
First Joint Conference on Lexical and Computational Semantics (*SEM), pages 679–683,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Penn: Using Word Similarities to better Estimate Sentence Similarity

Sneha Jha and H. Andrew Schwartz and Lyle H. Ungar
University of Pennsylvania

Philadelphia, PA, USA
{jhasneha, hansens, ungar}@seas.upenn.edu

Abstract

We present the Penn system for SemEval-
2012 Task 6, computing the degree of seman-
tic equivalence between two sentences. We
explore the contributions of different vector
models for computing sentence and word sim-
ilarity: Collobert and Weston embeddings as
well as two novel approaches, namely eigen-
words and selectors. These embeddings pro-
vide different measures of distributional simi-
larity between words, and their contexts. We
used regression to combine the different simi-
larity measures, and found that each provides
partially independent predictive signal above
baseline models.

1 Introduction

We compute the semantic similarity between pairs
of sentences by combining a set of similarity met-
rics at various levels of depth, from surface word
similarity to similarities derived from vector mod-
els of word or sentence meaning. Regression is then
used to determine optimal weightings of the differ-
ent similarity measures. We use this setting to as-
sess the contributions from several different word
embeddings.

Our system is based on similarities computed us-
ing multiple sets of features: (a) naive lexical fea-
tures, (b) similarity between vector representations
of sentences, and (c) similarity between constituent
words computed using WordNet, using the eigen-
word vector representations of words , and using se-
lectors, which generalize words to a set of words that
appear in the same context.

2 System Description

This section briefly describes the feature sets used to
arrive at a similarity measure between sentences. We
compare the use of word similarities based on three
different embeddings for words neural embeddings
using recursive autoencoders, eigenwords and selec-
tors.

2.1 Neural Models of Word Representation

An increasingly popular approach is to learn repre-
sentational embeddings for words from a large col-
lection of unlabeled data (typically using a genera-
tive model), and to use these embeddings to augment
the feature set of a supervised learner. These models
are based on the distributional hypothesis in linguis-
tics that words that occur in similar contexts tend
to have similar meanings. The similarities between
these vectors indicate similarity in the meanings of
corresponding words.

The state of the art model in paraphrase detection
uses an unsupervised recursive autoencoder (RAE)
model based on an unfolding objective that learn
feature vectors for phrases in syntactic parse trees
(Socher et al., 2011). The idea of neural language
models is to jointly learn an embedding of words
into an n-dimensional vector space that capture dis-
tributional syntactic and semantic information via
the words co-occurrence statistics. Further details
and evaluations of these embeddings are discussed
in Turian et al. (2010).

Once the distributional syntactic and semantic
matrix is learned on an unlabeled corpus, one can
use it for subsequent tasks by using each words vec-
tor to represent that word. For initial word embed-
dings, we used the 100-dimensional vectors com-

679

puted via the unsupervised method of Collobert and
Weston (2008). These word embeddings are matri-
ces of size |V | × n where |V | is the size of the vo-
cabulary and n is the dimensionality of the semantic
space. This matrix usually captures co-occurrence
statistics and its values are learned. We used the
embeddings provided by Socher et al. (2011). Al-
though the original paper employed a dynamic pool-
ing layer in addition to the RAE that captures the
global structure of the similarity matrix, we found
the resulting sentence-level RAE itself was useful.
In turn, we use these vector representations at the
sentence level where the cosine similarity between
the sentence vectors serves as a measure of sentence
similarity. All parameters for the RAE layer are kept
same as described by Socher et al. (2011).

2.2 Eigenword Similarity

Recent spectral methods use large amounts of un-
labeled data to learn word representations, which
can then be used as features in supervised learners
for linguistic tasks. Eigenwords, a spectral method
for computing word embeddings based on context
words that characterize the meanings of words, can
be efficiently computed by a set of methods based on
singular value decomposition (Dhillon et al., 2011).

Such representations are dense, low dimensional
and real-valued like the vector representations in the
previous section except that they are induced us-
ing eigen-decomposition of the word co-occurrence
matrix instead of neural networks. This method
uses Canonical Correlation Analysis (CCA) be-
tween words and their immediate contexts to es-
timate word representations from unlabeled data.
CCA is the analog to Principal Component Analysis
(PCA) for pairs of matrices. It computes the direc-
tions of maximal correlation between a pair of matri-
ces. CCAs invariance to linear data transformations
enables proofs showing that keeping the dominant
singular vectors faithfully captures any state infor-
mation. (For this work, we used the Google n-gram
collection of web three-grams as the unlabeled data.)
Each dimension of these representations captures la-
tent information about a combination of syntactic
and semantic word properties. In the original paper,
the word embeddings are context-specific. For this
task, we only use context-oblivious embeddings i.e.
one embedding per word type for this task, based

on their model. Word similarity can then be cal-
culated as cosine similarity between the eigenword
representation vectors for any two words.

To move from word-level similarity to sentence-
level a few more steps are necessary. We adapted
the method of matrix similarity given by Stevenson
and Greenwood (2005). One calculates similarity
between all pairs of words, and each sentence is rep-
resented as a binary vector (with elements equal to 1
if a word is present and 0 otherwise). The similarity
between these sentences vectors ~a and~b is given by:

s(~a,~b) =
~aW~b

|~a||~b|
(1)

where W is a semantic similarity matrix contain-
ing information about the similarity of word pairs.
Each element in matrix W represents the similarity
of words according to some lexical or spectral simi-
larity measure.

2.3 Selector Similarity

Another novel method to account for the similarity
between words is via comparison of Web selectors
(Schwartz and Gomez, 2008). Selectors are words
that take the place of an instance of a target word
within its local context. For example, in “he ad-
dressed the strikers at the rally”, selectors for ‘strik-
ers’ might be ‘crowd’, ‘audience’, ‘workers’, or ‘stu-
dents’ words which can realize the same constituent
position as the target word. Since selectors are de-
termined based on the context, a set of selectors is an
abstraction for the context of a word instance. Thus,
comparing selector sets produces a measure of word
instance similarity. A key difference between selec-
tors and the eigenwords used in this paper are that
selectors are instance specific. This has the benefit
that selectors can distinguish word senses, but the
drawback that each word instance requires its own
set of selectors to be acquired.

Although selectors have previously only been
used for worse sense disambiguation, one can also
use them to compute similarity between two word
instances by taking the cosine similarity of vectors
containing selectors for each instance. In our case,
we compute the cosine similarity for each pair of
noun instances and populate the semantic similarity
matrix in formula (1) to generate a sentence-level

680

similarity estimate. Combining web selector- based
word similarity features with the word embeddings
from the neural model gave us the best overall per-
formance on the aggregated view of the data sets.

2.4 Other Similarity Metrics
Knowledge-Based. We use WordNet to calculate
semantic distances between all open-class words in
the sentence pairs. There are three classifications
of similarity metrics over WordNet: path-based,
information- content based, and gloss-based (Ped-
erson et al., 2004). We chose to incorporate those
measures performing best in the Schwartz & Gomez
(2011) application-oriented evaluation: (a) the path-
based measure of Schwartz & Gomez (2008); (b)
the information-content measure of Jiang & Conrath
(1997) utilizing the difference in information con-
tent between concepts and their point of intersection;
(c) the gloss-based measure of Patwardhan & Peder-
sen (2006). By including metrics utilizing different
sources of information, we suspect they will each
have something novel to contribute.

Because WordNet provides similarity between
concepts (word senses), we take the maximum simi-
larity between all senses of each word to be the sim-
ilarity between the two words. Such similarity can
then be computed between multiple pairs of words
to populate the semantic similarity matrix W in for-
mula (1) and generate sentence-level similarity esti-
mates as described above. The information-content
and path-based measures are restricted to compar-
ing nouns and verbs and only across the same part
of speech. On the other hand, the gloss-based mea-
sure, which relies on connections through concept
definitions, is more general and can compare words
across parts of speech.

Surface Metrics. We added the following set of
lexical features to incorporate some surface infor-
mation lost in the vector-based representations.

• difference in the lengths of the two sentences
• average length of the sentences
• number of common words based on exact

string match
• number of content words in common
• number of common words in base form
• number of similar numerals in the sentences

3 Evaluation and Results

We combine the similarity metrics discussed previ-
ously via regression (Pedregosa et al., 2011). We
included the following sets of features:

• System-baseline: surface metrics, knowledge-
based metrics. (discussed in section 2.4).

• Neu: Neural Model similarity (section 2.1)

• Ew: Eigenword similarity (section 2.2)

• Sel: Selector similarity (section 2.3)

To capture possible non-linear relations, we added
a squared and square-rooted column corresponding
to each feature in the feature matrix. We also tried
to combine all the features to form composite mea-
sures by defining multiple interaction terms. Both
these sets of additional features improved the per-
formance of our regression model. We used all fea-
tures to train both a linear regression model and a
regularized model based on ridge regression. The
regularization parameter for ridge regression was set
via cross-validation over the training set. All pre-
dictions of similarity values were capped within the
range [0,1]. Our systems were trained on the follow-
ing data sets:

• MSR-Paraphrase, Microsoft Research Para-
phrase Corpus-750 pairs of sentences.

• MSR-Video, Microsoft Research Video De-
scription Corpus-750 pairs of sentences.

• SMT-Europarl, WMT2008 development data
set (Europarl section)-734 pairs of sentences.

Our performance in the official submission for the
SemEval task can be seen in Table 1. LReg indi-
cates the run with linear regression, ELReg adds
the eigenwords feature and ERReg also uses eigen-
words but with ridge regression. At the time of sub-
mission, we were not ready to test with the selector
features yet. Ridge regression consistently outper-
formed linear regression for every run of our sys-
tem, but overall Pearson score for our system using
linear regression scored the highest. Table 2 presents
a more thorough examination of results.

681

MSRpar MSRvid SMT-eur On-WN SMT-news ALLnrm Mean ALL
task-baseline .4334 .2996 .4542 .5864 .3908 .6732 (85) .4356 (70) .3110 (87)

LReg .5460 .7818 .3547 .5969 .4137 .8043 (36) .5699 (41) .6497 (33)
ELReg .5480 .7844 .3513 .6040 .3607 .8048 (34) .5654 (44) .6622 (27)
ERReg .5610 .7857 .3568 .6214 .3732 .8083 (28) .5755 (37) .6573 (28)

Table 1: Pearson’s r scores for the official submission. ALLnrm: Pearson correlation after the system outputs for each
dataset are fitted to the gold standard using least squares, and corresponding rank. Mean: Weighted mean across the
5 datasets, where the weight depends on the number of pairs in the dataset. ALL: Pearson correlation with the gold
standard for the five datasets, and corresponding rank. Parentheses indicate official rank out of 87 systems.

MSRpar MSRvid SMT-eur On-WN SMT-news Mean ALL
system-baseline .5143 .7736 .3574 .5017 .3867 .5343 .6542

+Neu .5243 .7811 .3772 .4860 .3410 .5318 .6643
+Ew .5267 .7787 .3853 .5237 .4495 .5560 .6724
+Sel .4973 .7684 .3129 .4812 .4016 .5306 .6492

+Neu, +Ew .5481 .7831 .2751 .5576 .3424 .5404 .6647
+Neu, +Sel .5230 .7775 .3724 .5327 .3787 .5684 .6818
+Ew, +Sel .5239 .7728 .2842 .5191 .4038 .5320 .6554

+Neu, +Ew, +Sel .5441 .7835 .2644 .5877 .3578 .5472 .6645

Table 2: Pearson’s r scores for runs based on various combinations of features. Mean: Weighted mean across the 5
datasets, where the weight depends on the number of pairs in the dataset. ALL: Pearson correlation with the gold
standard for the five datasets, and corresponding rank.

Discussion. In the aggregate, we see that each of
the similarity metrics has the ability to improve re-
sults when used with the right combination of other
features. For example, while selector similarity by
itself does not seem to help overall, using this met-
ric in conjunction with the neural model of similar-
ity gives us our best results. Interestingly, the oppo-
site is true of eigenword similarity, where the best
results are seen when they are independent of selec-
tors or the neural models. The decreased correla-
tions can be accounted for by the new features intro-
ducing over fitting, and one should note that no such
reductions in performance are significant compared
to the baseline, where as our best performance is a
significant (p < 0.05) improvement.

There are a few potential directions for future im-
provements. We did not tune our system differently
for different data sets although there is evidence of
specific features favoring certain data sets. In the
case of the neural model of similarity we expect
that deriving phrase level representations from the
sentences and utilizing the dynamic pooling layer
should give us a more thorough measure of simi-
larity beyond the sentence-level vectors we used in

this work. For eigenwords, we would like to experi-
ment with context-aware vectors as was described in
(Dhillon et. al, 2011). Lastly, we were only able to
acquire selectors for nouns, but we believe introduc-
ing selectors for other parts of speech will increase
the power of the selector similarity metric.

4 Conclusion

In this paper, we described two novel word-level
similarity metrics, namely eigenword similarity and
selector similarity, that leverage Web-scale corpora
in order to build word-level vector representations.
Additionally, we explored the use of a vector-model
at the sentence-level by unfolding a neural model of
semantics. We utilized these metrics in addition to
knowledge-based similarity, and surface-level simi-
larity metrics in a regression system to estimate sim-
ilarity at the sentence level. The performance of the
features varies significantly across corpora but at the
aggregate, eigenword similarity, selector similarity,
and the neural model of similarity all are shown to be
capable of improving performance beyond standard
surface-level and WordNet similarity metrics alone.

682

References

Eneko Agirre, Daniel Cer, Mona Diab and Aitor
Gonzalez. 2012. The SemEval-2012 Task-6 : A
Pilot on Semantic Textual Similarity. In Proceed-
ings of the 6th International Workshop on Semantic
Evaluation (SemEval 2012).

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing : deep
neural networks with multitask learning. In Inter-
national Conference on Machine Learning. Pages
160-167.

Paramveer Dhillon, Dean Foster and Lyle Ungar.
2011. Multiview learning of word embeddings via
CCA. In Proceedings of Neural Information Pro-
cessing Systems.

Jay Jiang and David Conrath. 1997. Semantic sim-
ilarity based on corpus statistics and lexical taxon-
omy. In Proceedings on International Conference
on Research in Computational Linguistics, pages
1933.

Dekang Lin. 1997. Using syntactic dependency as
local context to resolve word sense ambiguity. In
Proceedings of the 35th annual meeting of Associa-
tion for Computational Linguistics, pages 64-71.

Ted Pedersen, Siddharth Patwardhan and Jason
Michelizzi. 2004. WordNet::Similarity-measuring
the relatedness of concepts. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V.
Michel, B. Thirion, G. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A.
Passos, D. Cournapeau, M. Brucher, M. Perrot, E.
Duchesnay. 2011. Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research.
Vol 12.2825-2830

Hansen A. Schwartz and Fernando Gomez. 2008.
Acquiring knowledge from the web to be used as se-
lectors for noun sense disambiguation. In Proceed-
ings of the Twelfth Conference on Computational
Natural Language Learning.

Hansen A. Schwartz and Fernando Gomez. 2011.
Evaluating semantic metrics on tasks of concept
similarity. In Proceedings of the twenty-fourth

Florida Artificial Intelligence Research Society.
Palm Beach, Florida: AAAI Press.

Richard Socher, Eric H. Huang, Jeffrey Penning-
ton, Andrew Y. Ng and Christopher Manning. 2011.
Dynamic Pooling and Unfolding Recursive Autoen-
coders for Paraphrase Detection. In Advances in
Neural Information Processing Systems.

Mark Stevenson and Mark A. Greenwood. 2005. A
Semantic Approach to IE Pattern Induction. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 379386.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word representations: a simple and general
method for semi-supervised learning. In Proceed-
ings of the annual meeting of Association for Com-
putational Linguistics.

683

