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Abstract

Discourse relations bind smaller linguistic
units into coherent texts. Automatically
identifying discourse relations is difficult,
because it requires understanding the se-
mantics of the linked arguments. A more
subtle challenge is that it is not enough to
represent the meaning of each argument
of a discourse relation, because the rela-
tion may depend on links between lower-
level components, such as entity mentions.
Our solution computes distributed mean-
ing representations for each discourse ar-
gument by composition up the syntactic
parse tree. We also perform a downward
compositional pass to capture the mean-
ing of coreferent entity mentions. Implicit
discourse relations are then predicted from
these two representations, obtaining sub-
stantial improvements on the Penn Dis-
course Treebank.

1 Introduction

The high-level organization of text can be char-
acterized in terms of discourse relations between
adjacent spans of text (Knott, 1996; Mann, 1984;
Webber et al., 1999). Identifying these relations
has been shown to be relevant to tasks such as
summarization (Louis et al., 2010a; Yoshida et al.,
2014), sentiment analysis (Somasundaran et al.,
2009), coherence evaluation (Lin et al., 2011), and
question answering (Jansen et al., 2014). While
the Penn Discourse Treebank (PDTB) now pro-
vides a large dataset annotated for discourse re-
lations (Prasad et al., 2008), the automatic identi-
fication of implicit relations is a difficult task, with
state-of-the-art performance at roughly 40% (Lin
et al., 2009).

One reason for this poor performance is that dis-
course relations are rooted in semantics (Forbes-
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(b) Distributed representations for the coreferent men-
tions Tina and she are computed from the parent and sib-
ling nodes.

Figure 1: Distributed representations are com-
puted through composition over the parse.

Riley et al., 2006), which can be difficult to re-
cover from surface level features. Consider the
implicit discourse relation between the following
two sentences (also shown in Figure 1a):

(1) Bob gave Tina the burger.
She was hungry.

While a connector like because seems appropriate
here, there is little surface information to signal
this relationship, unless the model has managed to
learn a bilexical relationship between burger and
hungry. Learning all such relationships from an-
notated data — including the relationship of hun-
gry to knish, pierogie, pupusa etc — would require
far more data than can possibly be annotated.
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Figure 2: t-SNE visualization (van der Maaten
and Hinton, 2008) of word representations in the
PDTB corpus.

We address this issue by applying a
discriminatively-trained model of composi-
tional distributed semantics to discourse relation
classification (Socher et al., 2013; Baroni et al.,
2014a). The meaning of each discourse argument
is represented as a vector (Turney and Pantel,
2010), which is computed through a series of
bottom-up compositional operations over the syn-
tactic parse tree. The discourse relation can then
be predicted as a bilinear combination of these
vector representations. Both the prediction matrix
and the compositional operator are trained in a
supervised large-margin framework (Socher et al.,
2011), ensuring that the learned compositional
operation produces semantic representations
that are useful for discourse. We show that
when combined with a small number of surface
features, this approach outperforms prior work on
the classification of implicit discourse relations in
the PDTB.

Despite these positive results, we argue that
bottom-up vector-based representations of dis-
course arguments are insufficient to capture their
relations. To see why, consider what happens if
we make a tiny change to example (1):

(2) Bob gave Tina the burger.
He was hungry.

After changing the subject of the second sen-
tence to Bob, the connective “because” no longer
seems appropriate; a contrastive connector like al-
though is preferred. But despite the radical dif-
ference in meaning, the bottom-up distributed rep-
resentation of the second sentence will be almost
unchanged: the syntactic structure remains iden-
tical, and the words he and she have very sim-
ilar word representations (see Figure 2). If we

reduce each discourse argument span to a single
vector, built from the elements in the argument it-
self, we cannot possibly capture the ways that dis-
course relations are signaled by entities and their
roles (Cristea et al., 1998; Louis et al., 2010b).
As Mooney (2014) puts it, “you can’t cram the
meaning of a whole %&!$# sentence into a single
$&!#* vector!”

We address this issue by computing vector rep-
resentations not only for each discourse argu-
ment, but also for each coreferent entity men-
tion. These representations are meant to capture
the role played by the entity in the text, and so
they must take the entire span of text into account.
We compute entity-role representations using a
feed-forward compositional model, which com-
bines “upward” and “downward” passes through
the syntactic structure, shown in Figure 1b. In the
example, the downward representations for Tina
and she are computed from a combination of the
parent and sibling nodes in the binarized parse
tree. Representations for these coreferent men-
tions are then combined in a bilinear product, and
help to predict the implicit discourse relation. In
example (2), we resolve he to Bob, and combine
their vector representations instead, yielding a dif-
ferent prediction about the discourse relation.

Our overall approach combines surface fea-
tures, distributed representations of discourse ar-
guments, and distributed representations of entity
mentions. It achieves a 4% improvement in ac-
curacy over the best previous work (Lin et al.,
2009) on multiclass discourse relation classifica-
tion, and also outperforms more recent work on
binary classification. The novel entity-augmented
distributed representation improves accuracy over
the “upward” compositional model, showing the
importance of representing the meaning of coref-
erent entity mentions.

2 Entity augmented distributed
semantics

We now formally define our approach to entity-
augmented distributed semantics, using the nota-
tion shown in Table 1. For clarity of exposition,
we focus on discourse relations between pairs of
sentences. The extension to non-sentence argu-
ments is discussed in Section 5.
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Notation Explanation

`(i), r(i) left and right children of i
ρ(i), s(i) parent and sibling of i
A(m,n) set of aligned entities between argu-

ments m and n
Y set of discourse relations
y∗ gold discourse relation
ψ(y) decision function
u upward vector
d downward vector
Ay classification parameter associated with

upward vectors
By classification parameter associated with

downward vectors
U composition operator in upward com-

position procedure
V composition operator in downward

composition procedure
L(θ) objective function

Table 1: Table of notation

2.1 Upward pass: argument semantics
Distributed representations for discourse argu-
ments are computed in a feed-forward “upward”
pass: each non-terminal in the binarized syntactic
parse tree has a K-dimensional vector represen-
tation that is computed from the representations of
its children, bottoming out in pre-trained represen-
tations of individual words.

We follow the Recursive Neural Network
(RNN) model of Socher et al. (2011). For a given
parent node i, we denote the left child as `(i), and
the right child as r(i); we compose their represen-
tations to obtain,

ui = tanh
(
U[u`(i);ur(i)]

)
, (1)

where tanh (·) is the element-wise hyperbolic tan-
gent function (Pascanu et al., 2012), and U ∈
RK×2K is the upward composition matrix. We ap-
ply this compositional procedure from the bottom
up, ultimately obtaining the argument-level repre-
sentation u0. The base case is found at the leaves
of the tree, which are set equal to pre-trained word
vector representations. For example, in the second
sentence of Figure 1, we combine the word repre-
sentations of was and hungry to obtain u(r)

1 , and
then combine u(r)

1 with the word representation of
she to obtain u(r)

0 . Note that the upward pass is
feedforward, meaning that there are no cycles and
all nodes can be computed in linear time.

2.2 Downward pass: entity semantics
As seen in the contrast between Examples 1 and 2,
a model that uses a bottom-up vector representa-

tion for each discourse argument would find lit-
tle to distinguish between she was hungry and he
was hungry. It would therefore almost certainly
fail to identify the correct discourse relation for at
least one of these cases, which requires tracking
the roles played by the entities that are coreferent
in each pair of sentences. To address this issue,
we augment the representation of each argument
with additional vectors, representing the seman-
tics of the role played by each coreferent entity
in each argument. For example, in (1a), Tina got
the burger, and in (1b), she was hungry. Rather
than represent this information in a logical form
— which would require robust parsing to a logi-
cal representation — we represent it through addi-
tional distributed vectors.

The role of a constituent i can be viewed as a
combination of information from two neighboring
nodes in the parse tree: its parent ρ(i), and its sib-
ling s(i). We can make a downward pass, comput-
ing the downward vector di from the downward
vector of the parent dρ(i), and the upward vector
of the sibling us(i):

di = tanh
(
V[dρ(i);us(i)]

)
, (2)

where V ∈ RK×2K is the downward composition
matrix. The base case of this recursive procedure
occurs at the root of the parse tree, which is set
equal to the upward representation, d0 , u0. This
procedure is illustrated in Figure 1b: for Tina, the
parent node is d(`)2 , and the sibling is u(`)

3 .
This up-down compositional algorithm propa-

gates sentence-level distributed semantics back to
entity mentions. The representation of each men-
tion’s role in the sentence is based on the corre-
sponding role of the parent node in the parse tree,
and on the internal meaning representation of the
sibling node, which is computed by upward com-
position. Note that this algorithm is designed to
maintain the feedforward nature of the neural net-
work, so that we can efficiently compute all nodes
without iterating. Each downward node di influ-
ences only other downward nodes dj where j > i,
meaning that the downward pass is feedforward.
The upward node is also feedforward: each up-
ward node ui influences only other upward nodes
uj where j < i. Since the upward and down-
ward passes are each feedforward, and the down-
ward nodes do not influence any upward nodes,
the combined up-down network is also feedfor-
ward. This ensures that we can efficiently com-
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pute all ui and di in time that is linear in the
length of the input. In Section 7.2, we compare
our approach with recent related work on alterna-
tive two-pass distributed compositional models.

Connection to the inside-outside algorithm
In the inside-outside algorithm for computing
marginal probabilities in a probabilistic context-
free grammar (Lari and Young, 1990), the inside
scores are constructed in a bottom-up fashion, like
our upward nodes; the outside score for node i is
constructed from a product of the outside score
of the parent ρ(i) and the inside score of the sib-
ling s(i), like our downward nodes. The stan-
dard inside-outside algorithm sums over all pos-
sible parse trees, but since the parse tree is ob-
served in our case, a closer analogy would be to
the constrained version of the inside-outside algo-
rithm for latent variable grammars (Petrov et al.,
2006). Cohen et al. (2014) describe a tensor for-
mulation of the constrained inside-outside algo-
rithm; similarly, we could compute the downward
vectors by a tensor contraction of the parent and
sibling vectors (Smolensky, 1990; Socher et al.,
2014). However, this would involve K3 parame-
ters, rather than the K2 parameters in our matrix-
vector composition.

3 Predicting discourse relations

To predict the discourse relation between an argu-
ment pair (m,n), the decision function is a sum of
bilinear products,

ψ(y) = (u
(m)
0 )>Ayu

(n)
0

+
∑

i,j∈A(m,n)
(d

(m)
i )>Byd

(n)
j + by,

(3)

where Ay ∈ RK×K and By ∈ RK×K are the clas-
sification parameters for relation y. A scalar by is
used as the bias term for relation y, andA(m,n) is
the set of coreferent entity mentions shared by the
argument pair (m,n). The decision value ψ(y) of
relation y is therefore based on the upward vec-
tors at the root, u(m)

0 and u(n)
0 , as well as on

the downward vectors for each pair of aligned en-
tity mentions. For the cases where there are no
coreferent entity mentions between two sentences,
A(m,n) = ∅, the classification model considers
only the upward vectors at the root.

To avoid overfitting, we apply a low-
dimensional approximation to each Ay,

Ay = ay,1a
>
y,2 + diag(ay,3). (4)

The same approximation is also applied to each
By, reducing the number of classification parame-
ters from 2×#|Y| ×K2 to 2×#|Y| × 3K.

Surface features Prior work has identified a
number of useful surface-level features (Lin et al.,
2009), and the classification model can easily be
extended to include them. Defining φ(m,n) as the
vector of surface features extracted from the ar-
gument pair (m,n), the corresponding decision
function is modified as,

ψ(y) = (u
(m)
0 )>Ayu

(n)
0 +

∑

i,j∈A(m,n)

(d
(m)
i )>Byd

(n)
j

+ β>y φ(m,n) + by,

(5)
where βy is the classification weight on surface
features for relation y. We describe these features
in Section 5.

4 Large-margin learning framework

There are two sets of parameters to be
learned: the classification parameters
θclass = {Ay,By,βy, by}y∈Y , and the com-
position parameters θcomp = {U,V}. We use
pre-trained word representations, and do not
update them. While prior work shows that it can
be advantageous to retrain word representations
for discourse analysis (Ji and Eisenstein, 2014),
our preliminary experiments found that updating
the word representations led to serious overfitting
in this model.

Following Socher et al. (2011), we define
a large margin objective, and use backpropa-
gation to learn all parameters of the network
jointly (Goller and Kuchler, 1996). Learning is
performed using stochastic gradient descent (Bot-
tou, 1998), so we present the learning problem for
a single argument pair (m,n) with the gold dis-
course relation y∗. The objective function for this
training example is a regularized hinge loss,

L(θ) =
∑

y′:y′ 6=y∗
max

(
0, 1− ψ(y∗) + ψ(y′)

)
+ λ||θ||22

(6)
where θ = θclass ∪ θcomp is the set of learning
parameters. The regularization term λ||θ||22 indi-
cates that the squared values of all parameters are
penalized by λ; this corresponds to penalizing the
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squared Frobenius norm for the matrix parameters,
and the squared Euclidean norm for the vector pa-
rameters.

4.1 Learning the classification parameters
In Equation 6, L(θ) = 0, if for every y′ 6= y∗,
ψ(y∗) − ψ(y′) ≥ 1 holds. Otherwise, the loss
will be caused by any y′, where y′ 6= y∗ and
ψ(y∗) − ψ(y′) < 1. The gradient for the classi-
fication parameters therefore depends on the mar-
gin value between gold label and all other labels.
Specifically, taking one component of Ay, ay,1,
as an example, the derivative of the objective for
y = y∗ is

∂L(θ)
∂ay∗,1

= −
∑

y′:y′ 6=y∗
δ(ψ(y∗)−ψ(y′)<1) · u(m)

0 , (7)

where δ(·) is the delta function. The derivative for
y′ 6= y∗ is

∂L(θ)
∂ay′,1

= δ(ψ(y∗)−ψ(y′)<1) · u(m)
0 (8)

During learning, the updating rule for Ay is

Ay ← Ay − η(∂L(θ)
∂Ay

+ λAy) (9)

where η is the learning rate.
Similarly, we can obtain the gradient in-

formation and updating rules for parameters
{By,βy, by}y∈Y .

4.2 Learning the composition parameters
There are two composition matrices U and V,
corresponding to the upward and downward com-
position procedures respectively. Taking the up-
ward composition parameter U as an example, the
derivative of L(θ) with respect to U is

∂L(θ)
∂U

=
∑

y′:y′ 6=y∗
δ(ψ(y∗)−ψ(y′)<1)

·
(∂ψ(y′)

∂U
− ∂ψ(y∗)

∂U

) (10)

As with the classification parameters, the deriva-
tive depends on the margin between y′ and y∗.

For every y ∈ Y , we have the unified derivative
form,

∂ψ(y)

∂U
=
∂ψ(y)

∂u
(m)
0

∂u
(m)
0

∂U
+
∂ψ(y)

∂u
(n)
0

∂u
(n)
0

∂U

+
∑

i,j∈A(m,n)

∂ψ(y)

∂d
(m)
i

∂d
(m)
i

∂U

+
∑

i,j∈A(m,n)

∂ψ(y)

∂d
(n)
j

∂d
(n)
j

∂U
,

(11)

The gradient of U also depends on the gradient of
ψ(y) with respect to every downward vector d, as
shown in the last two terms in Equation 11. This is
because the computation of each downward vector
di includes the upward vector of the sibling node,
us(i), as shown in Equation 2. For an example, see
the construction of the downward vectors for Tina
and she in Figure 1b.

The partial derivatives of the decision function
in Equation 11 are computed as,

∂ψ(y)

∂u
(m)
0

= Ayu
(n)
0 ,

∂ψ(y)

∂u
(n)
0

= A>y u
(m)
0 ,

∂ψ(y)

∂d
(m)
i

= Byd
(n)
j ,

∂ψ(y)

∂d
(n)
i

= B>y d
(m)
j , 〈i, j〉 ∈ A.

(12)

The partial derivatives of the upward and down-
ward vectors with respect to the upward composi-
tional operator are computed as,

∂u
(m)
i

∂U
=

∑

u
(m)
k
∈T (u

(m)
i )

∂u
(m)
i

∂u
(m)
k

(u
(m)
k )> (13)

and

∂d
(m)
i

∂U
=

∑

u
(m)
k
∈T (d

(m)
i )

∂d
(m)
i

∂u
(m)
k

(u
(m)
k )>, (14)

where T (um) is the set of all nodes in the upward
composition model that help to generate um. For
example, in Figure 1a, the set T (u(`)

2 ) includes
u
(`)
3 and the word representations for Tina, the,

and burger. The set T (dm,i) includes all the up-
ward nodes involved in the downward composi-
tion model generating d(m)

i . For example, in Fig-
ure 1b, the set T (d(r)she) includes u(r)

1 and the word
representations for was and hungry.

The derivative of the objective with respect to
the downward compositional operator V is com-
puted in a similar fashion, but it depends only on
the downward nodes, d(m)

i .

5 Implementation

Our implementation is available online
at https://github.com/jiyfeng/
updown. Training on the PDTB takes roughly
three hours to converge, on an Intel(R) Xeon(R)
CPU 2.20GHz without parallel computing. Con-
vergence is faster if the surface feature weights β
are trained separately first. We now describe some
additional details of our implementation.
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Learning During learning, we used AdaGrad
(Duchi et al., 2011) to tune the learning rate in
each iteration. To avoid the exploding gradient
problem (Bengio et al., 1994), we used the norm
clipping trick proposed by Pascanu et al. (2012),
fixing the norm threshold at τ = 5.0.

Hyperparameters Our model includes three
tunable hyperparameters: the latent dimension
K for the distributed representation, the regu-
larization parameter λ, and the initial learning
rate η. All hyperparameters are tuned by ran-
domly selecting a development set of 20% of
the training data. We consider the values K ∈
{20, 30, 40, 50, 60} for the latent dimensionality,
λ ∈ {0.0002, 0.002, 0.02, 0.2} for the regular-
ization (on each training instance), and η ∈
{0.01, 0.03, 0.05, 0.09} for the learning rate. We
assign separate regularizers and learning rates to
the upward composition model, downward com-
position model, feature model and the classifica-
tion model with composition vectors.

Initialization All the classification parameters
are initialized to 0. For the composition param-
eters, we follow Bengio (2012) and initialize U
and V with uniform random values drawn from
the range [−

√
6/2K,

√
6/2K].

Word representations We trained a word2vec
model (Mikolov et al., 2013) on the PDTB corpus,
standardizing the induced representations to zero-
mean, unit-variance (LeCun et al., 2012). Exper-
iments with pre-trained GloVe word vector repre-
sentations (Pennington et al., 2014) gave broadly
similar results.

Syntactic structure Our model requires that the
syntactic structure for each argument is repre-
sented as a binary tree. We run the Stanford
parser (Klein and Manning, 2003) to obtain con-
stituent parse trees of each sentence in the PDTB,
and binarize all resulting parse trees. Argument
spans in the Penn Discourse Treebank need not be
sentences or syntactic constituents: they can in-
clude multiple sentences, non-constituent spans,
and even discontinuous spans (Prasad et al., 2008).
In all cases, we identify the syntactic subtrees
within the argument span, and unify them in a right
branching superstructure.

Coreference The impact of entity semantics on
discourse relation detection is inherently limited
by two factors: (1) the frequency with which the

Dataset Annotation Training (%) Test (%)

1. PDTB Automatic 27.4 29.1
2. PDTB∩Onto Automatic 26.2 32.3
3. PDTB∩Onto Gold 40.9 49.3

Table 2: Proportion of relations with coreferent
entities, according to automatic coreference reso-
lution and gold coreference annotation.

arguments of a discourse relation share corefer-
ent entity mentions, and (2) the ability of au-
tomated coreference resolution systems to detect
these coreferent mentions. To extract entities and
their mentions from the PDTB, we ran the Berke-
ley coreference system (Durrett and Klein, 2013)
on each document. For each argument pair, we
simply ignore the non-corefential entity mentions.
Line 1 in Table 2 shows the proportion of the in-
stances with shared entities in the PDTB training
and test data, as detected by the Berkeley system.
As the system does not detect coreferent mentions
in more than 70% of the cases, the performance
improvements offered by distributed entity seman-
tics are therefore limited. To determine whether
this low rate of coreference is an intrinsic prop-
erty of the data, or whether it is due to the qual-
ity of state-of-the-art coreference resolution, we
also consider the gold coreference annotations in
the OntoNotes corpus (Pradhan et al., 2007), a
portion of which intersects with the PDTB (597
documents). Lines 2 and 3 of Table 2 give the
statistics for automatic and gold coreference on
this intersection. These results indicate that with
perfect coreference resolution, the applicability of
distributed entity semantics would reach 40% of
the training set and nearly 50% of the test set.
Thus, improvements in coreference resolution can
be expected to yield further improvements in the
effectiveness of distributed entity semantics for
discourse relation detection.

Additional features We supplement our classi-
fication model using additional surface features
proposed by Lin et al. (2009). These include four
categories: word pair features, constituent parse
features, dependency parse features, and contex-
tual features. As done in this prior work, we use
mutual information to select features in the first
three categories, obtaining 500 word pair features,
100 constituent features, and 100 dependency fea-
tures. In addition, Rutherford and Xue (2014) dis-
covered that replacing word pair with their Brown
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cluster assignments could give further improve-
ments. In our implementation, we used the Brown
word clusters provided by Turian et al. (2010), in
which words from the Reuters Corpus (RCV1) are
grouped into 3,200 clusters. The feature selection
method of Lin et al. (2009) was then used to obtain
a set of 600 Brown cluster features.

6 Experiments

We evaluate our approach on the Penn Discourse
Treebank (PDTB; Prasad et al., 2008), which pro-
vides a discourse level annotation over the Wall
Street Journal corpus. In the PDTB, each dis-
course relation is annotated between two argu-
ment spans. Identifying the argument spans of dis-
course relations is a challenging task (Lin et al.,
2012), which we do not attempt here; instead, we
use gold argument spans, as in most of the rele-
vant prior work. PDTB relations may be explicit,
meaning that they are signaled by discourse con-
nectives (e.g., because); alternatively, they may be
implicit, meaning that the connective is absent.
Pitler et al. (2008) show that most explicit connec-
tives are unambiguous, so we focus on the prob-
lem of classifying implicit discourse relations.

The PDTB provides a three-level hierarchy of
discourse relations. The first level consists of
four major relation classes: TEMPORAL, CON-
TINGENCY, COMPARISON and EXPANSION. For
each class, a second level of types is defined to
provide finer semantic or pragmatic distinctions;
there are sixteen such relation types. A third level
of subtypes is defined for only some types, speci-
fying the semantic contribution of each argument.

There are two main approaches to evaluating
implicit discourse relation classification. Multi-
class classification requires identifying the dis-
course relation from all possible choices. This
task was explored by Lin et al. (2009), who fo-
cus on second-level discourse relations. More re-
cent work has emphasized binary classification,
where the goal is to build and evaluate separate
“one-versus-all” classifiers for each discourse re-
lation (Pitler et al., 2009; Park and Cardie, 2012;
Biran and McKeown, 2013). We primarily focus
on multiclass classification, because it is more rel-
evant for the ultimate goal of building a PDTB
parser; however, to compare with recent prior
work, we also evaluate on binary relation classi-
fication.

6.1 Multiclass classification
Our main evaluation involves predicting the cor-
rect discourse relation for each argument pair,
from among the second-level relation types. The
training and test set construction follows Lin et al.
(2009) with a few changes:

• We use sections 2-20 of the PDTB as a train-
ing set, sections 0-1 as a development set for
parameter tuning, and sections 21-22 for test-
ing.

• Five relation types have a combined total of
only nine instances in the training set, and are
therefore excluded by Lin et al. (2009): CON-
DITION, PRAGMATIC CONDITION, PRAG-
MATIC CONTRAST, PRAGMATIC CONCES-
SION and EXCEPTION. None of these rela-
tions appear in the test or development data.
We tried training with and without these rela-
tion types in the training data, and found no
difference in the overall results.

• In the main multiclass experiment, we con-
sider only the problem of distinguishing be-
tween implicit relations. We perform an ad-
ditional, reviewer-recommended experiment
that distinguishes implicit relations from
entity-based coherence relations, labeled EN-
TREL. See below for more detail.

• Roughly 2% of the implicit relations in the
PDTB are annotated with more than one type.
During training, each argument pair that is
annotated with two relation types is consid-
ered as two training instances, each with one
relation type. During testing, if the classifier
assigns either of the two types, it is consid-
ered to be correct.

6.1.1 Baseline and competitive systems
Most common class The most common class is

CAUSE, accounting for 26.03% of the im-
plicit discourse relations in the PDTB test set.

Additive word representations Blacoe and Lap-
ata (2012) show that simply adding word vec-
tors can perform surprisingly well at assess-
ing the meaning of short phrases. In this
baseline, we represent each argument as a
sum of its word representations, and estimate
a bilinear prediction matrix.

Lin et al. (2009) To our knowledge, the best pub-
lished accuracy on multiclass classification
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Model +Entity semantics +Surface features K Accuracy(%)

Baseline models
1. Most common class 26.03
2. Additive word representations 50 28.73

Prior work
3. (Lin et al., 2009) X 40.2

Our work
4. Surface features + Brown clusters X 40.66

5. DISCO2 50 36.98
6. DISCO2 X 50 37.63

7. DISCO2 X 50 43.75∗

8. DISCO2 X X 50 44.59∗
∗ signficantly better than lines 3 and 4 with p < 0.05

Table 3: Experimental results on multiclass classification of level-2 discourse relations. The results of
Lin et al. (2009) are shown in line 3. We reimplemented this system and added the Brown cluster features
of Rutherford and Xue (2014), with results shown in line 4.

of second-level implicit discourse relations is
from Lin et al. (2009), who apply feature se-
lection to obtain a set of lexical and syntactic
features over the arguments.

Surface features + Brown clusters To get a
more precise comparison, we reimplemented
the system of Lin et al. (2009). The major
differences are (1) we apply our online
learning framework, rather than batch clas-
sification, and (2) we include the Brown
cluster features described in Section 5 and
originally proposed by Rutherford and Xue
(2014).

Compositional Finally, we report results for the
method described in this paper. Since it is
a distributional compositional approach to
discourse relations, we name it DISCO2.

6.1.2 Results

Table 3 presents results for multiclass identifica-
tion of second-level PDTB relations. As shown
in lines 7 and 8, DISCO2 outperforms both base-
line systems and the prior state-of-the-art (line 3).
The strongest performance is obtained by includ-
ing the entity distributed semantics, with a 4.4%
improvement over the accuracy reported by Lin et
al. (2009) (p < .05 by a binomial test). We also
obtain a significant improvement over the Sur-
face Feature + Brown Cluster model. Because
we have reimplemented this system, we can ob-

serve individual predictions, and can therefore use
the sign test for statistical significance, again find-
ing that DISCO2 is significantly better (p < .05).
Even without entity semantics, DISCO2 signifi-
cantly outperforms these competitive models from
prior work. However, the surface features remain
important, as the performance of DISCO2 is sub-
stantially worse when only the distributed repre-
sentation is included. The latent dimension K is
chosen from a development set (see Section 5), as
shown in Figure 3.

The multiclass evaluation introduced by Lin et
al. (2009) focused on classification of implicit re-
lations. Another question is whether it is possi-
ble to identify entity-based coherence, annotated
in the PDTB as ENTREL, which is when a shared
entity is the only meaningful relation that holds
between two sentences (Prasad et al., 2008). As
suggested by a reviewer, we add ENTREL to the
set of possible relations, and perform an additional
evaluation. Since this setting has not previously
been considered, we cannot evaluate against pub-
lished results; instead, we retrain and evaluate the
following models:

• the surface feature baseline with Brown clus-
ters, corresponding to line 4 of Table 3;

• DISCO2 with surface features but without en-
tity semantics, corresponding to line 7 of Ta-
ble 3;
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Figure 3: The performance of DISCO2 (full
model), over different latent dimensions K.

• DISCO2 with surface features and entity se-
mantics, corresponding to line 8 of Table 3.

As before, all parameters are tuned on a devel-
opment set. In this evaluation, we obtain larger
improvements from our approach: our full model
(with entity semantics) gives 47.27% accuracy, as
compared to 44.96% without entity semantics; the
result for the surface feature baseline is 41.48%.

6.1.3 Coreference
The contribution of entity semantics is shown in
Table 3 by the accuracy differences between lines
5 and 6, and between lines 7 and 8. On the sub-
set of relations in which the arguments share at
least one coreferent entity, the difference is sub-
stantially larger: the accuracy of DISCO2 is 45.7%
with entity mention semantics, and 43.1% with-
out. Considering that only 29.1% of the rela-
tions in the PDTB test set include shared enti-
ties, it therefore seems likely that a more sensi-
tive coreference system could yield further im-
provements for the entity-semantics model. In-
deed, gold coreference annotation on the intersec-
tion between the PDTB and the OntoNotes corpus
shows that 40-50% of discourse relations involve
coreferent entities (Table 2). Evaluating on just
this intersection, we find that the inclusion of en-
tity semantics yields an improvement in accuracy
from 37.5% to 39.1%. Thus, while the overall im-
provements offered by entity mention semantics
are relatively small, this is due in part to the poor
recall of the state-of-the-art coreference resolution
system; if coreference improved, the impact of
the entity mention semantics would increase cor-
respondingly.

A reviewer asked whether it was necessary to
have the correct coreference alignment, or whether
similar improvements could be obtained by com-

puting bilinear products between all pairs of noun
phrases in the two discourse arguments. In fact,
this strategy of aligning all entity mentions re-
sulted in a decrease in accuracy, from 44.59
to 42.14%. This is below the performance of
DISCO2 without entity semantics.

6.1.4 Examples
The following examples help highlight how entity
semantics can improve the accuracy of discourse
relation classification.

(3) Arg 1: The drop in profit reflected, in part,
continued softness in financial advertising
at [The Wall Street Journal] and Barron’s
magazine.
Arg 2: Ad linage at [the Journal] fell
6.1% in the third quarter.

(4) Arg 1: [Mr. Greenberg] got out just
before the 1987 crash and, to [his] re-
gret, never went back even as the market
soared.
Arg 2: This time [he]’s ready to buy in
“when the panic wears off.”

(5) Arg 1: Half of [them]1 are really scared
and want to sell but [I]2’m trying to talk
them out of it.
Arg 2: If [they]1 all were bullish, [I]2’d
really be upset.

In example (3), the entity-augmented model
correctly identifies the relation as RESTATEMENT,
due in part to the detected coreference between
The Wall Street Journal and the Journal: in both
arguments, the entity experiences a drop in prof-
its. Without this information, DISCO2 incorrectly
labels this relation as CAUSE. In example (4), the
entity-augmented model correctly identifies the re-
lation as CONTRAST, which is reasonable given
the very different role of the shared entity Mr.
Greenberg in the two arguments; without entity
semantics, it is classified as CONJUNCTION. Ex-
ample (5) is more complex because it involves two
entities, but again, the CONTRAST relation is cor-
rectly detected, in part because of the differing ex-
periences of the two entities in the two arguments;
without entity semantics, this example is again in-
correctly classified as CONJUNCTION.

6.2 Binary classification

Much of the recent work in PDTB relation detec-
tion has focused on binary classification, building
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and evaluating separate one-versus-all classifiers
for each relation type (Pitler et al., 2009; Park and
Cardie, 2012; Biran and McKeown, 2013). This
work has focused on recognition of the four first-
level relations, grouping ENTREL with the EX-
PANSION relation. We follow this evaluation ap-
proach as closely as possible, using sections 2-20
of the PDTB as a training set, sections 0-1 as a de-
velopment set for parameter tuning, and sections
21-22 for testing.

6.2.1 Classification method

We apply DISCO2 with entity-augmented seman-
tics and the surface features listed in Section 5;
this corresponds to the system reported in line 8 of
Table 3. However, instead of employing a multi-
class classifier for all four relations, we train four
binary classifiers, one for each first-level discourse
relation. We optimize the hyperparametersK,λ, η
separately for each classifier (see Section 5 for de-
tails), by performing a grid search to optimize the
F-measure on the development data. Following
Pitler et al. (2009), we obtain a balanced training
set by resampling training instances in each class
until the number of positive and negative instances
are equal.

6.2.2 Competitive systems

We compare against the published results from
several competitive systems, focusing on systems
which use the predominant training / test split,
with sections 2-20 for training and 21-22 for test-
ing. This means we cannot compare with recent
work from Li and Nenkova (2014), who use sec-
tions 20-24 for testing.

Pitler et al. (2009) present a classification model
using linguistically-informed features, such
as polarity tags and Levin verb classes.

Zhou et al. (2010) predict discourse connective
words, and then use these predicted connec-
tives as features in a downstream model to
predict relations.

Park and Cardie (2012) showed that the perfor-
mance on each relation can be improved by
selecting a locally-optimal feature set.

Biran and McKeown (2013) reweight word pair
features using distributional statistics from
the Gigaword corpus, obtaining denser ag-
gregated score features.

6.2.3 Experimental results
Table 4 presents the performance of the
DISCO2 model and the published results of
competitive systems. DISCO2 achieves the best
results on most metrics, achieving F-measure
improvements of 4.14% on COMPARISON, 2.96%
on CONTINGENCY, 0.8% on EXPANSION, and
1.06% on TEMPORAL. These results are attained
without performing per-relation feature selection,
as in prior work. While computing significance
over F-measures is challenging, we can compute
statistical significance on the accuracy results by
using the binomial test. We find that DISCO2 is
significantly more accurate than all other systems
on the CONTINGENCY and TEMPORAL relations
p � .001, not significantly more accurate on
the EXPANSION relation, and significantly less
accurate than the Park and Cardie (2012) system
on the COMPARISON relation at p� .001.

7 Related Work

This paper draws on previous work in discourse
relation detection and compositional distributed
semantics.

7.1 Discourse relations

Many models of discourse structure focus on re-
lations between spans of text (Knott, 1996), in-
cluding rhetorical structure theory (RST; Mann
and Thompson, 1988), lexicalized tree-adjoining
grammar for discourse (D-LTAG; Webber, 2004),
and even centering theory (Grosz et al., 1995),
which posits relations such as CONTINUATION

and SMOOTH SHIFT between adjacent spans. Con-
sequently, the automatic identification of dis-
course relations has long been considered a key
component of discourse parsing (Marcu, 1999).
We work within the D-LTAG framework, as an-
notated in the Penn Discourse Treebank (PDTB;
Prasad et al., 2008), with the task of identifying
implicit discourse relations. The seminal work in
this task is from Pitler et al. (2009) and Lin et
al. (2009). Pitler et al. (2009) focus on lexical
features, including linguistically motivated word
groupings such as Levin verb classes and polarity
tags. Lin et al. (2009) identify four different fea-
ture categories, based on the raw text, the context,
and syntactic parse trees; the same feature sets are
used in later work on end-to-end discourse pars-
ing (Lin et al., 2012), which also includes compo-
nents for identifying argument spans. Subsequent
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COMPARISON CONTINGENCY EXPANSION TEMPORAL

F1 Acc F1 Acc F1 Acc F1 Acc

Competitive systems
1. (Pitler et al., 2009) 21.96 56.59 47.13 67.30 76.42 63.62 16.76 63.49
2. (Zhou et al., 2010) 31.79 58.22 47.16 48.96 70.11 54.54 20.30 55.48
3. (Park and Cardie, 2012) 31.32 74.66 49.82 72.09 79.22 69.14 26.57 79.32
4. (Biran and McKeown, 2013) 25.40 63.36 46.94 68.09 75.87 62.84 20.23 68.35
Our work
5. DISCO2 35.93 70.27 52.78 76.95 80.02 69.80 27.63 87.11

Table 4: Evaluation on the first-level discourse relation identification. The results of the competitive
systems are reprinted.

research has explored feature selection (Park and
Cardie, 2012; Lin et al., 2012), as well as combat-
ing feature sparsity by aggregating features (Biran
and McKeown, 2013). Our model includes sur-
face features that are based on a reimplementation
of the work of Lin et al. (2009), because they also
undertake the task of multiclass relation classifica-
tion; however, the techniques introduced in more
recent research may also be applicable and com-
plementary to the distributed representation that
constitutes the central contribution of this paper;
if so, applying these techniques could further im-
prove performance.

Our contribution of entity-augmented dis-
tributed semantics is motivated by the intuition
that entities play a central role in discourse struc-
ture. Centering theory draws heavily on referring
expressions to entities over the discourse (Grosz
et al., 1995; Barzilay and Lapata, 2008); similar
ideas have been extended to rhetorical structure
theory (Corston-Oliver, 1998; Cristea et al., 1998).
In the specific case of PDTB relations, Louis et
al. (2010b) explore a number of entity-based fea-
tures, including grammatical role, syntactic real-
ization, and information status. Despite the solid
linguistic foundation for these features, they are
shown to contribute little in comparison with more
traditional word-pair features. This suggests that
syntax and information status may not be enough,
and that it is crucial to capture the semantics
of each entity’s role in the discourse. Our ap-
proach does this by propagating distributed se-
mantics from throughout the sentence into the en-
tity span, using our up-down compositional proce-
dure. In recent work, Rutherford and Xue (2014)
take an alternative approach, using features that
represent whether coreferent mentions are argu-

ments of similar predicates (using Brown clus-
ters); they obtain nearly a 1% improvement on
CONTINGENCY relations but no significant im-
provement on the other three first-level relation
types. Finally, Kehler and Rohde (2013) show that
information also flows in the opposite direction,
from discourse relations to coreference: in some
cases, knowing the discourse relation is crucial to
resolving pronoun ambiguity. Future work should
therefore consider joint models of discourse anal-
ysis and coreference resolution.

7.2 Compositional distributed semantics

Distributional semantics begins with the hypothe-
sis that words and phrases that tend to appear in
the same contexts have the same meaning (Firth,
1957). The current renaissance of interest in dis-
tributional and distributed semantics can be at-
tributed in part to the application of discrimina-
tive techniques, which emphasize predictive mod-
els (Bengio et al., 2006; Baroni et al., 2014b),
rather than context-counting and matrix factoriza-
tion (Landauer et al., 1998; Turney and Pantel,
2010). Recent work has made practical the idea of
propagating distributed information through lin-
guistic structures (Smolensky, 1990; Collobert et
al., 2011). In such models, the distributed rep-
resentations and compositional operators can be
fine-tuned by backpropagating supervision from
task-specific labels, enabling accurate and fast
models for a wide range of language technolo-
gies (Socher et al., 2011; Socher et al., 2013; Chen
and Manning, 2014).

Of particular relevance is recent work on two-
pass procedures for distributed compositional se-
mantics. Paulus et al. (2014) perform targeted sen-
timent analysis by propagating information from

339



the sentence level back to child non-terminals in
the parse tree. Their compositional procedure is
different from ours: in their work, the “down-
ward” meaning of each non-terminal is recon-
structed from the upward and downward mean-
ings of its parents. İrsoy and Cardie (2013) pro-
pose an alternative two-pass procedure, where the
downward representation for a node is computed
from the downward representation of its parent,
and from its own upward representation. A key
difference in our approach is that the siblings in a
production are more directly connected: the up-
ward representation of a given node is used to
compute the downward representation of its sib-
ling, similar to the inside-outside algorithm. In
the models of Paulus et al. (2014) and İrsoy and
Cardie (2013), the connection between siblings
nodes is less direct, as it is channeled through the
representation of the parent node. From this per-
spective, the most closely related prior work is
the Inside-Outside Recursive Neural Network (Le
and Zuidema, 2014), published shortly before this
paper was submitted. The compositional proce-
dure in this paper is identical, although the ap-
plication is quite different: rather than inducing
distributed representations of entity mentions, the
goal of this work is to support an infinite-order
generative model of dependency parsing. While
Le and Zuidema apply this idea as a generative
reranker within a supervised dependency parsing
framework, we are interested to explore whether
it could be employed to do unsupervised syntactic
analysis, which could substitute for the supervised
syntactic parser in our system.

The application of distributional and distributed
semantics to discourse includes the use of la-
tent semantic analysis for text segmentation (Choi
et al., 2001) and coherence assessment (Foltz
et al., 1998), as well as paraphrase detection
by the factorization of matrices of distributional
counts (Kauchak and Barzilay, 2006; Mihalcea et
al., 2006). These approaches essentially compute
a distributional representation in advance, and
then use it alongside other features. In contrast,
our approach follows more recent work in which
the distributed representation is driven by supervi-
sion from discourse annotations. For example, Ji
and Eisenstein (2014) show that RST parsing can
be performed by learning task-specific word repre-
sentations, which perform considerably better than
generic word2vec representations (Mikolov et al.,

2013). Li et al. (2014) propose a recursive neural
network approach to RST parsing, which is sim-
ilar to the upward pass in our model, and Kalch-
brenner and Blunsom (2013) show how a recurrent
neural network can be used to identify dialogue
acts. However, prior work has not applied these
ideas to the classification of implicit relations in
the PDTB, and does not consider the role of en-
tities. As we argue in the introduction, a single
vector representation is insufficiently expressive,
because it obliterates the entity chains that help to
tie discourse together.

More generally, our entity-augmented dis-
tributed representation can be viewed in the con-
text of recent literature on combining distributed
and formal semantics: by representing entities,
we are taking a small step away from purely
vectorial representations, and towards more tra-
ditional logical representations of meaning. In
this sense, our approach is “bottom-up”, as we
try to add a small amount of logical formalism
to distributed representations; other approaches
are “top-down”, softening purely logical repre-
sentations by using distributional clustering (Poon
and Domingos, 2009; Lewis and Steedman, 2013)
or Bayesian non-parametrics (Titov and Klemen-
tiev, 2011) to obtain types for entities and rela-
tions. Still more ambitious would be to imple-
ment logical semantics within a distributed com-
positional framework (Clark et al., 2011; Grefen-
stette, 2013). At present, these combinations of
logical and distributed semantics have been ex-
plored only at the sentence level. In generalizing
such approaches to multi-sentence discourse, we
argue that it will not be sufficient to compute dis-
tributed representations of sentences: a multitude
of other elements, such as entities, will also have
to represented.

8 Conclusion

Discourse relations are determined by the mean-
ing of their arguments, and progress on discourse
parsing therefore requires computing representa-
tions of the argument semantics. We present
a compositional method for inducing distributed
representations not only of discourse arguments,
but also of the entities that thread through the dis-
course. In this approach, semantic composition
is applied up the syntactic parse tree to induce
the argument-level representation, and then down
the parse tree to induce representations of entity
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spans. Discourse arguments can then be com-
pared in terms of their overall distributed represen-
tation, as well as by the representations of coref-
erent entity mentions. This enables the composi-
tional operators to be learned by backpropagation
from discourse annotations. In combination with
traditional surface features, this approach outper-
forms previous work on classification of implicit
discourse relations in the Penn Discourse Tree-
bank. While the entity mention representations
offer only a small improvement in overall perfor-
mance, we show that this is limited by the recall
of the coreference resolution system: when eval-
uated on argument pairs for which coreference is
detected, the raw improvement from entity seman-
tics is more than 2%. Future work will consider
joint models of discourse structure and corefer-
ence, and consideration of coreference across the
entire document. In the longer term, we hope to in-
duce and exploit representations of other discourse
elements, such as event coreference and shallow
semantics.
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