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Abstract

We combine logical and distributional rep-
resentations of natural language meaning by
transforming distributional similarity judg-
ments into weighted inference rules using
Markov Logic Networks (MLNs). We show
that this framework supports both judg-
ing sentence similarity and recognizing tex-
tual entailment by appropriately adapting the
MLN implementation of logical connectives.
We also show that distributional phrase simi-
larity, used as textual inference rules created
on the fly, improves its performance.

1 Introduction

Tasks in natural language semantics are very diverse
and pose different requirements on the underlying
formalism for representing meaning. Some tasks
require a detailed representation of the structure of
complex sentences. Some tasks require the ability to
recognize near-paraphrases or degrees of similarity
between sentences. Some tasks require logical infer-
ence, either exact or approximate. Often it is neces-
sary to handle ambiguity and vagueness in meaning.
Finally, we frequently want to be able to learn rele-
vant knowledge automatically from corpus data.

There is no single representation for natural lan-
guage meaning at this time that fulfills all require-
ments. But there are representations that meet some
of the criteria. Logic-based representations (Mon-
tague, 1970; Kamp and Reyle, 1993) provide an
expressive and flexible formalism to express even
complex propositions, and they come with standard-
ized inference mechanisms. Distributional mod-
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Figure 1: Turning distributional similarity into a
weighted inference rule

els (Turney and Pantel, 2010) use contextual sim-
ilarity to predict semantic similarity of words and
phrases (Landauer and Dumais, 1997; Mitchell and
Lapata, 2010), and to model polysemy (Schütze,
1998; Erk and Padó, 2008; Thater et al., 2010).
This suggests that distributional models and logic-
based representations of natural language meaning
are complementary in their strengths (Grefenstette
and Sadrzadeh, 2011; Garrette et al., 2011), which
encourages developing new techniques to combine
them.

Garrette et al. (2011; 2013) propose a framework
for combining logic and distributional models in
which logical form is the primary meaning repre-
sentation. Distributional similarity between pairs of
words is converted into weighted inference rules that
are added to the logical form, as illustrated in Fig-
ure 1. Finally, Markov Logic Networks (Richardson
and Domingos, 2006) (MLNs) are used to perform
weighted inference on the resulting knowledge base.
However, they only employed single-word distribu-
tional similarity rules, and only evaluated on a small
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set of short, hand-crafted test sentences.
In this paper, we extend Garrette et al.’s approach

and adapt it to handle two existing semantic tasks:
recognizing textual entailment (RTE) and seman-
tic textual similarity (STS). We show how this sin-
gle semantic framework using probabilistic logical
form in Markov logic can be adapted to support both
of these important tasks. This is possible because
MLNs constitute a flexible programming language
based on probabilistic logic (Domingos and Lowd,
2009) that can be easily adapted to support multiple
types of linguistically useful inference.

At the word and short phrase level, our approach
model entailment through “distributional” similarity
(Figure 1). If X and Y occur in similar contexts, we
assume that they describe similar entities and thus
there is some degree of entailment between them. At
the sentence level, however, we hold that a stricter,
logic-based view of entailment is beneficial, and we
even model sentence similarity (in STS) as entail-
ment.

There are two main innovations in the formalism
that make it possible for us to work with naturally
occurring corpus data. First, we use more expres-
sive distributional inference rules based on the sim-
ilarity of phrases rather than just individual words.
In comparison to existing methods for creating tex-
tual inference rules (Lin and Pantel, 2001b; Szpek-
tor and Dagan, 2008), these rules are computed on
the fly as needed, rather than pre-compiled. Second,
we use more flexible probabilistic combinations of
evidence in order to compute degrees of sentence
similarity for STS and to help compensate for parser
errors. We replace deterministic conjunction by an
average combiner, which encodes causal indepen-
dence (Natarajan et al., 2010).

We show that our framework is able to han-
dle both sentence similarity (STS) and textual en-
tailment (RTE) by making some simple adapta-
tions to the MLN when switching between tasks.
The framework achieves reasonable results on both
tasks. On STS, we obtain a correlation of r = 0.66
with full logic, r = 0.73 in a system with weak-
ened variable binding, and r = 0.85 in an ensemble
model. On RTE-1 we obtain an accuracy of 0.57.
We show that the distributional inference rules ben-
efit both tasks and that more flexible probabilistic
combinations of evidence are crucial for STS. Al-

though other approaches could be adapted to handle
both RTE and STS, we do not know of any other
methods that have been explicitly tested on both
problems.

2 Related work

Distributional semantics Distributional models
define the semantic relatedness of words as the
similarity of vectors representing the contexts in
which they occur (Landauer and Dumais, 1997;
Lund and Burgess, 1996). Recently, such mod-
els have also been used to represent the meaning
of larger phrases. The simplest models compute
a phrase vector by adding the vectors for the indi-
vidual words (Landauer and Dumais, 1997) or by a
component-wise product of word vectors (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010).
Other approaches, in the emerging area of distribu-
tional compositional semantics, use more complex
methods that compute phrase vectors from word
vectors and tensors (Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011).

Wide-coverage logic-based semantics Boxer
(Bos, 2008) is a software package for wide-coverage
semantic analysis that produces logical forms using
Discourse Representation Structures (Kamp and
Reyle, 1993). It builds on the C&C CCG parser
(Clark and Curran, 2004).

Markov Logic In order to combine logical and
probabilistic information, we draw on existing work
in Statistical Relational AI (Getoor and Taskar,
2007). Specifically, we utilize Markov Logic Net-
works (MLNs) (Domingos and Lowd, 2009), which
employ weighted formulas in first-order logic to
compactly encode complex undirected probabilistic
graphical models. MLNs are well suited for our ap-
proach since they provide an elegant framework for
assigning weights to first-order logical rules, com-
bining a diverse set of inference rules and perform-
ing sound probabilistic inference.

An MLN consists of a set of weighted first-order
clauses. It provides a way of softening first-order
logic by allowing situations in which not all clauses
are satisfied. More specifically, they provide a
well-founded probability distribution across possi-
ble worlds by specifying that the probability of a
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world increases exponentially with the total weight
of the logical clauses that it satisfies. While methods
exist for learning MLN weights directly from train-
ing data, since the appropriate training data is lack-
ing, our approach uses weights computed using dis-
tributional semantics. We use the open-source soft-
ware package Alchemy (Kok et al., 2005) for MLN
inference, which allows computing the probability
of a query literal given a set of weighted clauses as
background knowledge and evidence.

Tasks: RTE and STS Recognizing Textual En-
tailment (RTE) is the task of determining whether
one natural language text, the premise, implies an-
other, the hypothesis. Consider (1) below.

(1) p: Oracle had fought to keep the forms from
being released
h: Oracle released a confidential document

Here, h is not entailed. RTE directly tests whether
a system can construct semantic representations that
allow it to draw correct inferences. Of existing RTE
approaches, the closest to ours is by Bos and Mark-
ert (2005), who employ a purely logical approach
that uses Boxer to convert both the premise and hy-
pothesis into first-order logic and then checks for
entailment using a theorem prover. By contrast, our
approach uses Markov logic with probabilistic infer-
ence.

Semantic Textual Similarity (STS) is the task of
judging the similarity of two sentences on a scale
from 0 to 5 (Agirre et al., 2012). Gold standard
scores are averaged over multiple human annota-
tions. The best performer in 2012’s competition was
by Bär et al. (2012), an ensemble system that inte-
grates many techniques including string similarity,
n-gram overlap, WordNet similarity, vector space
similarity and MT evaluation metrics.

Weighted inference, and combined structural-
distributional representations One approach to
weighted inference in NLP is that of Hobbs et al.
(1993), who proposed viewing natural language in-
terpretation as abductive inference. In this frame-
work, problems like reference resolution and syntac-
tic ambiguity resolution become inferences to best
explanations that are associated with costs. How-
ever, this leaves open the question of how costs are

assigned. Raina et al. (2005) use this framework for
RTE, deriving inference costs from WordNet simi-
larity and properties of the syntactic parse.

Garrette et al. (2011; 2013) proposed an approach
to RTE that uses MLNs to combine traditional log-
ical representations with distributional information
in order to support probabilistic textual inference.
This approach can be viewed as a bridge between
Bos and Markert (2005)’s purely logical approach,
which relies purely on hard logical rules and the-
orem proving, and distributional approaches, which
support graded similarity between concepts but have
no notion of logical operators or entailment.

There are also other methods that combine dis-
tributional and structured representations. Stern et
al. (2011) conceptualize textual entailment as tree
rewriting of syntactic graphs, where some rewrit-
ing rules are distributional inference rules. Socher
et al. (2011) recognize paraphrases using a “tree of
vectors,” a phrase structure tree in which each con-
stituent is associated with a vector, and overall sen-
tence similarity is computed by a classifier that inte-
grates all pairwise similarities. (This is in contrast to
approaches like Baroni and Zamparelli (2010) and
Grefenstette and Sadrzadeh (2011), who do not of-
fer a proposal for using vectors at multiple levels in
a syntactic tree simultaneously.)

3 MLN system

Our system extends that of Garrette et al. (2011;
2013) to support larger-scale evaluation on standard
benchmarks for both RTE and STS. We conceptual-
ize both tasks as probabilistic entailment in Markov
logic, where STS is judged as the average degree of
mutual entailment, i.e. we compute the probability
of both S1 |= S2 and S2 |= S1 and average the re-
sults. Below are some sentence pairs that we use as
examples in the discussion below:

(2) S1: A man is slicing a cucumber.
S2: A man is slicing a zucchini.

(3) S1: A boy is riding a bicycle.
S2: A little boy is riding a bike.

(4) S1: A man is driving.
S2: A man is driving a car.
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System overview. To compute the probability of
an entailment S1 |= S2, the system first constructs
logical forms for each sentence using Boxer and
then translates them into MLN clauses. In example
(2) above, the logical form for S1:

∃x0, e1, x2

(
man(x0) ∧ slice(e1) ∧Agent(e1, x0)∧

cucumber(x2) ∧ Patient(e1, x2)
)

is used as evidence, and the logical form for S2 is
turned into the following formula (by default, vari-
ables are assumed to be universally quantified):

man(x) ∧ slice(e) ∧Agent(e, x)∧
zucchini(y) ∧ Patient(e, y)→ result()

where result() is the query for which we have
Alchemy compute the probability.

However, S2 is not strictly entailed by S1 because
of the mismatch between “cucumber” and “zuc-
chini”, so with just the strict logical-form transla-
tions of S1 and S2, the probability of result() will
be zero. This is where we introduce distributional
similarity, in this case the similarity of “cucumber”
and “zucchini”, cos(

#                  »

cucumber,
#               »

zucchini). We cre-
ate inference rules from such similarities as a form
of background knowledge. We then treat similarity
as degree of entailment, a move that has a long tradi-
tion (e.g., (Lin and Pantel, 2001b; Raina et al., 2005;
Szpektor and Dagan, 2008)). In general, given two
words a and b, we transform their cosine similarity
into an inference-rule weight wt(a, b) using:

wt(a, b) = log(
cos( #»a ,

#»

b )

1− cos( #»a ,
#»

b )
)− prior (5)

Where prior is a negative weight used to initialize
all predicates, so that by default facts are assumed
to have very low probability. In our experiments,
we use prior = −3. In the case of sentence pair
(2), we generate the inference rule:

cucumber(x)→ zucchini(x) | wt(cuc., zuc.)

Such inference rules are generated for all pairs of
words (w1, w2) where w1 ∈ S1 and w2 ∈ S2.1

1We omit inference rules for words (a, b) where cos(a, b) <
θ for a threshold θ set to maximize performance on the training
data. Low-similarity pairs usually indicate dissimilar words.
This removes a sizeable number of rules for STS, while for RTE
the tuned threshold was near zero.

The distributional model we use contains all lem-
mas occurring at least 50 times in the Gigaword cor-
pus (Graff et al., 2007) except a list of stop words.
The dimensions are the 2,000 most frequent of these
words, and cell values are weighted with point-wise
mutual information. 2

Phrase-based inference rules. Garrette et al. only
considered distributional inference rules for pairs of
individual words. We extend their approach to dis-
tributional inference rules for pairs of phrases in or-
der to handle cases like (3). To properly estimate
the similarity between S1 and S2 in (3), we not only
need an inference rule linking “bike” to “bicycle”,
but also a rule estimating how similar “boy” is to
“little boy”. To do so, we make use of existing ap-
proaches that compute distributional representations
for phrases. In particular, we compute the vector for
a phrase from the vectors of the words in that phrase,
using either vector addition (Landauer and Dumais,
1997) or component-wise multiplication (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010). The
inference-rule weight, wt(p1, p2), for two phrases
p1 and p2 is then determined using Eq. (5) in the
same way as for words.

Existing approaches that derive phrasal inference
rules from distributional similarity (Lin and Pantel,
2001a; Szpektor and Dagan, 2008; Berant et al.,
2011) precompile large lists of inference rules. By
comparison, distributional phrase similarity can be
seen as a generator of inference rules “on the fly”,
as it is possible to compute distributional phrase
vectors for arbitrary phrases on demand as they are
needed for particular examples.

Inference rules are generated for all pairs of con-
stituents (c1, c2) where c1 ∈ S1 and c2 ∈ S2, a
constituent is a single word or a phrase. The log-
ical form provides a handy way to extract phrases,
as they are generally mapped to one of two logical
constructs. Either we have multiple single-variable
predicates operating on the same variable. For ex-
ample the phrase “a little boy” has the logical form
boy(x) ∧ little(x). Or we have two unary predi-
cates connected with a relation. For example, “pizza
slice” and “slice of pizza” are both mapped to the

2It is customary to transform raw counts in a way that cap-
tures association between target words and dimensions, for ex-
ample through point-wise mutual information (Lowe, 2001).
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logical form, slice(x0) ∧ of(x0, x1) ∧ pizza(x1).
We consider all binary predicates as relations.

Average Combiner to determine similarity in the
presence of missing phrases. The logical forms
for the sentences in (4): are

S1: ∃x0, e1

(
man(x0)∧agent(x0, e1)∧drive(e1)

)

S2: ∃x0, e1, x2

(
man(x0) ∧ agent(x0, e1) ∧

drive(e1) ∧ patient(e1, x2) ∧ car(x2)
)

If we try to prove S1 |= S2, the probability of
the result() will be zero: There is no evidence for
a car, and the hypothesis predicates are conjoined
using a deterministic AND. For RTE, this makes
sense: If one of the hypothesis predicates is False,
the probability of entailment should be zero. For the
STS task, this should in principle be the same, at
least if the omitted facts are vital, but it seems that
annotators rated the data points in this task more for
overall similarity than for degrees of entailment. So
in STS, we want the similarity to be a function of
the number of elements in the hypothesis that are
inferable. Therefore, we need to replace the deter-
ministic AND with a different way of combining
evidence. We chose to use the average evidence
combiner for MLNs introduced by Natarajan et al.
(2010). To use the average combiner, the full logi-
cal form is divided into smaller clauses (which we
call mini-clauses), then the combiner averages their
probabilities. In case the formula is a list of con-
juncted predicates, a mini-clause is a conjunction
of a single-variable predicate with a relation predi-
cate(as in the example below). In case the logical
form contains a negated sub-formula, the negated
sub-formula is also a mini-clause. The hypothesis
above after dividing clauses for the average com-
biner looks like this:

man(x0) ∧ agent(x0, e1)→ result(x0, e1, x2) | w
drive(e1) ∧ agent(x0, e1)→ result(x0, e1, x2) | w
drive(e1) ∧ patient(e1, x2)→ result(x0, e1, x2) | w
car(x2) ∧ patient(e1, x2)→ result(x0, e1, x2) | w

where result is again the query predicate. Here,
result has all of the variables in the clause as argu-
ments in order to maintain the binding of variables
across all of the mini-clauses. The weights w are the
following function of n, the number of mini-clauses
(4 in the above example):

w =
1

n
× (log(

p

1− p
)− prior) (6)

where p is a value close to 1 that is set to maximize
performance on the training data, and prior is the
same negative weight as before. Setting w this way
produces a probability of p for the result() in cases
that satisfy the antecedents of all mini-clauses. For
the example above, the antecedents of the first two
mini-clauses are satisfied, while the antecedents of
the last two are not since the premise provides no
evidence for an object of the verb drive. The simi-
larity is then computed to be the maximum probabil-
ity of any grounding of the result predicate, which
in this case is around p

2 .3

An interesting variation of the average combiner
is to omit variable bindings between the mini-
clauses. In this case, the hypothesis clauses look
like this for our example:

man(x) ∧ agent(x, e)→ result() | w
drive(e) ∧ agent(x, e)→ result() | w
drive(e) ∧ patient(e, x)→ result() | w
car(x) ∧ patient(e, x)→ result() | w

This implementation loses a lot of information,
for example it does not differentiate between “A
man is walking and a woman is driving” and “A
man is driving and a woman is walking”. In fact,
logical form without variable binding degrades to a
representation similar to a set of independent syn-
tactic dependencies, 4 while the average combiner
with variable binding retains all of the information
in the original logical form. Still, omitting variable
binding turns out to be useful for the STS task.

It is also worth commenting on the efficiency of
the inference algorithm when run on the three dif-
ferent approaches to combining evidence. The aver-
age combiner without variable binding is the fastest
and has the least memory requirements because all
cliques in the ground network are of limited size
(just 3 or 4 nodes). Deterministic AND is much
slower than the average combiner without variable
binding, because the maximum clique size depends
on the sentence. The average combiner with vari-
able binding is the most memory intensive since the

3One could also give mini-clauses different weights depend-
ing on their importance, but we have not experimented with this
so far.

4However, it is not completely the same since we do not
divide up formulas under negation into mini-clauses.
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number of arguments of the result() predicate can
become large (there is an argument for each individ-
ual and event in the sentence). Consequently, the
inference algorithm needs to consider a combinato-
rial number of possible groundings of the result()
predicate, making inference very slow.

Adaptation of the logical form. As discussed by
Garrette et al. (2011), Boxer’s output is mapped to
logical form and augmented with additional infor-
mation to handle a variety of semantic phenomena.
However, we do not use their additional rules for
handling implicatives and factives, as we wanted to
test the system without background knowledge be-
yond that supplied by the vector space.

Unfortunately, current MLN inference algorithms
are not able to efficiently handle complex formu-
las with nested quantifiers. For that reason, we re-
placed universal quantifiers in Boxer’s output with
existentials since they caused serious problems for
Alchemy. Although this is a radical change to the
semantics of the logical form, due to the nature of
the STS and RTE data, it only effects about 5% of
the sentences, and we found that most of the uni-
versal quantifiers in these cases were actually due
to parsing errors. We are currently exploring more
effective ways of dealing with this issue.

4 Task 1: Recognizing Textual Entailment

4.1 Dataset
In order to compare directly to the logic-based sys-
tem of Bos and Markert (2005), we focus on the
RTE-1 dataset (Dagan et al., 2005), which includes
567 Text-Hypothesis (T-H) pairs in the development
set and 800 pairs in the test set. The data covers a
wide range of issues in entailment, including lexical,
syntactic, logical, world knowledge, and combina-
tions of these at different levels of difficulty. In both
development and test sets, 50% of sentence pairs are
true entailments and 50% are not.

4.2 Method
We run our system for different configurations of in-
ference rules and evidence combiners. For distri-
butional inference rules (DIR), three different lev-
els are tested: without inference rules (no DIR),
inference rules for individual words (word DIR),
and inference rules for words and phrases (phrase

DIR). Phrase vectors were built using vector addi-
tion, as point-wise multiplication performed slightly
worse. To combine evidence for the result() query,
three different options are available: without av-
erage combiner which is just using Deterministic
AND (Deterministic AND), average combiner with
variable binding (AvgComb) and average combiner
without variable binding (AvgComb w/o VarBind).
Different combinations of configurations are tested
according to its suitability for the task; RTE and
STS.

We also tested several “distributional only” sys-
tems. The first such system builds a vector represen-
tation for each sentence by adding its word vectors,
then computes the cosine similarity between the sen-
tence vectors for S1 and S2 (VS-Add). The second
uses point-wise multiplication instead of vector ad-
dition (VS-Mul). The third scales pairwise words
similarities to the sentence level using weighted av-
erage where weights are inverse document frequen-
cies idf as suggested by Mihalcea et al. (2006) (VS-
Pairwise).

For the RTE task, systems were evaluated using
both accuracy and confidence-weighted score (cws)
as used by Bos and Markert (2005) and the RTE-
1 challenge (Dagan et al., 2005). In order to map
a probability of entailment to a strict prediction of
True or False, we determined a threshold that op-
timizes performance on the development set. The
cws score rewards a system’s ability to assign higher
confidence scores to correct predictions than incor-
rect ones. For cws, a system’s predictions are sorted
in decreasing order of confidence and the score is
computed as:

cws =
1

n

n∑

i=1

#correct-up-to-rank-i
i

where n is the number of the items in the test set,
and i ranges over the sorted items. In our systems,
we defined the confidence value for a T-H pair as
the distance between the computed probability for
the result() predicate and the threshold.

4.3 Results

The results are shown in Table 1. They show
that the distributional only baselines perform very
poorly. In particular, they perform worse than strict
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Method acc cws
Chance 0.50 0.50
Bos & Markert, strict 0.52 0.55
Best system in RTE-1 challenge
(Bayer et al., 2005)

0.59 0.62

VS-Add 0.49 0.53
VS-Mul 0.51 0.52
VS-Pairwise 0.50 0.50
AvgComb w/o VarBind + phrase
DIR

0.52 0.53

Deterministic AND + phrase DIR 0.57 0.57

Table 1: Results on the RTE-1 Test Set.

entailment from Bos and Markert (2005), a system
that uses only logic. This illustrates the important
role of logic-based representations for the entail-
ment task. Due to intractable memory demands of
Alchemy inference, our current system with deter-
ministic AND fails to execute on 118 of the 800 test
pairs, so, by default, the system classifies these cases
as False (non-entailing) with very low confidence.
Comparing the two configurations of our system,
using deterministic AND vs. the average combiner
without variable binding (last two lines in Table 1),
we see that for RTE, it is essential to retain the full
logical form.

Our system with deterministic AND obtains both
an accuracy and cws of 0.57. The best result in
the RTE-1 challenge by Bayer et al. (2005) ob-
tained an accuracy of 0.59 and cws of 0.62. 5 In
terms of both accuracy and cws, our system outper-
forms both “distributional only” systems and strict
logical entailment, showing again that integrating
both logical form and distributional inference rules
using MLNs is beneficial. Interestingly, the strict
entailment system of Bos and Markert incorporated
generic knowledge, lexical knowledge (from Word-
Net) and geographical knowledge that we do not
utilize. This demonstrates the advantage of us-
ing a model that operationalizes entailment between
words and phrases as distributional similarity.

5On other RTE datasets there are higher previous results.
Hickl (2008) achieves 0.89 accuracy and 0.88 cws on the com-
bined RTE-2 and RTE-3 dataset.

5 Task 2: Semantic Textual Similarity

5.1 Dataset

The dataset we use in our experiments is the MSR
Video Paraphrase Corpus (MSR-Vid) subset of the
STS 2012 task, consisting of 1,500 sentence pairs.
The corpus itself was built by asking annotators
from Amazon Mechanical Turk to describe very
short video fragments (Chen and Dolan, 2011). The
organizers of the STS 2012 task (Agirre et al., 2012)
sampled video descriptions and asked Turkers to as-
sign similarity scores (ranging from 0 to 5) to pairs
of sentences, without access to the video. The gold
standard score is the average of the Turkers’ annota-
tions. In addition to the MSR Video Paraphrase Cor-
pus subset, the STS 2012 task involved data from
machine translation and sense descriptions. We do
not use these because they do not consist of full
grammatical sentences, which the parser does not
handle well. In addition, the STS 2012 data included
sentences from the MSR Paraphrase Corpus, which
we also do not currently use because some sentences
are long and create intractable MLN inference prob-
lems. This issue is discussed further in section 6.
Following STS standards, our evaluation compares
a system’s similarity judgments to the gold standard
scores using Pearson’s correlation coefficient r.

5.2 Method

Our system can be tested for different configuration
of inference rules and evidence combiners which
are explained in section 4.2. The tested systems on
the STS task are listed in table 2. Out experiments
showed that using average combiner (AvgComb) is
very memory intensive and MLN inference for 28 of
the 1,500 pairs either ran out of memory or did not
finish in reasonable time. In such cases, we back off
to AvgComb w/o VarBind.

We compare to several baselines; our MLN
system without distributional inference rules
(AvgComb + no DIR), and distributional-only
systems (VS-Add, VS-Mul, VS-Pairwise). These
are the natural baselines for our system, since they
use only one of the two types of information that
we combine (i.e. logical form and distributional
representations).

Finally, we built an ensemble that combines the
output of multiple systems using regression trained

17



Method r

AvgComb + no DIR 0.58
AvgComb + word DIR 0.60
AvgComb + phrase DIR 0.66
AvgComb w/o VarBind + no DIR 0.58
AvgComb w/o VarBind + word DIR 0.60
AvgComb w/o VarBind + phrase DIR 0.73
VS-Add 0.78
VS-Mul 0.58
VS-Pairwise 0.77
Ensemble (VS-Add + VS-Mul + VS-
Pairwise)

0.83

Ensemble ([AvgComb + phrase DIR] +
VS-Add + VS-Mul + VS-Pairwise)

0.85

Best MSR-Vid score in STS 2012 (Bär
et al., 2012)

0.87

Table 2: Results on the STS video dataset.

on the training data. We then compare the perfor-
mance of an ensemble with and without our sys-
tem. This is the same technique used by Bär et al.
(2012) except we used additive regression (Fried-
man, 2002) instead of linear regression since it gave
better results.

5.3 Results

Table 2 summarizes the results of our experiments.
They show that adding distributional information
improves results, as expected, and also that adding
phrase rules gives further improvement: Using only
word distributional inference rules improves results
from 0.58 to 0.6, and adding phrase inference rules
further improves them to 0.66. As for variable bind-
ing, note that although it provides more precise in-
formation, the STS scores actually improve when it
is dropped, from 0.66 to 0.73. We offer two expla-
nations for this result: First, this information is very
sensitive to parsing errors, and the C&C parser, on
which Boxer is based, produces many errors on this
dataset, even for simple sentences. When the C&C
CCG parse is wrong, the resulting logical form is
wrong, and the resulting similarity score is greatly
affected. Dropping variable binding makes the sys-
tems more robust to parsing errors. Second, in con-
trast to RTE, the STS dataset does not really test the
important role of syntax and logical form in deter-

mining meaning. This also explains why the “dis-
tributional only” baselines are actually doing better
than the MLN systems.

Although the MLN system on its own does not
perform better than the distributional compositional
models, it does provide complementary information,
as shown by the fact that ensembling it with the rest
of the models improves performance (0.85 with the
MLN system, compared to 0.83 without it). The per-
formance of this ensemble is close to the current best
result for this dataset (0.87).

6 Future Work

The approach presented in this paper constitutes a
step towards achieving the challenging goal of effec-
tively combining logical representations with dis-
tributional information automatically acquired from
text. In this section, we discuss some of limita-
tions of the current work and directions for future
research.

As noted before, parse errors are currently a sig-
nificant problem. We use Boxer to obtain a logi-
cal representation for a sentence, which in turn re-
lies on the C&C parser. Unfortunately, C&C mis-
parses many sentences, which leads to inaccurate
logical forms. To reduce the impact of misparsing,
we plan to use a version of C&C that can produce
the top-n parses together with parse re-ranking (Ng
and Curran, 2012). As an alternative to re-ranking,
one could obtain logical forms for each of the top-
n parses, and create an MLN that integrates all of
them (together with their certainty) as an underspec-
ified meaning representation that could then be used
to directly support inferences such as STS and RTE.

We also plan to exploit a greater variety of dis-
tributional inference rules. First, we intend to in-
corporate logical form translations of existing dis-
tributional inference rule collections (e.g., (Berant
et al., 2011; Chan et al., 2011)). Another issue
is obtaining improved rule weights based on dis-
tributional phrase vectors. We plan to experiment
with more sophisticated approaches to computing
phrase vectors such as those recently presented by
Baroni and Zamparelli (2010) and Grefenstette and
Sadrzadeh (2011). Furthermore, we are currently
deriving symmetric similarity ratings between word
pairs or phrase pairs, when really what we need is di-
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rectional similarity. We plan to incorporate directed
similarity measures such as those of Kotlerman et al.
(2010) and Clarke (2012).

A primary problem for our approach is the limita-
tions of existing MLN inference algorithms, which
do not effectively scale to large and complex MLNs.
We plan to explore “coarser” logical representa-
tions such as Minimal Recursion Semantics (MRS)
(Copestake et al., 2005). Another potential approach
to this problem is to trade expressivity for efficiency.
Domingos and Webb (2012) introduced a tractable
subset of Markov Logic (TML) for which a future
software release is planned. Formulating the infer-
ence problem in TML could potentially allow us to
run our system on longer and more complex sen-
tences.

7 Conclusion

In this paper we have used an approach that com-
bines logic-based and distributional representations
for natural language meaning. It uses logic as
the primary representation, transforms distributional
similarity judgments to weighted inference rules,
and uses Markov Logic Networks to perform in-
ferences over the weighted clauses. This approach
views textual entailment and sentence similarity as
degrees of “logical” entailment, while at the same
time using distributional similarity as an indicator
of entailment at the word and short phrase level. We
have evaluated the framework on two different tasks,
RTE and STS, finding that it is able to handle both
tasks given that we adapt the way evidence is com-
bined in the MLN. Even though other entailment
models could be applied to STS, given that similar-
ity can obviously be operationalized as a degree of
mutual entailment, this has not been done before to
our best knowledge. Our framework achieves rea-
sonable results on both tasks. On RTE-1 we obtain
an accuracy of 0.57. On STS, we obtain a correla-
tion of r = 0.66 with full logic, r = 0.73 in a system
with weakened variable binding, and r = 0.85 in an
ensemble model. We find that distributional word
and phrase similarity, used as textual inference rules
on the fly, leads to sizeable improvements on both
tasks. We also find that using more flexible proba-
bilistic combinations of evidence is crucial for STS.

Acknowledgements

This research was supported in part by the NSF CA-
REER grant IIS 0845925, by the DARPA DEFT
program under AFRL grant FA8750-13-2-0026, by
MURI ARO grant W911NF-08-1-0242 and by an
NDSEG grant. Any opinions, findings, and conclu-
sions or recommendations expressed in this material
are those of the author and do not necessarily reflect
the view of DARPA, AFRL, ARO, DoD or the US
government.

Some of our experiments were run on the
Mastodon Cluster supported by NSF Grant EIA-
0303609.

References

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
SemEval.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: Computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In SemEval-2012.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1193, Cambridge, MA, October. Association for
Computational Linguistics.

Samuel Bayer, John Burger, Lisa Ferro, John Hender-
son, and Alexander Yeh. 2005. MITREs Submissions
to the EU Pascal RTE Challenge. In In Proceedings
of the PASCAL Challenges Workshop on Recognising
Textual Entailment, pages 41–44.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules. In
Proceedings of ACL, Portland, OR.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceedings
of EMNLP 2005, pages 628–635, Vancouver, B.C.,
Canada.

Johan Bos. 2008. Wide-coverage semantic analysis with
boxer. In Johan Bos and Rodolfo Delmonte, editors,
Semantics in Text Processing. STEP 2008 Conference
Proceedings, Research in Computational Semantics,
pages 277–286. College Publications.

Tsz Ping Chan, Chris Callison-Burch, and Benjamin
Van Durme. 2011. Reranking bilingually extracted

19



paraphrases using monolingual distributional similar-
ity. In Proceedings of the GEMS 2011 Workshop on
GEometrical Models of Natural Language Semantics,
pages 33–42, Edinburgh, UK.

David L. Chen and William B. Dolan. 2011. Collect-
ing highly parallel data for paraphrase evaluation. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 190–200,
Portland, Oregon, USA, June.

Stephen Clark and James R. Curran. 2004. Parsing the
WSJ using CCG and log-linear models. In Proceed-
ings of ACL 2004, pages 104–111, Barcelona, Spain.

Daoud Clarke. 2012. A context-theoretic framework for
compositionality in distributional semantics. Compu-
tational Linguistics, 38(1).

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A
Sag. 2005. Minimal recursion semantics: An intro-
duction. Research on Language and Computation,
3(2-3):281–332.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL Recognising Textual Entailment
Challenge. In In Proceedings of the PASCAL Chal-
lenges Workshop on Recognising Textual Entailment,
pages 1–8.

Pedro Domingos and Daniel Lowd. 2009. Markov
Logic: An Interface Layer for Artificial Intelligence.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers.

Pedro Domingos and W Austin Webb. 2012. A tractable
first-order probabilistic logic. In Proceedings of the
Twenty-Sixth National Conference on Artificial Intel-
ligence.

Katrin Erk and Sebastian Padó. 2008. A structured vec-
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