
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 541–545
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor
Analysis

Elena Mikhalkova, Yuri Karyakin, Dmitry Grigoriev,
Alexander Voronov, and Artem Leoznov
Tyumen State University, Tyumen, Russia

(e.v.mikhalkova, y.e.karyakin)@utmn.ru

Abstract

The paper describes our search for a univer-
sal algorithm of detecting intentional lexical
ambiguity in different forms of creative lan-
guage. At SemEval-2018 Task 3, we used
PunFields, the system of automatic analysis of
English puns that we introduced at SemEval-
2017, to detect irony in tweets. Preliminary
tests showed that it can reach the score of
F1=0.596. However, at the competition, its re-
sult was F1=0.549.

1 Introduction

It requires no proof that usually language users can
detect lexical ambiguity in figurative speech with-
out classifying it into types like metaphor, pun, hu-
mor, irony, sarcasm, etc. At the same time, such
terminology is necessary in studyng these phe-
nomena as well as solving problems of automatic
classification. In our opinion, programs dealing
with intentional lexical ambiguity should be more
like natural language users, i.e. they should have
one general mechanism of its detection optimized
to a certain extent to different types of creative
language. In Task 3 “Irony Detection in English
Tweets” of SemEval-2018 (Van Hee et al., 2018),
we attempted to employ PunFields, our previously
introduced classifier of English puns (Mikhalkova
and Karyakin, 2017b) 1, in the task of irony clas-
sification in tweets as the constrained submission.
I.e. PunFields trained only on the Gold dataset re-
leased by the Organizers.

As for the unconstrained submission, we used a
bag-of-words model with an SVM classifier. The
training dataset was enriched with tweets from
other SemEval competitions. We will discuss it
in a separate paragraph later in detail.

The results of PunFields in this competition
were above the chance value (cf.: Table 1) demon-

1https://github.com/evrog/PunFields

Ac. Prec. Rec. F1 s.
Con. 0.5765 0.4753 0.6495 0.5489
Unc. 0.6033 0.5000 0.5563 0.5266
Hom. 0.6782 0.7993 0.7337 0.7651
Het. 0.5747 0.7580 0.5940 0.6661

Table 1: Results of PunFields at SemEval 2018 Task
3 and SemEval 2017 Task 7. Ac. - acuracy, Prec. -
precision, Rec. - recall, F1 s. - F1 score. SemEval-
2018: Con. - Constrained submission, Unc. - Uncon-
strained submission. SemEval-2017: Hom. - homo-
graphic puns, Het. - heterographic puns.

strating higher scores of Recall and F1 score, but
lower Acuracy and Precision compared to the en-
riched bag-of-words (unconstrained submission).
In analysis of puns, PunFields is more efficient
reaching F1=0.765.

In this paper we will briefly outline the state-of-
the-art system and possible reasons for its compe-
tition results.

2 Lexical Ambiguity in Irony and Puns

We will demonstrate similarity between a pun and
irony by the two following examples.

Christmas shopping on 2 hours sleep is
going to be fun.

In this ironic tweet from the Gold dataset of the
competition, the word fun is used simultaneously
in the meaning “joy, amusement”, in the context
of “Christmas shopping”, and in the meaning, op-
posite to it, “problem, trouble”, in the context of
“2 hours sleep.” This opposition of meanings put
into one word or phrase consitutes the essence of
what many researchers call irony (Van Hee, 2017;
Barbieri and Saggion, 2014).

I could tell you a chemistry joke, but I
know I wouldn’t get a reaction.

541



In the pun above from the Gold dataset of Se-
mEval2017 (Miller et al., 2017), the word reac-
tion is used simultaneously in the meaning “chem-
ical reaction”, in the context of “chemistry”, and
in the meaning “emotional response”, in the con-
text of “joke”. The only difference between the
pun and irony in these examples is that in puns
the opposition of meanings is more pragmatic. I.e.
the two meanings of reaction belong to different
spheres of human activity. In irony, the opposition
is binary: fun=not fun.

In the both cases, the two meanings are envoked
by two contexts, scripts, or themes. Therefore, if a
computer program detects coexistence of two top-
ics within an utterance, it is likely to classify cor-
rectly both pun and irony, but would be unable to
tell which type it deals with. But can ordinary sen-
tences without an intentionally ambiguous word or
phrase also contain two scripts? Let us demon-
strate what happens to a pun and irony if we trans-
form them into sentences without ambiguity:

Christmas shopping on 2 hours sleep is
not going to be fun / is going to be a
problem.

I could tell you a chemistry joke, but I
know I wouldn’t get an emotional reac-
tion / a chemical reaction.

When we transform these sentences, one of the
scripts in a pun starts to dominate, for example
the three word unity “joke + emotional reaction”
would outnumber the one-word script of “chem-
istry”, and vice versa “chemistry + chemical reac-
tion” would outnumber the script of “joke”.

However, in case of irony, this ambiguity is not
so obvious. On the one hand, if we change “fun”
to “problem”, words “sleep”, “hours” and “prob-
lem” can form a script. Although this script is not
so easily recognizable and requires knowledge that
two hours of sleep is too little (for example in the
known semantic vector representations of words
or documents sleep can be found close to lack, fa-
tigue, and time). On the other hand, if we leave
the word “fun” in the setence and just add “not”
to it (“not going to be fun”), our algorithm will
need to process auxiliary words and other variants
of negation: never, neither, don’t, etc. But these
stop-words often create noise in searching for the
main topics. If we ignore “not”, the script “Christ-
mas shopping + fun” would still form a union and
dominate in the utterance.

In sum, intentional lexical ambiguity in irony is
not easy for recognition compared to more explicit
speech genres like puns. Another feature of irony
that supports this statement is that otherwise there
would be no need to mark irony with indicators of
ambiguity like hashtags and emoji. 2

3 PunFields

PunFields is a program that turns an utterance into
a vector of length 39 based on 39 semantic classes
of Roget’s Thesaurus called Sections. 3 A the-
saurus is a kind of dictionary that unites words into
classes that build a hierarchy. Unlike WordNet,
the hierarchy is designed by the author/-s of a the-
saurus beforehand (top-down approach). Roget’s
Thesaurus places all lexemes at the lowest level on
the basis of their semantic proximity. The clusters
of words then unite into Sections, Sections into Di-
visions, Divisions into Classes. The 39 Sections of
Roget’s Thesaurus are in a way similar to dimen-
sions of the word2vec algorithm (Mikolov et al.,
2013), but word2vec has a fine tuning of meaning
proximities.

Data Preprocessing. Before submitting data
to PunFields, tweets are put into a preprocessing
pipeline. The first step in the pipeline is sepa-
rating symbols from words in a way that men-
tions (start with “@”) and hashtags (start with
“#”) are left intact. Emoji are processed as word
combiations (“:ok hand sign:” is simply “ok hand
sign”). Words in hashtags are often separated with
a “ ”. Hence, we add a space before and after
each “ ”. For eaxmple, the line “@kennyches-
ney, :ok hand sign: #New#color#new#beginning”
becomes “@kennychesney , : ok hand sign :
#New #color #new #beginning”.

The next step is treatment of emphatic devices
in words that are not mentions and hashtags. We
judge words with one letter repeated more than

2There are cases when it is impossible to recognize am-
biguity without such indicators. For example, “Luv this” or
“Sitting in this hall is fun” can be expressions of the real state
of things unless the user adds a hashtag “#not”, an emoji like
“unamused face”, etc. Note that these indicators quite often
come at a particular place - end of the utterance. This fact
also brings irony and puns together: in puns, usually the tar-
get word (the word used in the two senses) also occurs in the
end.

3In (Mikhalkova and Karyakin, 2017a), we tried to join
some of these classes together for a better performance, but
it appeared that such enlargement does not improve it. And
vice versa when we reach a certain number of general classes
- approximately 4 - the performance starts to decrease signif-
icantly.

542



two times as emphasized. The words are “de-
emphasized”. For example, the word “everrrrrrr”
becomes “ever”.

We then proceed to mentions and hashtags. As
there can be capitalized real names or titles, we de-
capitalize them starting with the second letter and
add a space before the capital letter and after the
word, for example, “#ElektrikBLOOM” becomes
“Elektrik Bloom ”. If there are (successions of)
numbers, a space is added on the both sides of the
number. If there are names spelt as one word like
“@WhoopiGoldberg”, we add a space after every
succession staring with a capital letter: “Whoopi
Goldberg ”.

Some mentions and hashtags are problematic to
process as words are written without any indica-
tion that they should be separate, e.g. “kenny-
chesney”. We check in the NLTK names dictio-
nary (Bird et al., 2009) if the glued hashtag starts
with any name of length more than 5 characters.
If yes, we unglue the word at the name border-
line capitalizing the fisrt letters: “Kenny Chesney”
(as luck would have it, most names consist of just
two parts). Otherwise, we consider the word to be
something other than a name. To separate words
with spaces, we use Wordninja 4. This library
has problems with names and titles, so we have
to check the names before using it. Words of more
than two characters are also checked in a list of
slang abbreviations. For example, “bbq” becomes
“barbeque”. 5

Tweet to Vector. Preprocessed tweets go into the
classifier. PunFields collects Section numbers for
every word and collocation in a sentence, remov-
ing duplicates and excluding stop words. Then, it
builds a semantic vector of the sentence weighing
how many of its elements belong to each Section.
For example, the tweet “Christmas shopping on 2
hours sleep is going to be fun” has 7 words bel-
ogning to different Sections: shopping - 33; 2 - 4;
sleep - 11, 27, 14, 34; go - 11, 0, 14, 35, 7; christ-
mas - 38, 5; fun - 35; hour - 5. Its vector will be as
follows: {1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2,
0, 0, 1}.

Classification. When the vectors are ready,
we split them into a training and test set. The
classification is conducted using different Scikit-
learn (Pedregosa et al., 2011) algorithms. At the

4https://pypi.python.org/pypi/wordninja
5The pipeline is available at

https://github.com/evrog/PunFields.

present competition, we used SVM with the lin-
ear kernel, because preliminary tests using the
Gold dataset with a 5-fold cross validation showed
that it has the highest result among the tested
algorithms: Precision=0.556, Recall=0.646, F1-
score=0.596 (766 samples in a training set). How-
ever, when we used all the 3834 samples for train-
ing during the competition, they obviously created
a too noisy feature space for a good generaliza-
tion. Hence, the decrease in the result. At Se-
mEval2017 (Miller et al., 2017), when we tried
larger datasets for training, the result grew better.
Tweets generally seem to be more “noisy” than
puns due to slang, contractions, glued words, etc.
although there are no strict ways of calculating this
“noisyness”.

Instead of SVM, we also tested a deep learn-
ing network with different architectures imple-
mented in the Python library Keras (Chollet et al.,
2015) with TensorFlow (TensorFlow Develop-
ment Team, 2015) and Theano (Theano Develop-
ment Team, 2016) backends, but we only managed
to reach as much as 0.56 for F1-score. 6 Further-
more, we tried to replace Roget’s semantic classes
with a vector model realization via the Gensim li-
brary (Řehůřek and Sojka, 2010) summing every
score in the 300 long word2vec representations
similarly to what PunFields does with the 39 Sec-
tions. However, it did not bring any significant
result either.

All in all, PunFields appears to better classify
such cases where there are two evidently differ-
ent topics in one utterance that are expressed by
two groups of words that outnumber other (noisy)
groups. In the toy examples from the previous
paragraph, the “chemistry” pun belongs to the so-
called homographic puns, i.e. such puns where
one word is used in two meanings. Unlike them,
heterographic puns are such puns where the word
used in one meaning resembles in form/sounding
another word. That creates a disbalance between
the two groups of words representing the two
clashing topics: one of the groups gets the men-
tioned word and the other one does not (as the
word is only implied). For example, in the hetero-
graphic pun “I relish the fact that you have mus-
tard the strength to ketchup to me” the group of
“mastered” and “catch up” is hidden. Similar to
heterographic puns, ironic tweets have one word

6Due to limitations in the size of papers, we will not de-
scribe the architecture here. Some of the code we used for the
neural network is available at our PunFields repository.

543



expressed in full and its opposite implied. Con-
sequently, PunFields processes such cases worse
than homographic puns.

4 Unconstrained Submission

As for the unconstrained submission, we decided
to use it to test another assumption that irony is
close not only to puns, but to different kinds of hu-
mor. However, as in this competition we deal with
irony in Twitter, we decided to check this assump-
tion on humorous tweets. We took 1,000 humor-
ous tweets from SemEval 2017 #HashtagWars:
Learning a Sense of Humor (Potash et al., 2017)
and 1,000 tweets with 0 to +2 positive polarity
from SemEval 2016 Task 4: Sentiment Analysis
in Twitter (Nakov et al., 2016) and combined them
with 2,000 tweets from the Gold dataset. For the
classifier, we used Bernoulli bag-of-words SVM
model with the linear kernel given as the bench-
mark system by the competition Organizers. After
reshuffling the dataset several times, we chose that
result which had a more or less equal number of
items in the both classes.

The result of this test shows a decrease in the
efficiency of the benchmark system. However, to
our surprise it was also slightly above the chance
value.

5 Conclusions

With this research, we continue to elaborate on the
universal mechanism of detecting intentional lex-
ical ambiguity in creative language. We tried to
demonstrate that irony and puns share some fea-
tures which can be processed by a similar algo-
rithm. However, the results of our system, Pun-
Fields, at this competition leave much to be de-
sired.

We are planning to replace the core of the sys-
tem, the semantic scheme of 39 classes, with a
more elaborate system of word2vec representa-
tions and, maybe, a deep learning classifier if it
provides a better result. So far, we were unable to
get the system working with these elements, but
the problem was, very likely, in the technical side.

All in all, PunFields shows the result that is
higher than the chance operating on the data it was
not meant to process. With due elaboration, we
believe, it has a greater classifying potential than
what was gained at the competition.

References
Francesco Barbieri and Horacio Saggion. 2014. Mod-

elling irony in Twitter. In Proceedings of the Stu-
dent Research Workshop at the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 56–64.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Elena Mikhalkova and Yuri Karyakin. 2017a. Detect-
ing intentional lexical ambiguity in English puns.
In 23rd International Conference on Computational
Linguistics and Intellectual Technologies, volume 1,
pages 167–179.

Elena Mikhalkova and Yuri Karyakin. 2017b. Pun-
fields at Semeval-2017 Task 7: Employing Roget’s
Thesaurus in Automatic Pun Recognition and Inter-
pretation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 426–431.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. Semeval-2017 task 7: Detection
and interpretation of English puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 58–68.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 Task 4: Sentiment analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. Semeval-2017 Task 6:# hashtagwars: Learn-
ing a sense of humor. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 49–57.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

544



TensorFlow Development Team. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.

Cynthia Van Hee. 2017. Can machines sense irony? :
exploring automatic irony detection on social media.
Ph.D. thesis, Ghent University.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

545


