K80 has 24 GB of memory.

Pass Time %
Contig. pattern pass 1 0.03 0.02%
Contig. pattern pass 2 0.02 0.02%
One-gap pattern generation 1.14 0.86%
One-gap pattern matching 19.24 14.54%
Two-gap pattern generation 0.37 0.28%
Two-gap pattern matching 15.91 12.02%
Gappy pattern processing 1.21 0.91%
Contig. pattern extraction 13.94 10.53%
Two-gap pattern extraction 0.52 0.39%
One-gap pattern extraction 11.07 8.36%
One gap translation features 23.72 17.91%
Two gap translation features 30.90 23.34%
Contig. translation features 5.00 3.77%
Lexical weight feature 3.09 2.33%
Data transfer and control 6.23 4.71%
Total 132.39 100.0%

Table 7: Detailed timings (in seconds) for 6k
queries. Passes in gray occur on the GPU; all
others on the CPU. Passes needed for hierarchical
grammars are in italics, which are not present in He
et al. (2013).

4.4 End-to-end Speed

What is the benefit of using GPUs in an end-to-
end translation task? Since we have shown that
both the CPU and GPU implementations achieve
near-identical translation quality, the difference lies
in speed. But speed is difficult to measure fairly:
translation involves not only grammar extraction but
also decoding and associated I/O. We have focused
on grammar extraction on the GPU, but our research
vision involves eventually moving all components
of the machine translation pipeline onto the GPU.
The experiments we describe below capture the
performance advantages of our implementation that
are achievable today, using cdec for decoding (on
the CPU, using 32 threads).

To measure end-to-end translation speed using
pycdec, per-sentence grammars are first extracted
for a batch of sentences and written to disk, then
read from disk during decoding. Therefore, we
report times separately for grammar extraction, disk
I/O, and decoding (which includes time for reading
the grammar files from disk back into memory).
Grammar extraction is either performed on the GPU
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Grammar Extraction Disk I/O Decoding
GPU: 30.8s

13.4s CPU: 59s
CPU: 101.1s

Table 8: Running times for an end-to-end translation
pipeline over NIST03 test data. Grammar extraction
is either performed on the GPU or the CPU
(32 threads); other stages are the same for both
conditions (decoding uses 32 threads).

or on the CPU (using 32 threads), same as the
experiments described in the previous section.

Results are shown in Table 8 using the Xinhua
training data and NIST03 test data (919 sentences,
27,045 words). All experiment settings are ex-
actly the same as in the previous section. We
observe an end-to-end translation throughput of 262
words/second with GPU grammar extraction and
156 words/second on the CPU (32 threads), for a
speedup of 1.68×.

Despite the speedup, we note that this experiment
favors the CPU for several reasons. First, the GPU is
idle during decoding, but it could be used to process
grammars for a subsequent batch of sentences in a
pipelined fashion. Second, NIST03 is a small batch
that doesn’t fully saturate the GPU—throughput
keeps increasing by a large margin with larger batch
sizes (see results in Table 3). Third, in comparison
to the 32-thread CPU baseline, our GPU extraction
only uses a single thread on the CPU throughout its
execution, thus the CPU portion of the performance
can be further improved, especially in the feature
generation passes (see §4.3 for details).

Of course, the GPU/CPU combination requires a
server equipped with a GPU, incurring additional
hardware costs. We estimate that in Q4 2014
dollars, our base system would cost roughly $7500
USD, and the GPU would cost another $2600 USD.
However, the server-grade GPU used in this work
is not the only choice: a typical high-end consumer
GPU, such as the NVIDIA GTX Titan Black (around
$1100), costs considerably less but has even higher
memory bandwidth and with similarly impressive
floating point performance. This price difference
is due to extra functionalities (e.g., error-correcting
code memory) for specific applications (e.g., sci-
entific computing), and is not directly related to

differences in raw computational power. This means
that we could speed up overall translation by 68% if
we spend an additional 35% (server-grade GPU) or
15% (consumer-grade GPU) on hardware. From an
economic perspective, this is an attractive proposi-
tion. Of course, the advantages of using GPUs for
high-throughput translation go up further with larger
batch sizes.

4.5 One-time Construction Costs

Construction of static data structures for on-demand
grammar extraction is a one-time cost given a corpus
T . However, under a streaming scenario where
we might receive incremental changes to T as new
training data become available, we need to update
the data structures appropriately.

Updating static data structures involves two costs:
the suffix array with its LCP array and the precom-
putation indexes. We do not consider the alignment
construction cost as it is external to cdec (and is
a necessary step for all implementations). For
the Xinhua data, building the suffix array using a
single CPU thread takes 29.2 seconds and building
the precomputation indexes on the GPU takes 5.7
seconds. Compared to Table 7, these one-time costs
represent approximately 27% of the GPU grammar
extraction time.

It is possible to lower the construction costs of
these data structures given recent advances. Lev-
enberg et al. (2010) describe novel algorithms that
allow efficient in-place updates of the suffix array
when new training data arrive. That work directly
tackles on-demand SMT architectures in the stream-
ing data scenario. Alternatively, the speed of suffix
array construction can be improved significantly
by the CUDA Data Parallel Primitives Library,4

which provides fast sorting algorithms to efficiently
construct suffix arrays on the GPU. Minimizing data
preparation costs has not been a focus of this work,
but we believe that the massive parallelism provided
by the GPU represents promising future work.

5 Conclusions and Future Work

The increasing demands for translation services be-
cause of globalization (Pangeanic, 2013; Sykes,
2009) make high-throughput translation a realistic

4http://cudpp.github.io/cudpp/2.2/
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scenario, and one that our GPU implementation is
highly suited to serve. High-throughput translation
also enables downstream applications such as doc-
ument translation in cross-language information re-
trieval (Oard and Hackett, 1997), where we translate
the entire source document collection into the target
language prior to indexing.

The number of transistors on a chip continues to
increase exponentially, a trend that even pessimists
concede should continue at least until the end of the
decade (Vardi, 2014). Computer architects widely
agree that instruction-level hardware parallelism is
long past the point of diminishing returns (Olukotun
and Hammond, 2005). This has led to a trend of
placing greater numbers of cores on the same die.
The question is how to best utilize the transistor
budget: a small number of complex cores, a large
number of simple cores, or a mixture of both? For
our problem, it appears that we can take advantage
of brute force scans and fine-grained parallelism
inherent in the problem of on-demand extraction,
which makes investments in large numbers of simple
cores (as on the GPU) a win.

This observation is in line with trends in other ar-
eas of computing. Many problems in computational
biology, like computational linguistics, boil down to
efficient search on discrete sequences of symbols.
DNA sequence alignment systems MummerGPU
(Schatz et al., 2007) and MummerGPU 2 (Trap-
nell and Schatz, 2009) use suffix trees to perform
DNA sequence matching on the GPU, while the
state-of-the-art system MummurGPU++ (Gharaibeh
and Ripeanu, 2010) uses suffix arrays, as we do
here. Our algorithms for matching gappy patterns in
passes 3 and 4 are closely related to seed-and-extend
algorithms for approximate matching in DNA se-
quences, which have recently been implemented on
GPUs (Wilton et al., 2014).

It is unlikely that CPU processing will become
obsolete, since not all problems can be cast in a data-
parallel framework. Ultimately, we need a hybrid
architecture where parallelizable tasks are offloaded
to the GPU, which works in conjunction with the
CPU to handle irregular computations in a pipelined
fashion. In a well-balanced system, both the GPU
and the CPU would be fully utilized, performing
the types of computation they excel at, unlike in
our current design, where the GPU sits idle while

the CPU finishes decoding. A part of our broad
research agenda is exploring which aspects of the
machine translation pipeline are amenable to GPU
algorithms. The performance analysis in §4.3 shows
that even in grammar extraction there are CPU
bottlenecks we need to address and opportunities for
further optimization.

Beyond grammar extraction, there is a question
about whether decoding can be moved to the GPU.
Memory is a big hurdle: since accessing data struc-
tures off-GPU is costly, it would be preferable to
hold all models in GPU memory. We’ve addressed
the problem for translation models, but the language
models used in machine translation are also large.
It might be possible to use lossy compression (Tal-
bot and Osborne, 2007) or batch request strategies
(Brants et al., 2007) to solve this problem. If we do,
we believe that translation models could be decoded
using variants of GPU algorithms for speech (Chong
et al., 2009) or parsing (Yi et al., 2011; Canny et al.,
2013; Hall et al., 2014), though the latter algorithms
exploit properties of latent-variable grammars that
may not extend to translation. Thinking beyond
decoding, we believe that other problems in compu-
tational linguistics might benefit from the massive
parallelism offered by GPUs.
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