
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 576–580
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CTSys at SemEval-2018 Task 3: Irony in Tweets

Myan Sherif

Faculty of Engineering

Alexandria University

sherif.myan@gmail.com

Sherine Mamdouh

Faculty of Engineering

Alexandria University

sherym51@gmail.com

Wegdan Ghazi

Faculty of Engineering

Alexandria University

wegdan.ghazi@gmail.com

Abstract

The objective of this paper is to provide a

description for a system built as our

participation in SemEval-2018 Task 3 on

Irony detection in English tweets. This system

classifies a tweet as either ironic or non-ironic

through a supervised learning approach. Our

approach is to implement three feature models,

and to then improve the performance of the

supervised learning classification of tweets by

combining many data features and using a

voting system on four different classifiers. We

describe the process of pre-processing data,

extracting features, and running different

types of classifiers against our feature set. In

the competition, our system achieved an F1-

score of 0.4675, ranking 35th in subtask A,

and an F1-score score of 0.3014 ranking 22th

in subtask B.

1 Introduction

Irony detection in text has extended to different

data forms (tweets, reviews, TV series dialogues),

our domain of data in this task is a Twitter corpus

provided by SemEval2018 organizers. Here, irony

detection refers to computational approaches to

predict if a given text is sarcastic. This problem is

hard because of the nuanced ways in which irony

may be expressed. The most difficult part of the

problem mentioned is the process of feature

engineering, because it defines the parameters and

the relationships and dependencies between

semantic meanings, and gives us the numerical

model that the classifier would proceed to work

on, thus being crucial to the soundness and

efficiency of the system.

This led us to dive into deeper questions, such

as the nature of tweets, and how we are dealing

with a version of the English language that is not

directly workable. We need to perform pre-

processing to deal with annotations and hashtags.

Another question is how to analyze irony in

English language and derive a rule-based

approach that can be implemented to better

understand the semantics of ironic text.

The problem, as described by the SemEval-

2018 task organizers, addresses both the binary

distinction between irony and non-irony, as well

as different types of irony.

1.1 Task Description

The SemEval-2018 Task 3 is divided into two

subtasks:

 Subtask A is a binary classification problem

where we are asked to classify a tweet as ironic or

not ironic, based on a given training set of labeled

tweets (0 for non-ironic and 1 for ironic).

Subtask B is a multi-classification problem

where we classify the tweets to which type they

belong as either situational irony or verbal irony

or other irony or not ironic. Each tweet in the

training set is labeled as follows: (0 for non-ironic,

1 for situational irony, 2 for verbal irony, and 3 for

other forms of irony).

1.2 The Dataset

The used dataset in this assignment is the one

provided in SemEval-2018 task 3. It consists of

3,842 tweets in total. The tweets were collected by

searching Twitter for the hashtags #irony,

#sarcasm and #not.

The dataset was presented in two phases:

1- Training data: already labeled tweets used to

train the classifiers. Each tweet was provided with

a binary classification label and an index.

2- Testing data: unlabeled tweets to test the

classifiers against. For each instance in the test

576

data, participants submitted a predicted label.

Based on these predictions, competition scores

were calculated using four metrics (F1-score,

precision, recall, and accuracy).

2 Literature overview

There has been much research involving the

definition of irony and the distinction between

irony and sarcasm. To date, however, experts do

not formally agree on the distinction between

irony and sarcasm as shown by Aditya Joshi et al.,

(2016). Moreover, when describing how irony

works, Antonio Reyes et al., (2013), distinguish

between situational irony and verbal irony.

Situational irony is an unexpected or incongruous

quality in a situation or event, as shown by Shelley

(2001). Whereas verbal irony, in contrast, is a

playful use of language in which a speaker implies

the opposite of what is literally said.

In his work on the Sarcasm Detector website,

Mathieu Cliche collected tweets from Twitter that

were labeled with the hashtag #sarcasm. His

hypothesis was that sarcastic tweets carry what he

calls a contrast of sentiments (e.g. start with a

positive sentiment and end with a negative

sentiment). He also uses features such as n-grams

and topics as accompanying features then trains

an SVM algorithm as a classifier. Cliche’s system

harbored an F1-score of 0.60, an improvement

from previous work on sarcasm detection as

shown in Cliche (2014).

Chun-Che Peng et al., (2015) followed up on

Cliche’s work to acquire improved results and

stated that irony detection models are prone to

suffer from high variance, which be the effect of

having a high dimensional feature space, therefore

making it important to reduce the dimensions of

the feature space and only use the most relevant

features. Their paper also suggests that using a

Gaussian kernel instead of a linear kernel might

be a better approach, given that the data itself is

not linearly separable.

In our work, we build upon Cliche’s (2014)

hypothesis and try to benefit from Peng et al.’s

(2015) remarks on using the most relevant

features.

3 Implementation

The system is based on natural language

processing where we are targeting to improve

performance for classifying tweets as ironic or

non-ironic by combining many data features and

a voting system on many classifiers, we design

pattern-based features that indicate the presence

of discriminative patterns as extracted from a

large irony-labeled dataset.

3.1 Text Preprocessing

To generate good results and to control the

number of unneeded computations, the tweets are

filtered according to certain criteria. We will

briefly go through the steps of pre-processing a

tweet.

3.1.1 Tokenization

The first step to handle textual data is

tokenization, which is the process of splitting

sentences into single words.

3.1.2 Stop Words

The second step is to filter the data and remove

any insignificant and redundant words. There are

known words, called stop words, as shown by

Alani (2014) are always removed to enhance the

performance.

For the objective of the task, irony detection in

tweets, we removed some words from the Stop

Words sets because they are significant in

detecting irony, especially in the sentiment

analysis model. In sentiment analysis, we

removed any negating words and conjunctions,

such as: (“no”, “not”, “until”, “but”). Whereas in

BoW, keeping negation was unnecessary.

3.1.3 Lemmatization

Lemmatization is the process of getting the root

of a word. It takes into consideration the

morphological analysis of words. A lemma is the

same for variations of a word, therefore; it reduces

sparsity.

3.2 Extracting Features

We here convert the tweet into a vector of

dimensional attributes. While feature mapping is

the hardest step in the code, the pattern of feature

engineering in task A and task B is all the same,

we follow the same steps of mapping and

classifying to get different outputs due to different

training data on the models.

We have tried three different directions in

regards to extracting features from the dataset.

The first being the bag of words (BoW) model, the

second is rule-based sentiment analysis, and the

third being word embedding.

577

Four classifier models were used to train and

test the three feature sets implemented. Each

feature set of which is tested on each classifier

model. In other words, we test (feature set ‘1 of

3’, classifier ‘1 of 4’) pairs. Then we used a voting

system to compare between the results of (feature

set, classifier) pairs, and then the classification

with the higher number of votes is picked as the

final classification.

3.2.1 Bag of Words Feature

First, we create three arrays. The first array for

the words in ironic tweets, the second array for the

words in non-ironic tweets and the final array for

words in all tweets. Second, we calculate the

number of repetitions of every word in the ironic

tweets array across all ironic tweets. We repeat the

same step for every word in the non-ironic tweets

across all non-ironic tweets. Third, we extract the

most common words (with highest frequency)

across both tweets to eliminate them from our

processing to the data - since they will not be

effective in determining if a tweet is ironic or not.

Fourth, we create hash-maps for the words as

'key' attribute and their frequency value as 'value'

attribute - one hash-map for words in ironic

tweets, another for words in non-ironic and the

last one for the common ones. Fifth, we sort the

hash-maps for easy acquiring of the words with

highest frequencies. Finally, we add the hash-

maps as another feature for the data processing

procedure.

3.2.2 Sentiment Analysis

According to Van Hee et at., (2016), verbal

irony arises from a clash between two evaluation

polarities. We use sentiment analysis to help

detect irony in a tweet via contrasting polarity. We

used the polarity feature of a word to determine

if the feelings in the tweet changed 180 degrees.

We did not apply lemmatization prior to

extracting this feature because it affects polarity.

We also handle emojis and negation words in the

tweets since they contribute to the polarity of the

sentence. Below are the steps we perform.

a. Split the tweet into two parts on a

conjunction from a list created by hand. We

gather all the available conjunctions in

English Grammar. We handle all the

conjunctions except the ones that consist of

more than one word like “not only... but

also”… etc.

b. Perform pre-processing on each part of the

tweet individually.

c. Evaluate polarity of each word of each part

of the sentence, and then define the polarity

of each part given the ratios of positive,

negative, and neutral words to the total

length of the sentence.

d. Each part is given a tag as positive (POS),

negative (NEG), or neutral (NEU).

e. We tune the parameters that define the

threshold of positivity or negativity of each

part of the sentence, being 0.5 in this case.

f. Compare the polarities of the sentence parts.

To sum up: The Sentiment Analysis method

uses contrasting polarity or extra positivity and

extra negativity as an indication of irony. We split

the tweet into two parts, taking each part as input

into the Sentiment Intensity Analyzer, the

polarity of each word is returned by the analyzer

as either positive (POS), negative (NEG) or

neutral (NEU). To calculate the overall polarity

of one part of the tweet, we search for the polarity

category that has highest number of words and

return it as the overall polarity. The overall

polarity of both parts of a tweet is then examined

and classified as ironic if contrasting polarity (e.g.

POS-NEG or NEG-POS) is found.

3.2.3 Word Embedding

First, we build a model using training data to

act like a dictionary for upcoming processing. The

model used in this step is a Word2Vec model.

Second, we process each tweet in the training

dataset, using every word in every tweet and

passing it to the model - which as a result, returns

an equivalent numerical vector to the word with a

fixed length, in our case; we choose a length of

one hundred (100) as a moderate length value.

Third, we add all the vectors of the words in each

tweet and divide this sum by their number. Thus,

we acquire a numerical representation of a fixed

length for every tweet. Fourth, we append all

those vectors of all tweets. Finally, we pass the

resulting appended vectors of all tweets to the

classifier. If the word did not exist in the

dictionary we made beforehand, a vector of length

0 is returned.

578

3.3 Choosing a classifier

We use four models for classification and we

build a voting system for them all, tune the

parameters, and record the findings to enhance the

performance, the classification models are

selected based on the literature review. The

classification algorithms used are listed below:

• Naive Bayes Classifier.
• Support Vector Machine (SVM).
• Decision Trees.
• K-Nearest Neighbor Classifier: After

some tuning, k=1 generated the best

results for all the features.

4 Results

Our system is divided into three classes one for

each feature. Then the result of each is classified

using the four different classifiers stated above.

Below we present a chart of the accuracies

obtained with different classification algorithms

and different feature types.

 BoW Sen-A Word-E

NB 65 44 49

SVM 62 45 53

Trees 57 59 57

1-NN 52 60 48

Table 1: accuracy of feature-classes when tested

against classifiers using the training set for task A.

Figure 1: results obtained by two voting systems

using three feature set types as shown.

4.1 Classifiers Voting System

We used a voting system to combine the

predictions from the four classifiers exploiting

different feature types.

4.2 Features Voting System

This voting system uses the four output results

from the four classifiers voting system to get an

overall result for the whole system.

The results of the system evaluation phase are

as follows:

 Accuracy Precision Recall F1-score

Task

A

0.5089 0.4102 0.5434 0.4675

Task

B

0.4923 0.2998 0.3108 0.3014

Table 2: The score obtained by the system in

subtasks A and B as evaluated by SemEval.

4.3 Analysis

Looking at the results, we hypothesize that the

system’s performance can be improved by

combining all features instead of testing them

individually. It was also remarkable that the best

accuracy was obtained by the bag-of-words model

using the Naïve Bayes classifier.

We also believe better results can be achieved

if there was a bigger dataset at hand to train upon,

and if we had sufficient time to perform grammar

checking on the tokens and other operations that

can reduce noise.

5 Conclusion

This paper describes our irony detection system

that was built in the framework of SemEval-2018

Task 3. We used the same architecture for subtask

A and B and obtained F1-scores of 0.4675 and

0.3014, respectively. Our binary classification

results are much better compared to multi-

classification, which implies that we need to

implement another feature model that could

represent a whole sentence (e.g. Sentence2Vec

rather than Word2Vec). In future work, we aim to

enhance the performance of our classifier by

combining all features. Moreover, we will add

new features to solve the problem of word

dependencies (by this we mean that all system

features do not account for dependencies between

words in the same sentence) so that the system

gives more accurate results.

Acknowledgements

The authors would like to thank Prof. Ayman

Khalafallah of Alexandria University for his

constant guidance and support throughout the

process of developing this system.

579

References

Harith Alani, Miriam Fernández, Yulan He and Hassan

Saif. 2014. On stopwords, filtering and data sparsity

for sentiment analysis of Twitter. In proceedings of

LREC 2014, 9th International Conference on

Language Resources and Evaluation:810–817.

Mathieu Cliche. 2014. The sarcasm detector. URL:

http://www.thesarcasmdetector.com/about/.

Aditya Joshi, Mark James Carman and Pushpak

Bhattacharyya. 2017. Automatic Sarcasm Detection:

A Survey. ACM Computing Surveys 50(5) Article

73, 2017. https://doi.org/10.1145/3124420

Chun-Che Peng, Jan Wei Pan and Mohammad Lakis.

2015. Detecting Sarcasm in Text: An Obvious

Solution to a Trivial Problem. Stanford CS 229

Machine Learning Final Project.

Antonio Reyes, Paolo Rosso and Tony Veale. 2012. A

multidimensional approach for detecting irony in

Twitter. Language Resources & Evaluation, March

2013, 47(1) :239–268.

https://doi.org/10.1007/s10579-012-9196-x

Cameron Shelley. 2001. The bicoherence theory of

situational irony. Cognitive Science 25:775-818.

https://doi.org/10.1016/S0364-0213(01)00053-2

Cynthia Van Hee, Els Lefever and Veronique Hoste.

2016. Guidelines for Annotating Irony in Social

Media Text. LT3, Department of Translation,

Interpreting and Communication, Faculty of Arts,

Humanities and Law - Ghent University, Belgium.

580

