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Abstract

This paper explores extending shallow seman-
tic parsing beyond lexical-unit triggers, using
causal relations as a test case. Semantic pars-
ing becomes difficult in the face of the wide
variety of linguistic realizations that causation
can take on. We therefore base our approach
on the concept of CONSTRUCTIONS from the
linguistic paradigm known as CONSTRUCTION
GRAMMAR (CxG). In CxG, a construction is
a form/function pairing that can rely on arbi-
trary linguistic and semantic features. Rather
than codifying all aspects of each construc-
tion’s form, as some attempts to employ CxG
in NLP have done, we propose methods that
offload that problem to machine learning. We
describe two supervised approaches for tag-
ging causal constructions and their arguments.
Both approaches combine automatically in-
duced pattern-matching rules with statistical
classifiers that learn the subtler parameters of
the constructions. Our results show that these
approaches are promising: they significantly
outperform naı̈ve baselines for both construc-
tion recognition and cause and effect head
matches.

1 Introduction

Historically, shallow semantic parsing has focused
on tagging predicates expressed by individual lexical
units. While this paradigm has been fruitful, tying
meaning to lexical units excludes some essential se-
mantic relationships that cannot be captured in such
a representation.

One domain that highlights the problem is causal
relations. Causation can be expressed in a tremen-

1. THIS BILL promotes consolidation and coopera-
tion among regulatory agencies.

2. SUCH SWELLING can impede breathing.
3. WE DON’T HAVE MUCH TIME, so let’s move

quickly.
4. She’s mad because I HID THE CAR KEYS.
5. He died from A BLOCKED ARTERY.
6. Making money is contingent on FINDING A

GOOD-PAYING JOB.
7. THIS DECISION opens the way for much broader

application of the law.
8. For market discipline to work, BANKS CANNOT

EXPECT TO BE BAILED OUT.
9. Judy’s comments were SO OFFENSIVE that I left.

Table 1: Examples of causal language, reflecting the anno-
tation scheme described in §2.1 (with connectives in bold,
CAUSES in small caps, and effects in italics).

dous variety of linguistic forms (Wolff et al., 2005).
As exemplified in Table 1, possibilities include verbs
(1, 2), prepositions/conjunctions (3, 4, 5), adjectives
(6), and much more complex expressions. Some of
these trickier cases can be handled as idiomatic multi-
word expressions (MWEs; 7). Others (8, 9), however,
are more structured than typical MWEs: they depend
on particular configurations of syntactic relations and
slot-fillers, placing them closer to the grammatical
end of the continuum of lexicon and grammar.

This diversity presents a problem for most se-
mantic parsers, which inherit the restrictions of the
representational schemes they are based on. Many
semantic annotation schemes limit themselves to
the argument structures of particular word classes.
For example, the Penn Discourse Treebank (PDTB;
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Prasad et al., 2008) includes only conjunctions and
adverbials as connectives,1 and PropBank (Palmer
et al., 2005) and VerbNet (Schuler, 2005) focus on
verb arguments. FrameNet (Baker et al., 1998; Fill-
more, 2012) is less restrictive, allowing many parts
of speech as triggers.

Most importantly, though, all these representations
share the fundamental simplifying assumption that
the basic linguistic carrier of meaning is the lexical
unit. Some (e.g., PDTB and FrameNet) allow MWEs
as lexical units, and much work has been done on
detecting and interpreting MWEs (see Baldwin and
Kim, 2010). But even these schemes overlook es-
sential linguistic elements that encode meanings. In
example 9, for instance, a lexical unit approach would
have to treat so as encoding the causal relationship,
when in fact so merely intensifies the adjective; it is
the combination of so and the finite clausal comple-
ment that indicates causality.

A more general approach can be found in the prin-
ciples of CONSTRUCTION GRAMMAR (CxG; Fill-
more et al., 1988; Goldberg, 1995). CxG posits that
the fundamental units of language are CONSTRUC-
TIONS – pairings of meanings with arbitrarily com-
plex linguistic forms. These forms are often produc-
tive, consisting of some fixed elements combined
with some open slots for semantic arguments. The
form/meaning pairings can be as simple as those in
traditional lexical semantics. The verb push, for in-
stance, is paired with the meaning force to move,
and the verb takes two linguistic arguments (sub-
ject and object) corresponding to the two semantic
arguments (pusher and pushee). But in CxG, the
meaning-bearing forms can be much more complex:
so X that Y is a single construction, paired with the
meaning X to an extreme that causes Y.

The CxG paradigm can anchor semantic interpre-
tations to any constellation of surface forms, making
it potentially invaluable for computational semantics.
Even as it has grown in prominence in linguistics,
however, CxG has received relatively little attention
in NLP. This is partly because the usual approach
to operationalizing CxG is to rebuild the entire NLP
pipeline to be “constructions all the way down” – to

1PDTB does include a catch-all AltLex category that captures
some additional constructions. However, these phrases are very
unpredictable, as they include many words beyond the linguistic
triggers. They are also restricted to relations between sentences.

explicitly model the interactions and inheritance re-
lationships between constructions that produce the
final utterance and meaning.

Here, we take a different approach. Instead of
“constructions all the way down,” we propose a “CON-
STRUCTIONS ON TOP” methodology: we use a con-
ventional NLP pipeline for POS tagging, parsing, and
so on, but add a layer for constructional phenomena
that directly carry meaning. Rather than specifying
by hand the constraints and properties that charac-
terize each construction, we allow machine learning
algorithms to learn these characteristics.

Causal relations present an ideal testbed for this ap-
proach. As noted above, causal relations are realized
in extremely diverse ways, demanding an operational-
ized concept of constructions. Recognizing causal
relations also requires a combination of linguistic
analysis and broader world knowledge. Additionally,
causal relations are ubiquitous, both in our thinking
and in our language (see, e.g., Conrath et al., 2014).
Recognizing these relations is thus invaluable for
many semantics-oriented applications, including tex-
tual entailment and question answering (especially
for “why” questions). They are especially helpful for
domain-specific applications such as finance, politics,
and biology (see, e.g., Berant et al., 2014), where ex-
tracting cause and effect relationships can help drive
decision-making. More general applications like ma-
chine translation and summarization, which ought to
preserve stated causal relationships, can also benefit.

In the remainder of this paper, we suggest two
related approaches for tagging causal constructions
and their arguments. We first review an annotation
scheme for causal language and present a new corpus
annotated using that scheme (§2). We then define
the task of tagging causal language, casting it as a
construction recognition problem (§3). Because it
is so hard to identify the relevant components of a
construction (tenses, grammatical relations, etc.), the
scheme and task do not explicitly include all of these
elements. We instead tag the words that participate in
a causal construction as a proxy for that construction.
We leave it to annotators (when humans are annotat-
ing) or machine learning (during automated tagging)
to assess when the full constellation of constructional
elements is present.

Next, we present Causeway-L and Causeway-S,
two versions of a pipeline for performing this task,
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and compare the two approaches. Both approaches
use automatically induced patterns, either syntactic
(§4.1) or lexical (§4.2), to find possible lexical trig-
gers of causal constructions, as well as their likely
arguments. They then apply a mix of construction-
specific classifiers and construction-independent clas-
sifiers to determine when causal constructions are
truly present. We report on three sets of experiments
(§5) assessing the two systems’ performance, the im-
pacts of various design features, and the effects of
parsing errors. The results indicate the viability of
the approach, and point to further work needed to
improve construction recognition (§6).

2 Causal Language Annotation Scheme
and Corpus

Causation is a slippery notion (see Schaffer, 2014), so
the parameters of annotating causal language require
careful definition. We follow the annotation scheme
of Dunietz et al. (2015), which we now briefly review.

2.1 Causal Language Annotation Scheme
The scheme of Dunietz et al. (2015) focuses specifi-
cally on causal language – language used to appeal
to psychological notions of cause and effect. It is
not concerned with what causal relationships hold
in the real world; rather, it represents what causal
relationships are asserted by the text. For example,
cancer causes smoking states a false causation, but it
would nonetheless be annotated. On the other hand,
the bacon pizza is delicious would not be annotated,
even though bacon may in fact cause deliciousness,
because the causal relationship is not stated.

The scheme defines causal language as any con-
struction which presents one event, state, action, or
entity as promoting or hindering another, and which
includes at least one lexical trigger. For each instance
of causal language, up to three spans are annotated:

• The causal connective (required) – the lexical
items in the construction signaling the causal rela-
tionship (e.g., because of ). The connective anno-
tation includes all words whose lemmas appear in
every instance of the construction. This excludes
elements that can be absent, such as most copu-
las, or classes of interchangeable words, such as
determiners, whose lemmas can vary between in-
stances.

• The cause – generally a full clause or phrase ex-
pressing an event or state of affairs (e.g., I attended
because Joan was the honoree). When an actor
– but no action – is presented as the cause (e.g.,
I prevented a fire.), the actor is annotated as the
cause.

• The effect – also generally an event or state of
affairs, expressed as a complete clause or phrase
(e.g., I attended because of Joan.).

The cause and effect spans may be absent, e.g.,
in a passive or infinitive. Several examples, with
connectives, causes, and effects annotated, are shown
in Table 1.

The scheme permits the connective to be discon-
tinuous and arbitrarily complex (e.g., a necessary
condition of or if is to ). Annotators together
established an informal “constructicon” to guide their
decisions about what word patterns should be con-
sidered connectives. Note that the connective is not
synonymous with the construction itself; rather, it is
a lexical indicator of the presence of the construction.
As noted above, we take the construction proper to in-
clude the relevant grammatical relations, constraints
on argument type, etc.

To address causal language as independently as
possible from other phenomena, and to circumscribe
the scope of the annotations, several types of relation-
ships are excluded:

• Causal relationships with no lexical trigger –
e.g., John went home early; he felt ill.

• Connectives that incorporate a means or result
– this includes lexical causatives such as kill (cause
to die) and convince (cause via persuasion). Only
connectives denoting pure causation (e.g., cause,
prevent, because) are annotated.

• Connectives that assert an unspecified causal
relationship – e.g., the earthquakes have been
linked to fracking.

• Temporal language – e.g., after I drank some wa-
ter, I felt much better. (Relations like temporal or-
der are often repurposed to express causality. We
are currently developing an enhanced annotation
scheme and corpus that accounts for such cases.)

Additionally, for practical reasons, arguments are
only annotated when they appear within the same
sentence as the connective.

119



The scheme labels four different types of causa-
tion: CONSEQUENCE, MOTIVATION, PURPOSE, and
INFERENCE. It also distinguishes positive causation
(FACILITATE) from negative causation (INHIBIT).
Our algorithms do not currently make these distinc-
tions, so we do not delve into them here.

Of course, this scheme does not supply everything
a full natural language understanding pipeline would
need regarding causal relationships. The scheme
does not unpack the argument spans into a richer
semantic representation. It also does not cover predi-
cates that imply causation, such as kill or convince.
Instead, it follows in the tradition of shallow semantic
parsing, imposing a canonical representation for cer-
tain predicates that abstracts away from the language
used to convey them. The shallow semantic pars-
ing paradigm enables many applications that only
require relevant text spans. It is also the first step
towards a full semantic interpretation that includes
interpretations of the arguments.

2.2 The BECAUSE Annotated Corpus
Based on the data and annotation scheme from Duni-
etz et al. (2015), we developed the Bank of Effects
and Causes Stated Explicitly (BECAUSE), which was
used for all experiments below. It consists of three
sets of exhaustively annotated documents:

• 59 randomly selected articles from the year 2007
in the Washington section of the New York Times
corpus (Sandhaus, 2008)

• 47 documents randomly selected from sections
2–23 of the Penn Treebank2 (Marcus et al., 1994)

• 679 sentences3 transcribed from Congress’ Dodd-
Frank hearings, taken from the NLP Unshared Task
in PoliInformatics 2014 (Smith et al., 2014)

The corpus contains a total of 4161 sentences, among
which are 1099 labeled instances of causal language.
1004 of these, or 91%, include both cause and effect
arguments.

Many of these documents are the same ones that
were annotated in Dunietz et al. (2015), with mi-
nor corrections. About 75% of the data is new, but

2We excluded WSJ documents that were either earnings re-
ports or corporate leadership/structure announcements, as both
tended to be merely short lists of names/numbers.

3The remaining sentences and documents were not annotated
due to constraints on available annotation effort.

Partial overlap:
Allowed Excluded

Connectives (F1) 0.78 0.70
Degrees (κ) 1.0 1.0

Causation types (κ) 0.82 0.80
Argument spans (F1) 0.96 0.86
Argument labels (κ) 0.98 0.97

Table 2: Inter-annotator agreement results for the BE-
CAUSE corpus. The difference between the two columns
is that for the left column, we counted two annotation
spans as a match if at least a quarter of the larger one
overlapped with the smaller; for the right column, we re-
quired an exact match. κ scores indicate Cohen’s kappa.
Each κ score was calculated only for spans that agreed
(e.g., degrees were only compared for matching connec-
tive spans).

Corpus Connective
types

Connective
tokens

PDTB 8.9% 34.4%
Mirza and Tonelli (2014) 29.3% 47.5%
FrameNet 69.4% 66.9%

Table 3: Percentages of the causal connectives in BE-
CAUSE that would be partially or fully annotatable under
other annotation schemes. Connectives were grouped into
types by the sequence of connective lemmas.

annotated by the same annotators. The scheme’s
inter-annotator agreement metrics are reproduced in
Table 2.

Many of the causal constructions in BECAUSE

would be harder to annotate in other schemes, as
shown in Table 3. We computed these statistics by
looking up each connective in the other schemes’
lexica. FrameNet captures many more connectives
than the others, but it often represents them in frames
that are not linked to causality, making comparison
difficult.

3 The Causal Language Tagging Task

We define the task of tagging causal language to
be reproducing a subset of the annotations of the
BECAUSE annotation scheme. We split this task into
two parts:

1. Connective discovery, in which the spans of
causal connectives are annotated. A connective
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span may be any set of tokens from the sentence.
This can be thought of as recognizing instantia-
tions of causal constructions.

2. Argument identification (or argument ID), in
which cause and effect spans are identified for
each causal connective. This can be thought of as
identifying the causal construction’s slot-fillers.

We assume as input a set of sentences, each with
POS tags, lemmas, NER tags, and a syntactic parse in
the Universal Dependencies (UD; Nivre et al., 2016)
scheme, all obtained from version 3.5.2 of the Stan-
ford parser (Klein and Manning, 2003).4

This task is defined in terms of text spans. Still,
to achieve a high score on it, a tagger must respond
to the meaning of the construction and arguments in
context, just as annotators do. This may be achieved
by analyzing indirect cues that correlate with mean-
ing, such as lexical information, dependency labels,
and tense/aspect/modality information.

Compared to the annotation scheme, the task is
limited in two important ways: first, we do not dis-
tinguish between types or degrees of causation; and
second, we only tag instances where both the cause
and the effect are present. (Even for connective dis-
covery, we only evaluate on instances where both
arguments are present, and our algorithms check for
spans or tokens that at least could be arguments.) We
leave addressing both limitations to future work.

Nonetheless, this task is more difficult than it may
appear. Two of the reasons for this are familiar is-
sues in NLP. First, there is a surprisingly long tail of
causal constructions (as we finished annotating, we

4We use the non-collapsed enhanced dependency represen-
tation. We could have selected a parser that produces both syn-
tactic and semantic structures, such as the English Resource
Grammar (ERG; Copestake and Flickinger, 2000) or another
HPSG variant. Though these parsers can produce impressively
sophisticated analyses, we elected to use dependency parsers
because they proved significantly more robust; there were many
sentences in our corpus that we could not parse with ERG. How-
ever, incorporating semantic information from such a system
when it is available would be an interesting extension for future
work.

Another possible input would have been semantic role label-
ing (SRL) tags. SRL tags could not form the basis of our system
the way syntactic relations can, because they only apply to lim-
ited classes of words (primarily verbs). Also, by examining
syntactic relations and undoing passives (see §), we get most of
the information SRL would provide. Still, we may include SRL
tags as classification features in the future.

would still encounter a new construction every 2–3
documents). Second, recognizing these constructions
inherits all the difficulties of word sense disambigua-
tion; every one of the connectives in Table 1 except
examples 6 and 7 has a non-causal meaning. (4 can
be used in a discourse sense – roughly, I’m saying this
because. . . .) The third reason arises from the com-
plexity of causal constructions. Because we allow
arbitrarily complex connectives, the space of possible
triggers is all subsets of words in the sentence. Thus,
the task demands an approach that can trim this space
down to a manageable size.

4 Causeway: Causal Construction Tagging
Methods

Causeway is a system that performs this causal lan-
guage tagging task. We implemented two versions of
Causeway: Causeway-S, based on syntactic patterns,
and Causeway-L, based on lexical patterns. (These
are both simple techniques; see §8 for some more
complex possibilities we are considering for future
work.) Each technique is implemented as a pipeline
with four stages:

1. Pattern-based tentative connective discovery.
Both techniques extract lexical or lexico-syntactic
patterns for connectives from the training data.
These patterns are then matched against each test
sentence to find tokens that may be participating
in a causal construction.

2. Argument identification, which marks the cause
and effect spans.

3. A statistical filter to remove false matches.

4. A constraint-based filter to remove redundant
connectives. Smaller connectives like to (which is
causal in sentences like I left to get lunch)5 are usu-
ally spurious when a larger connective includes
the same word, like cause X to Y . When a larger
and a smaller connective both make it through
Stage 3 together, we remove the smaller one.

Because argument ID is done before filtering, the
arguments output by Stage 2 do not quite represent
the cause and effect arguments of a causal instance.

5Following Schneider et al. (2015), BECAUSE considers the
“in order to” usage of the infinitive to to carry lexical meaning
beyond just marking an infinitival clause.
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worry/VBP

I/PRP

nsubj

care/VBP

I/PRP

nsubj

because/IN

mark

advcl

Figure 1: A UD parse for the sentence I worry because I
care, with the tree fragment corresponding to the because
construction bolded. Bolded nodes with unbolded text
indicate the slots in the construction. (Care is a dependent
of worry in keeping with the UD design philosophy, which
maximizes dependencies between content words.)

Rather, they represent what the cause and effect spans
would be if the connective is indeed causal. (For
the same reason, even connective discovery is not
complete until the end of the pipeline.) Of course,
we lack gold-standard arguments for false-positive
connectives. We therefore train argument ID only on
instances whose connectives are correct.

We now describe each of the two versions of this
pipeline in turn, focusing on their differing first and
second stages. We also elaborate on the design of the
classifier. Throughout, we take the head of a span to
be the token that is highest in the dependency tree.
For tokens that are equally high (e.g., if the parser
erroneously splits a phrase into two sister subtrees),
we prefer verbs or post-copular nouns over other
nouns, and nouns over other parts of speech.

4.1 Causeway-S: Syntax-Based Tagging
The syntax-based approach relies on a simple intu-
ition: each causal construction corresponds, at least
in part, to a fragment of a dependency tree, where
several nodes’ lemmas and POS tags are fixed (see
Figure 1). Accordingly, the first stage of Causeway-S
induces lexico-syntactic patterns from the training
data. At test time, it matches the patterns against new
dependency trees to identify possible connectives
and the putative heads of their cause and effect argu-
ments. The second stage then expands these heads
into complete argument spans.

TRegex Pattern Matching
For pattern matching, we use TRegex (Levy and

Andrew, 2006), a grep-inspired utility for matching
patterns against syntax trees. During training, the sys-

tem examines each causal language instance, gener-
ating a TRegex pattern that will match tree fragments
with the same connective and argument structure. In
the example from Figure 1, the generated pattern
would match any tree meeting three conditions:6

• some token t1 has a child t2 via a dependency
labeled advcl

• t2 has a child t3 via a dependency labeled mark

• t3 has the lemma because and a POS tag of IN

At test time, TRegex matches these extracted pat-
terns against the test sentences. Continuing with the
same example, we would recover t1 as the effect head,
t2 as the cause head, and {t3} as the connective.

TRegex is designed for phrase-structure trees, so
we transform each dependency tree into a PTB-like
parenthetical notation (see Levin et al., 2014).

Patterns involving verbs vary systematically: the
verbs can become passives or verbal modifiers (e.g.,
the disaster averted last week), which changes the
UD dependency relationships. To generalize across
these, we crafted a set of scripts for TSurgeon (Levy
and Andrew, 2006), a tree-transformation utility built
on TRegex. The scripts normalize passive verbs
and past participial modifiers into their active forms.
Each sentence is transformed before pattern extrac-
tion or matching.

TRegex Pattern Extraction
The algorithm for extracting TRegex patterns first

preprocesses all training sentences with TSurgeon.
Next, for each causal instance with both a cause
and an effect, it uses the Dreyfus-Wagner algorithm
(Dreyfus and Wagner, 1971) to find a minimum-
weight subtree of the dependency graph that includes
the connective, the cause head, and the effect head.
The algorithm uses this to build the pattern: for each
subtree edge rel(A,B), the pattern requires that the
test sentence include nodes related by a dependency
labeled as rel . If A or B is a connective word, then
the pattern also checks for its lemma and POS in
the test sentence nodes. Patterns with more than six
non-argument, non-connective nodes are discarded
as parse errors or otherwise ungeneralizable flukes.

The graph for Dreyfus-Wagner includes a directed
6The actual TRegex pattern encoding these conditions is:

/ˆbecause [0-9]+$/=connective 0 <2 /ˆIN.*/ <1 mark >(/.* [0-
9]+/=cause <1 advcl >(/.* [0-9]+/=effect)).
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edge for each dependency in the sentence’s parse
tree. For each edge, a back-edge of equal weight is
added, unless the back-edge already exists (which
UD allows). This allows Dreyfus-Wagner to find a
subtree even when it has to follow an arc in reverse
to do so.

Most edges have unit weight. However, for nodes
with multiple parents (which UD also allows), the
algorithm would often choose the wrong dependency
path, leading to poor generalization. Accordingly, on

paths of the form x
xcomp−−−→ y

csubj | nsubj−−−−−−−→ z (where
xcomp indicates open clausal complements), edge
costs are slightly decreased. This helps the algorithm
prefer the xcomp path connecting x, y, and z, rather

than a path such as x
nsubj−−−→ z

nsubj←−−− y. Similarly,
acl (adjectival clause) and expl (expletive) edges are
slightly penalized.

Syntax-Based Argument Identification
Each syntactic pattern inherently encodes the posi-

tions in the tree of the cause and effect heads. Thus,
matching these patterns is the first step of argument
ID, in addition to (tentative) connective discovery.

The second step of argument ID is to expand the ar-
gument heads into complete spans. In general, most
syntactic dependents of an argument’s head are in-
cluded in its span. There are two exceptions:

1. Connective words. Under the UD scheme, words
that form part of the connective sometimes appear
as dependents of the argument head. For example,
in A prevents B from C, from appears as a depen-
dent of C, but it is really part of the construction
for the verb prevent. Following the annotation
scheme, we therefore exclude such connective
words (and any of their dependents) from the ar-
gument span.

2. Words below the head of the other argument.
For example, in A because B, B will be a depen-
dent of A (see Figure 1). Obviously, however, it
should not be included in the cause span.

4.2 Causeway-L: Lexical Pattern-Based
Tagging

Syntactic parsers often make mistakes, which be-
comes especially relevant for syntactic patterns that
examine multiple dependencies. This is particularly
problematic for the syntax-based pipeline, for which

parse errors, either in training or at test time, can
prevent patterns from matching. Additionally, the
exact syntactic relations present in a given instance
may be altered by the presence of other constructions.
For example, if a verb appears as a complement of
another verb, the path to the subject will have an
additional dependency link.

We therefore implemented a second algorithm,
Causeway-L, that performs connective discovery
based on the sequence of word lemmas and parts
of speech: instead of extracting and matching parse
patterns, it extracts and matches regular expressions.
It then uses a conditional random field to label the
argument spans, using features from the parse in a
more probabilistic way.

Connective Discovery with Regular
Expression Patterns
At training time, we generate regular expressions

that will match sequences of connective and argu-
ment lemmas. The regexes also make sure that there
are tokens in the correct lexical positions for argu-
ments. For instance, upon seeing an example like A
because B, it would generate a pattern that matches
any sequence of lemmas (the effect range), followed
by the lemma because with POS tag IN (the connec-
tive), followed by any other sequence of lemmas (the
cause range).7 Each subpattern is given its own cap-
turing group in the regular expression. At test time,
each new sentence is turned into a string of lemmas
with POS tags for matching. Matching lemmas can
be recovered from the capturing groups.

Argument Identification with a CRF
Unlike syntactic patterns, regular expressions can-

not pinpoint the cause and effect arguments; they can
only give ranges within which those arguments must
appear. Thus, the argument ID stage for this pipeline
starts with much less information.

We treat the task of argument ID as a sequence
labeling problem: given a particular regex-derived
connective, the system must identify which tokens
are in the cause, which are in the effect, and which
are neither. We use a standard linear-chain CRF for
this task, implemented with the CRFsuite library.8

7The actual regular expression that encodes this is:
(ˆ| )([\S]+ )+?(because/IN) ([\S]+ )+?.

8http://www.chokkan.org/software/
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• The lemma of wi

• The POS tag of wi

• Whether wi ∈ C
• The dependency parse path between wi and the

token in C that is closest in the parse tree
• The absolute lexical distance between wi and the

lexically closest token in C
• The signed lexical distance between wi and the

lexically closest token in C
• Whether wi is in the parse tree (false for punctua-

tion and several other non-argument token types)
• The regex pattern that matched C
• The cross-product of the regex pattern feature and

the parse path feature
• The position of wi relative to C
• Whether the lemma of wi is alphanumeric

Table 4: Features used for CRF argument ID. For each pos-
sible connective C (a set of tokens), features are extracted
from each word wi in the sentence. All non-numeric fea-
tures are binarized.

The features for argument ID are listed in Table 4.

4.3 Voting Classifier for Filtering

The pattern-matching stage overgenerates for two
reasons. First, due to ambiguity of both words and
constructions, not all instances of a given pattern are
actually causal. Since, for example, has both causal
and temporal senses, which are not distinguished
either lexically or syntactically. Second, the patterns
do not filter for important constructional elements
like tense and modality (e.g., example 8 in Table 1
requires modality of necessity in the cause). Thus,
pattern matching alone would yield high recall but
low precision.

To account for this, the final stage of both pipelines
is a filter that determines whether each possible con-
nective instance, along with its arguments, is in fact
being used in a causal construction.

This classification task is somewhat, but not en-
tirely, heterogeneous. Some aspects are universal –
there are regularities in what typically causes what –

crfsuite/. We use the python-crfsuite wrapper (https:
//github.com/tpeng/python-crfsuite/).

9For this purpose, we represent the tense of a verb as the POS
of the verb plus the string of auxiliaries attached to it. The tense
of a non-verb is null. For copulas, both the POS of the copula
and the POS of its object are included.

Connective features:
• The label on the dependency from h to its parent
• The part of speech of h’s parent
• The sequence of connective words*

• The sequence of connective lemmas*

• Each pattern that matched the connective*

Argument features:
• The POS tags of c and e
• The generalized POS tags of c and e

(e.g., N for either NNP or NNS)
• The tenses9 of c and e, both alone and conjoined
• The label on each child dependency of c and e
• For verbs, the set of child dependency labels
• The number of words between c and e
• The dependency path between c and e
• The length of the dependency path from c to e
• Each closed-class child lemma of e and of c
• The domination relationship between c and e

(dominates, dominated by, or independent)
• The sets of closed-class child lemmas of e and c
• The conjoined NER tags of c and e
• Initial prepositions of the cause/effect spans, if any
• Each POS 1-skip-2-gram in the cause/effect spans
• Each lemma 1-skip-2-gram in the cause/effect

spans that was seen at least 4 times in training
• Each WordNet hypernym of c and e†

Table 5: Features for the causal language candidate filter.
c indicates the cause head, e the effect head, and h the
connective head. All non-numeric features are binarized.
* Used only for per-connective classifiers.
† Used only for the global classifier.

while others are construction-dependent. To incorpo-
rate both kinds of information, a separate soft-voting
classifier is created for each unique sequence of con-
nective words. Each classifier averages the proba-
bility estimates of three less-reliable classifiers: a
global logistic regression classifier, which is shared
between all connectives; a per-connective logistic
regression classifier; and a per-connective classifier
that chooses the most frequent label for that connec-
tive. Our classifier thus differs slightly from typical
voting classifiers: rather than the ensemble consisting
of multiple algorithms trained on the same data, our
ensemble includes one generalist and two specialists.

We use the scikit-learn 0.17.1 (Pedregosa et al.,
2011) implementation of logistic regression with L1
regularization and balanced class weights. The logis-
tic regression classifiers consider a variety of features
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derived from the matched pattern, the connective
words matching, the argument heads, and the parse
tree (see Table 5). An instance is tagged as causal
if the soft vote assigns it a probability above 0.45.
This cutoff, close to the prior of 0.5, was tuned for
F1 on a different random split of the data than was
used in the experiments below. In our experiments,
the cutoff made little difference to scores.

5 Experiments

5.1 Baselines

Our task differs significantly from existing tasks such
as frame-semantic parsing, both in the forms of al-
lowable triggers and in the semantic relationships tar-
geted. Our results are therefore not directly compara-
ble to a frame-semantic parsing baseline. Instead, we
compare our end-to-end results against an argument-
aware most-frequent-sense (MFS) baseline.

At training time, the baseline first extracts the
set of sequences of connective lemmas – i.e.,
{〈prevent, from〉, 〈because, of〉, . . .}. It then builds
a table t with one entry for each combination of con-
nective and argument parse path, recording how many
more times it has been causal than non-causal.

For example, consider the sentence The flu pre-
vented me from attending. After finding that prevent
and from are present in the correct order, the baseline
considers every pair (c, e) of non-connective words
within a parse radius of two links from the connec-
tive. Each (c, e) is considered a possible cause/effect
head pair for prevent from. For each pair, it finds the
shortest path of dependency links from either prevent
or from to c and e (call these paths dc and de). If
prevent from is annotated as causal, with cause head
c and effect head e, the system increments the count
t{prevent from, dc, de}; otherwise, it decrements it.

The test algorithm finds the same set of possible
(connective, cause head, effect head) tuples in the
test sentence. For each tuple, if the corresponding
entry in t is greater than 0, the system tags a causal
language instance. Argument heads are expanded
into spans using the algorithm from Causeway-S.

In addition to an end-to-end baseline, we wished
to test how helpful our three-way voting classifier
is. For each pipeline, then, we also compare that
classifier against a most-frequent-sense baseline that
chooses the most frequent label (causal or not-causal)

for each connective, with connectives differentiated
by their lemma sequences. The baseline classifier has
no access to any information about the arguments.

5.2 Experiment 1: Pipeline Comparison

In this experiment, we measured the performance of
Causeway-S, Causeway-L, and the baseline on the
tasks of connective discovery and argument ID. We
also tried taking the union of each system’s outputs
with the baseline’s. Because of the small size of
BECAUSE, we report averaged metrics from 20-fold
cross-validation, with fold size measured by sentence
count. All pipelines were run on the same folds.

Evaluation Metrics
For connective discovery, we report precision, re-

call, and F1 for connectives, requiring connectives to
match exactly. In counting true positives and false
negatives, the only gold-standard instances counted
are those with both a cause and an effect, in keeping
with the task definition.

For argument ID, we split out metrics by causes
and effects. For each, we report:

• percent agreement on exact spans

• percent agreement on heads

• the average Jaccard index (Jaccard, 1912) for
gold-standard vs. predicted spans, defined as
J(A,B) = |A∩B|

|A∪B| , where A and B are the sets
of tokens in the two spans. This metric reflects
how well the argument spans overlap when they
do not match exactly.

All argument metrics are reported only for correctly
predicted connectives, as there is no way to auto-
matically evaluate argument spans for false positives.
Note that as a result, argument ID scores are not
directly comparable between pipelines – the scores
represent how well argument ID works given the
previous stage, rather than in an absolute sense.

We use the same metrics for Experiments 2 and 3.

5.3 Experiment 2: Ablation Studies

Our second experiment explores the impact of vari-
ous design choices by eliminating individual design
elements. We report results from using the global
and connective-specific classifiers on their own, with-
out the soft-voting ensemble. (The MFS classifier is
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tested alone as part of Experiment 1.) We also report
results from the ensemble classifier without using any
features that primarily reflect world knowledge: NER
tags, WordNet hypernyms, and lemma skip-grams.

5.4 Experiment 3: Effects of Parse Errors

In our third experiment, we examined the effects of
parse errors on our pipelines’ performance. We com-
pared each pipeline’s performance with and without
gold-standard parses, using only the Penn Treebank
portion of BECAUSE. For gold-standard runs, we
used the Stanford dependency converter (De Marn-
effe et al., 2006) to convert the gold parses into de-
pendency format. We report averaged results from
20-fold cross-validation on this subcorpus.

6 Experimental Results and Analysis

6.1 Experiment 1 Results

Results from Experiment 1 are shown in Table 6.
Our most important conclusion from these results

is that a classifier can indeed learn to recognize many
of the subtleties that distinguish causal constructions
from their similar non-causal counterparts. Even our
end-to-end baseline offers moderate performance, but
Causeway-L outperforms it at connective discovery
by over 14 F1 points, and Causeway-S outperforms
it by 18 points.

The design of the filter is a significant contrib-
utor here. The MFS classifier alone substantially
underperforms the voting classifier, particularly for
the syntactic pipeline. The small connectives filter
makes up some of the difference, but the full pipeline
still beats the MFS filter by 4.4 points for the lexical
system and 6.7 points for the syntax-based system.

When our pipelines are combined with the end-to-
end baseline, the results are better still, beating the
baseline alone by 21.4 points. This supports our hy-
pothesis that causal construction recognition rests on
a combination of both shallow and deep information.

As expected, both pipelines show high recall but
low precision for the connective discovery stage.
(Much of the remaining gap in recall came simply
from the long tail of constructions – about half of
connective types never saw a pattern match.) The
filter does balance out precision and recall for a bet-
ter F1. However, as the filter’s steep drop in recall
suggests, more work is needed to upweight positive

instances. Examining the classifier scores reveals
that the filter is doing a good job of assigning low
probability to negative instances: the vast majority of
false pattern matches are clustered below a probabil-
ity of 0.5, whereas the positives are peppered more
evenly over the probability spectrum. Unfortunately,
the positives’ probabilities are not clustered on the
high end, as they should be.

Significant leverage could be gained just from im-
proving classification for the connective to. For both
pipelines, this one connective accounted for 20–25%
of end-to-end false positives and false negatives, and
nearly half of all misclassifications by the filter. Many
of the remaining errors (about 40%) came from just
a few simple but highly ambiguous/polysemous con-
nectives, including if, for, and so. For complex con-
structions (MWEs or more complex syntactic struc-
tures), Causeway-L achieved 42% F1 and Causeway-
S achieved 48%. Overall, then, it seems that the
classifier is doing well even at the cases that would
challenge typical semantic parsing systems, but it
needs some features that will allow it to upweight
positive instances of a few challenging words.

For argument ID, both techniques do reasonably
well at recovering exact argument spans, and the
HC and HE columns show that even when the exact
spans do not match, the key content words are mostly
correct. The low Jaccard indices, meanwhile, indi-
cate that there is plenty of room for improvement in
finding not just heads, but full spans.

Interestingly, effects seem to be harder to recover
than causes. The likely culprit is the difference in
lengths between the two types of arguments. The
distribution of cause lengths is skewed toward low
numbers, with a peak at 2 and a median of 5, while
effects have a smoother peak at 5 with a median of
7 (Figure 2). The difference makes it harder for the
system to guess full effect spans, and even for heads
there are more plausible options. The length dispar-
ity, in turn, is probably due to the fact that causes
are likely to be subjects (19%) or nominal modifiers
(13%), which skew short, whereas most effects are
primary clauses (24%), complements (30%), or direct
objects (12%), which are often more complex.

6.2 Experiment 2 Results
Results for Experiment 2 are shown in Table 7.

The results using single classifiers, rather than an
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Connectives Causes Effects
Pipeline P R F1 SC HC JC SE HE JE

Causeway-S w/o classifier 7.3 71.9 13.2 65.0 84.3 39.3 30.4 63.0 30.7
Causeway-S w/ MFS 40.1 37.9 38.6 71.0 87.6 42.0 34.3 64.4 31.9

Causeway-S w/ MFS + SC filter 60.9 36.2 45.1 75.1 92.3 42.9 40.7 75.2 35.8
Causeway-S w/ classifier 51.9 47.6 49.4 68.7 86.9 39.9 38.0 72.5 34.1

Causeway-S w/ classifier + SC filter 57.7 47.4 51.8 67.1 84.4 39.0 37.7 70.7 33.4

Causeway-L w/o classifier 8.1 91.1 14.8 56.8 67.6 33.1 39.5 59.4 30.9
Causeway-L w/ MFS 61.2 34.8 44.1 73.9 84.7 42.3 51.2 74.3 37.6

Causeway-L w/ MFS + SC filter 61.3 33.9 43.5 74.5 85.0 42.5 50.8 74.0 37.4
Causeway-L w/ classifier 59.0 40.6 47.9 74.5 85.9 42.7 53.3 76.1 38.2

Causeway-L w/ classifier + SC filter 60.4 39.9 47.9 74.3 85.8 42.6 53.3 76.4 38.2

Baseline 88.4 21.4 33.8 74.1 94.7 43.7 48.4 83.3 38.4
Baseline + Causeway-S 59.6 51.9 55.2 67.7 85.8 39.5 39.5 73.1 34.2
Baseline + Causeway-L 62.3 45.2 52.3 73.6 88.9 42.8 53.9 78.6 38.7

Table 6: Results for Experiment 1. SC and SE indicate exact span match for causes and effects, respectively; HC and
HE indicate percentage accuracy for cause and effect heads; and JC and JE indicate cause and effect Jaccard indices.
“SC filter” indicates the filter for smaller overlapping connectives. For the combinations of the baseline with Causeway,
the union of the baseline’s and Causeway’s outputs was passed to the SC filter.
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Figure 2: Distributions of cause and effect span lengths in
the BECAUSE corpus (for instances with both arguments).

ensemble, uphold our design of combining multiple
information sources. Even the best non-ensemble
filter, the per-connective filter in Causeway-S, under-
performs its ensemble counterpart by 3.1 points.

Likewise, the results from removing world-
knowledge features confirm that this knowledge sig-
nificantly assists the classifier beyond what surface-
level features alone can provide. World knowledge
features add 2.4 points for Causeway-L and 2.8 points
for Causeway-S.

6.3 Experiment 3

Results from Experiment 3 are shown in Table 8.

As expected, Causeway-S improved significantly
with gold-standard parses, whereas Causeway-L gets
only a tiny boost. Surprisingly, Causeway-S did not
improve from better TRegex matching of connectives
per se. In fact, all scores for connective matching
from the first stage were worse with gold-standard
parses. Instead, the improvement appears to come
from argument identification: better parses made it
easier to identify argument heads, which in turn made
the many features based on those heads more reliable.
This is supported by the high argument head accuracy
with gold parses. Further, when we ran the baseline
on the PTB subcorpus with and without gold parses,
we saw a similar improvement.

Thus, although the limited data and the classifier’s
failure to upweight positives are still the primary
handicaps, better parses would be somewhat helpful
for at least the syntax-based approach.

7 Related Work

Our work is of course based on CxG, which has
inspired a number of NLP efforts. On the language-
resource side, the FrameNet group, noting the many
aspects of meaning that are not fully captured in an
analysis of lexical triggers, has begun an extensive
project to document and annotate grammatical con-
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Connectives Causes Effects
Pipeline Classifiers Ablated P R F1 SC HC JC SE HE JE

Causeway-S – 57.7 47.4 51.8 67.1 84.4 39.0 37.7 70.7 33.4
Causeway-S Both per-connective 40.8 50.4 44.9 65.6 82.8 38.1 36.8 68.8 32.6
Causeway-S Global/most-freq. 47.1 51.2 48.7 66.0 82.3 38.3 36.3 69.1 33.0
Causeway-S Knowledge features 49.5 49.0 49.0 68.9 85.1 39.8 38.3 71.7 33.4

Causeway-L – 60.4 39.9 47.9 74.3 85.8 42.6 53.3 76.4 38.2
Causeway-L Both per-connective 43.6 40.0 41.5 74.5 88.5 42.4 53.9 76.4 38.4
Causeway-L Global/most-freq. 46.3 38.9 42.1 75.6 86.8 43.1 51.3 74.6 37.6
Causeway-L Knowledge features 55.5 38.9 45.5 74.8 87.3 42.9 52.1 75.5 37.7

Table 7: Results for Experiment 2. Unablated full-pipeline results from Table 6 are included for comparison.

(a) With automatically parsed data

Connectives Causes Effects
Pipeline P R F1 SC HC JC SE HE JE

Causeway-S w/o classifier 14.9 73.3 24.7 63.6 90.9 40.3 18.1 72.7 25.3
Causeway-S w/ classifier + SC filter 54.7 40.2 45.7 78.7 98.4 44.6 46.0 78.4 36.7

Causeway-L w/o classifier 9.3 84.6 16.7 59.4 68.5 33.1 43.2 62.1 31.8
Causeway-L w/ classifier + SC filter 52.4 37.2 43.2 72.9 84.5 40.0 52.3 73.4 35.7

(b) With gold-standard parses

Connectives Causes Effects
Pipeline P R F1 SC HC JC SE HE JE

Causeway-S w/o classifier 10.2 70.6 17.7 79.4 98.1 45.7 52.8 90.2 41.3
Causeway-S w/ classifier + SC filter 62.7 51.6 56.0 80.2 96.4 45.6 59.0 92.7 43.4

Causeway-L w/o classifier 9.1 84.1 16.4 57.8 68.2 33.3 53.0 68.0 34.4
Causeway-L w/ classifier + SC filter 56.4 37.9 44.3 77.0 85.3 41.8 67.2 83.4 40.4

Table 8: Results for Experiment 3.

structions in English (Fillmore et al., 2012). Similar
efforts are underway for VerbNet (Bonial et al., 2011)
and PropBank (Bonial et al., 2014). On the NLP-
tools side, some work has been done on parsing text
directly into constructions, particularly through the
formalisms of Fluid Construction Grammar (Steels,
2012) and Embodied Construction Grammar (Bergen
and Chang, 2005), which take a “constructions all
the way down” approach. Some HPSG parsers and
formalisms, particularly those based on the English
Resource Grammar (Copestake and Flickinger, 2000;
Flickinger, 2011) or Sign-Based Construction Gram-
mar (Boas and Sag, 2012), also take constructions
into account. Thus far, however, only a few attempts
(e.g., Hwang and Palmer, 2015) have been made to

integrate constructions with robust, broad-coverage
NLP tools/representations.

Other aspects of our work are more closely related
to previous NLP research. Our task is similar to
frame-semantic parsing (Baker et al., 2007), the task
of automatically producing FrameNet annotations.
Lexical triggers of a frame correspond roughly to
our causal connectives, and both tasks require iden-
tifying argument spans for each trigger. The tasks
differ in that FrameNet covers a much wider range of
semantics, with more frame-specific argument types,
but its triggers are limited to lexical units, whereas
we permit arbitrary constructions. Our multi-stage
approach is also loosely inspired by SEMAFOR and
subsequent FrameNet parsers (Das et al., 2014; Roth
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and Lapata, 2015; Täckström et al., 2015).
Several representational schemes have incorpo-

rated elements of causal language. PDTB includes
reason and result relations; FrameNet frames often
include Purpose and Explanation roles; preposition
schemes (e.g., Schneider et al., 2015, 2016) include
some purpose- and explanation-related senses; and
VerbNet and PropBank include verbs of causation.
As described in §1, however, none of these covers the
full range of linguistic realizations of causality.

The ASFALDA French FrameNet project recently
proposed a reorganized frame hierarchy for causality,
along with more complete coverage of French causal
lexical units (Vieu et al., 2016). Some constructions
would still be too complex to represent, but under
their framework, many of our insights could likely
be merged into mainline English FrameNet.

Other projects have attempted to address causality
more specifically. For example, a small corpus of
event pairs conjoined with and has been annotated
as causal or not causal (Bethard and Martin, 2008),
and a classifier was built for such pairs (Bethard
et al., 2008). The CaTeRS annotation scheme
(Mostafazadeh et al., 2016), based on TimeML, also
includes causal relations, but from a commonsense
reasoning standpoint rather than a linguistic one. A
broader-coverage linguistic approach was taken by
Mirza and Tonelli (2014). They enriched TimeML
to include causal links and their lexical triggers,
and built an SVM-based system for predicting them.
Their work differs from ours in that it requires argu-
ments to be TimeML events; it requires connectives
to be contiguous spans; and their classifier relies on
gold-standard TimeML annotations.

More recently, Hidey and McKeown (2016) au-
tomatically constructed a large dataset with PDTB-
style AltLex annotations for causality. Using this cor-
pus, they achieved high accuracy in finding causality
indicators. This was a somewhat easier task than
ours, given their much larger dataset and that they
limited their causal triggers to contiguous phrases.
Their dataset and methods for constructing it, how-
ever, could likely be adapted to improve our systems.

Our pattern-matching techniques are based on ear-
lier work on LEXICO-SYNTACTIC PATTERNS. These
patterns, similarly represented as fragments of de-
pendency parse trees with slots, have proven useful
for hypernym discovery (Hearst, 1992; Snow et al.,

2005). They have also been used both for the more
limited task of detecting causal verbs (Girju, 2003)
and for detecting causation relations that are not ex-
clusively verbal (Ittoo and Bouma, 2011).

Our work extends this earlier research in several
ways. We propose several methods (CRF-based ar-
gument ID and statistical classifiers) for overcoming
the ambiguity inherent in such patterns. We also take
care to ground our notion of causality in a princi-
pled annotation scheme for causal language. This
avoids the difficulties of agreeing on what counts as
real-world causation (see Grivaz, 2010).

8 Conclusion and Future Work

With this work, we have demonstrated the viability of
two approaches to tagging causal constructions. We
hope that the constructional perspective will prove
applicable to other domains, as well. Our code and
corpus are available at https://github.com/
duncanka/causeway and https://github.
com/duncanka/BECauSE, respectively.

In the immediate future, we plan to explore more
sophisticated, flexible algorithms for tagging causal
constructions that rely less on fixed patterns. Two
promising directions for flexible matching are tree
kernels and parse forests (Tomita, 1985). We are also
pursuing a neural, transition-based tagging model.

In parallel, we are working to extend our ap-
proaches to cases where causality is expressed using
temporal language or other overlapping relations. We
are developing a further expanded corpus that will
include annotations for such cases, and we expect to
extend our algorithms to these new annotations.

In the longer run, we plan to demonstrate the use-
fulness of our predicted causal language annotations
for an application-oriented semantic task such as
question-answering.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
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