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Abstract

We describe the systems developed by the
UMBC team for 2018 SemEval Task 8, Se-
cureNLP (Semantic Extraction from Cyberse-
cUrity REports using Natural Language Pro-
cessing). We participated in three of the sub-
tasks: (1) classifying sentences as being rele-
vant or irrelevant to malware, (2) predicting to-
ken labels for sentences, and (4) predicting at-
tribute labels from the Malware Attribute Enu-
meration and Characterization vocabulary for
defining malware characteristics. We achieved
F1 scores of 50.34/18.0 (dev/test), 22.23 (test-
data), and 31.98 (test-data) for Task1, Task2
and Task2 respectively. We also make our cy-
bersecurity embeddings publicly available at
https://bit.ly/cybr2vec.

1 Introduction

Task 8 for SemEval 2018 asked participants to
work on a set of related sub-tasks involving ana-
lyzing information from text about malware drawn
from the Advanced Persistent Threats Notes col-
lection (Blanda and Westcott, 2018) using the se-
mantic framework found in the Malware Attribute
Enumeration and Characterization language (Kir-
illov et al., 2011; Beck et al., 2014). The task
was composed of four related sub-tasks that could
be part of a processing pipeline for an informa-
tion extraction system for cybersecurity related
text (Phandi et al., 2018).

Subtask 1 required classifying a sentence as be-
ing relevant or irrelevant for inferring malware ac-
tions and capabilities. Subtask 2 involved predict-
ing token labels for entities, actions and modifiers
in sentences. Subtask 3, which we did not under-
take, expanded on subtask 2 by asking participants
to label relevant relations between the entities.
Subtask 4 required predicting more detailed at-
tribute labels, including ActionName, Capability,

StrategicObjectives and TacticalObjectives, drawn
from the MAEC vocabulary.

One of our aims is to better understand the dif-
ferences between cybersecurity text and general,
non-cybersecurity text; another is to also better
understand differences and variation within cyber-
security texts. To that end, we focus on learn-
ing and extracting better representations of the in-
put reports. Specifically, for our approaches, we
focus on approaches that incorporate additional,
domain-specific knowledge into our system, and
we use these enhanced representations and fea-
tures in well-studied classification, representation,
and sequence prediction models.

2 Subtask 1

In this section we describe our approaches to
classify a given sentence as relevant or irrele-
vant to malware. We used logistic regression
(LR), multi-layer perceptron (MLP), and Long-
Short Term Memory (Hochreiter and Schmidhu-
ber, 1997, LSTM) as classifiers, and we used mul-
tiple encoding schemes to represent features for
the classification task.

2.1 Models

We experimented with and evaluated three dif-
ferent techniques for implementing the Subtask
1 relevance classifier. Each approach used simi-
lar features; we opted for bag-of-words or bag-of-
embeddings due to their simplicity and competi-
tive performance (Wang and Manning, 2012).

• Logistic Regression: We used logistic re-
gression, as a baseline classifier with an L2
penalty of 10.

• Multi-Layer Perceptron: We used two ar-
chitectures for MLP for two different kinds
of input; one was bag-of-words, the other
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LR MLP
ACC AUC F1 ACC AUC F1

Avg. Binary BOW 89.78 81.58 47.9 90.85 77.44 46.89
Binary BOW 78.9 79.29 32.98 65.05 77.77 25.61

Avg. Count BOW 89.94 79.31 46.49 91.01 75.76 45.77
Count BOW 78.4 81.38 33.84 83.35 75.2 33.99

Wiki embeddings 93.49 50 0 93.49 50 0
Cyber embeddings 88.38 79.65 43.82 83.51 82.35 39.02

Table 1: Performance on Task 1 (dev-data) for each of the model we implemented. We used the best MLP model
for SemEval submission (test-data) and had F1 score of 18. We found LR and MLP to always label majority class
resulting in zero F1 score using Wiki embeddings.

was dense embeddings. When the input rep-
resentation was bag-of-words, we used one
hidden layer of dimension 32 followed by
a classification layer. When embeddings
were used we used a network of three hid-
den layers followed by a classification layer;
we found adding up to 3 layers to the net-
work helped improving training accuracy.
We used L2 regularization (Tibshirani, 1996)
of 0.1 and dropout (Srivastava et al., 2014)
of 0.1 to avoid overfitting. We fixed the
value of dropout and experimented with mul-
tiple values of L2 and chose one giving the
best performance on the development dataset.
Performance decreased gradually when L2
penalty was either increased to {0.2, 0.25,
0.5} or decreased to {0.01, 0.001, 0.0001}.
We set the size of the hidden layer to 100
when embeddings were used.

• LSTM (for embeddings): We applied an
LSTM network with one hidden layer of size
128. We used dense, pre-trained embeddings
(§2.2) for each word in the input sentence.

2.2 Features for the models

We experimented with the following four feature
sets in order to determine the best performing rep-
resentation for Task 1.

• (Average) Count Bag-Of-Words: We cre-
ated standard bag-of-words features from the
training dataset. We experimented with nor-
malizing each vector via averaging.

• (Average) Binary Bag-Of-Words: We also
considered binary bag-of-words features, by
replacing each term frequency count with bi-
nary value where positive value is set to one
and a negative value to zero. We also experi-

mented with normalizing each feature vector
by averaging.

• Cybersecurity embeddings: The cyber-
security embeddings were generated using
word2vec Skipgram model with negative
samplings of 100 dimension and a window
size of five (Mikolov et al., 2013b) on one
million cybersecurity related documents.1

• Wikipedia embeddings: We generated 400
dimensional word2vec skip-gram embed-
dings from a recent Wikipedia dump. We
used a window size of 5.2

2.3 Datasets, embeddings &
hyperparameters

For Subtask 1, we used all 65 files available as part
of SemEval Task 8. We tuned and tested our model
on development data available as part of SemEval.
For logistic regression we swept the L2 regular-
ization coefficient ({100, 10, 1, 0.1, 0.01, 0.001})
and chose the value that gave best performance on
the development dataset. For neural approaches
we used stochastic gradient descent with momen-
tum of 0.4 for LSTM and 0.9 for MLP. We tried
multiple learning rates and chose one which gave
best performance on the development dataset. We
chose starting learning rate of 0.2 for LSTM and
0.1 for MLP. We also tried using Adam optimizer
(Kingma and Ba, 2014) with the same learning
rate as MLP but found the resulting model labeled
all test instances with the majority class.

For our implementation we used Keras (Chollet,

1We used an embedding model produced by IBM Re-
search trained on a collection of 1 million cybersecurity-
related documents with a vocabulary size of 6.4 millions
words and 100 dimensions.

2Reported models use the 20180220 English Wikipedia
dump; we did not notice large differences in performance
when using this vs. an earlier version for the competition.
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LSTM
ACC AUC F1

Wiki embeddings 80.21 82.35 35.83
Cyber embeddings 93.98 72.05 50.34

Table 2: LSTM Performance (dev data). We offer these
as supplementary evaluations.

2015) with a Tensorflow backend to train neural
network based models and Gensim (Řehůřek and
Sojka, 2010) to train word embeddings. We used
Scikit-learn (Pedregosa et al., 2011) for Logistic
Regression. For the LSTM, we let the size of the
input sequence be the maximum length of all sen-
tences in the batch and padded shorter sentences
with zero vectors.

The input was a matrix of dimension l×d where
d is the size of embedding vector and l is the length
of the longest sentence.

2.4 Discussion
As evident from Tables 1 and 2, the neural network
based classifiers perform better compared to other
methods depending on the features.

However, we find a considerable gap between
the score from Table 1 and 2. As explained later,
we believe that the models’ low scores are related
to the scope of the task. Overall, the LSTM per-
forms better compared to the MLP due its ability
to capture subtle nuances.

We note the positive impact that domain-
centered cybersecurity embeddings have. Never-
theless, not all cybersecurity texts may accurately
reflect other cybersecurity texts, especially ones
with the task-specific annotations as considered
here. We posit that the performance of all our
models, in particular the LSTM, may be improved
with embeddings that are learned from documents
more representative of those evaluated.3

Comparing the results of Wikipedia embed-
dings and embeddings trained on cybersecurity
text we found Wikipedia based embeddings to
consistently perform poorly. We believe one of the
reasons Wikipedia embeddings performed poorly
for this task is due to less overlap between the
technicality of the task and content.

Moreover the F1 score is zero sometimes as the
features are rich enough to classify positive in-
stance and predicts only negative (as evident from

3The actual collection of APT notes included about 400
documents, vs. the 1 million documents trained on broader
cybersecurity texts.

False Positive: Attackers always use this mini-
mal effort approach in order to bypass a victim
s defenses.
False Negative: Trojan.Karagany first checks
for a live Internet connection by visiting Mi-
crosoft or Adobe websites.
General Information: The group has used
two main malware tools: Trojan.Karagany and
Backdoor.Oldrea.

Table 3: Task 1 classification examples.

AUC). On the other hand, the cybersecurity em-
beddings performed better when compared with
Wikipedia embeddings, due to the more focused
corpus, but we believe there is scope to improve
the quality of embeddings. Frequency based fea-
tures tend to perform better than binary features;
averaging the features improves the performance
score across all classifiers.

2.5 Error analysis
Among the classifiers, the MLP makes mistakes
by getting caught into to domain specific words
that occur frequently, like attack and attackers,
and skips less frequent but indicative words like
Trojan.Karagany. Additionally we found the MLP
incorrectly classifies general sentences as relevant.
We demonstrate examples in Table 3.

Looking at the example sentences from 3, we
see that whether or not a sentence is “relevant” is
task-dependent. For example, the general infor-
mation sentence above could be useful for iden-
tifying relationships among different malware in-
stances or families. However, the sentence would
be irrelevant in the context of action and capabili-
ties of a particular malware mention.

3 Subtask 2

In this section we describe our approach for Task
2, which required participants to predict token la-
bels for malware-related documents. The Task 2
system served as an automatic labeling tool using
one of four labels:

• Action, referring to an malware-related
event;

• Entities, referring to either Subjects or
Objects in the malware-related sentence; or

• Modifiers, referring to prepositions that link
between action and phrases.

880



Each label is represented by a tag using the in-
side, outside, beginning (IOB) format (Ramshaw
and Marcus, 1999). The performance was mea-
sured using F1 score and the relaxed measurement
by omitting the IOB tags.

3.1 Our Approach

We extended the previous work Lim et al. (2017),
who trained a conditional random field (CRF) on
unigram and bigram features of the surface words,
part-of-speech tags and Brown clustering signa-
tures (Brown et al., 1992). Like Lim et al. (2017),
we also trained a CRF. Our features include:

• unigrams and bigrams of words in the depen-
dency parse tree,

• unigrams and bigrams of the word lemmas,

• wordshape equivalence class analysis
(Christopher, 2016), and

• Brown clustering signatures from a larger
APT collection .

The word’s context, which are words in the win-
dow of size three, was included. These features
were extracted using Stanford CoreNLP (Manning
et al., 2014). We did not use the surface word as
in development we found it yielded lower perfor-
mance. The dependency function will help to rec-
ognize the similar sentence by comparing similar
sentence’s structure. The wordshape features rep-
resent the classes of upper case, lower case, digits,
and punctuations, and also groups the sequence of
the same class. The wordshape features help to
recognize named entities.4

We trained our own Brown clustering features
(Liang, 2005) with our own APT corpus of 456
APT files from 2008 to 2017. We experimented
with the Brown clustering hyperparameters: the
Brown cluster size (1000,10000) and its prefix
length (6,8,10,12,16). The best result from the ex-
periment is the prefix of size 8 and cluster size
1000. We built our own Brown clustering for
two reasons. First, we will not be able to iden-
tify Brown clustering feature when we encounter
out of vocabulary word; we found the larger cor-
pus to partially alleviate this concern. Second, we
believed that the bigger size of the corpus, with
an appropriate clustering size and prefix length,
would yield better clustering features.

4 We use the ‘dan2’ wordshape classes from CoreNLP
(Manning et al., 2014).

P R F1
Action 24.50 39.20 30.15
Entity 11.26 17.34 13.65

Modifier 29.37 46.84 36.10
Average 18.22 28.54 22.24

Table 4: Official Task 2 scores on Test set

P R F1
Action 25.67 50.00 33.92
Entity 23.71 45.45 31.16

Modifier 29.92 48.10 36.89
Average 24.42 46.31 31.98

Table 5: Official Task 2 relaxed/token-level scores on
Test set

3.2 Experimental Results

We used the CRF++ toolkit (Kudo, 2005) to
develop our conditional random field (CRF)
models. For the official evaluation, we ran our
system on Test set provided by SemEval2018.
The test set contains 13,080 tokens in total. The
official scoring reported our F1 performance
of 22 for strict scoring, and 32 for relaxed
scoring. Our F1-score for subtask 2 are gen-
erally on par with the baselines (23 for the
strict, and 31 for the relaxed, measures). Detailed
performance analyses are shown in Tables 4 and 5.

3.3 Discussion

Table 4 demonstrates that our system performance
of predicting Entity is lower than Action and Mod-
ifier. We believe this is because malware-related
entities are different from other text; in particular,
they can be quite long. For example, the follow-
ing (gold test) entity is a long clause with com-
plex syntactic structure: ‘method of leaving the
encoded file on disk and only decoding it in mem-
ories.’ This entire clause is labeled as an Entity.
Despite the dependency features, our system can-
not identify these long spans as an entity. Another
example of this limitation is shown in Figure 1.
This is a rich area for future improvement.

4 Subtask 4

In this section we describe our approach for task
4. The task is to predict attribute labels (Action-
Name, Capability, StrategicObjectives and Tac-
ticalObjectives) for a given malware-related text
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Figure 1: An example of wrong prediction of Task 2. Above the line is the gold standard annotation. Under the
line is our predictions.

describing action of a malware.

4.1 Our Approach
For this task we focus on learning better quality
word embedding features for a classifier, as classi-
fier performance depends on the quality of its fea-
tures. In addition to encoding semantics present
in the text via embeddings, we want to encode do-
main specific knowledge in the embeddings. For
this purpose, we developed an Annotation Word
Embedding (AWE) model that is capable of in-
corporating diverse types of domain knowledge,
such as metadata, keyword information, ontology
knowledge, and manual annotation. The AWE
model learns to predict this knowledge from the
text, resulting in better quality embedding since
domain knowledge can be incorporated in the em-
beddings. We then train a classifier with these
high quality word embedding features to classify
attribute labels.

4.1.1 Annotation Word Embedding
The AWE model’s learning task is to predict an-
notations and context words given a target word.
A sliding window on the input text generates the
training samples. In each sliding window the task
is to use target word to predict its own annotation
as well as the context words. Formally, we maxi-
mize the log probability of context words and an-
notations given target word.

Given a sequence of T training words
(W1,W2...Wt−1, Wt,Wt+1...WT ) and their an-
notations ((A1,1, A1,2...A1,M1), (A2,1...A2,M2) ...
(AT,1,...AT,MT

)), our objective is to maximize the
average log probability shown in Equation 1:

1

T

T∑

t=1


 ∑

−C≤j≤C,j 6=0

logP (Wt+j |Wt)+

∑

0≤k≤Mt

logP (At,k|Wt)


 (1)

where C is the size of the context window, Wt is
the target word, Wt+j is a context word, At,k is

the kth annotation of target word Wt. In addition
to using the target word to predict context words,
like Mikolov et al. (2013a)’s skipgram model, the
AWE embedding model predicts annotations of
target word using target word itself.

4.2 Experiments

To train the AWE model we used all 456 APT re-
ports as text corpus. In addition we used keywords
for each attribute label described in MAEC vocab-
ulary (Kirillov et al., 2011) and gold annotation
given for 65 APT reports available as part of the
SemEval task to create text annotation.

To create text annotation we collected keywords
from attribute label descriptions and extracted the
token groups from the gold annotations. Token
groups consist of the subject, action and object
linked to each other via relation labels. We used
these token words and keywords to create text an-
notation; we deleted stop words.

For example, one token group extracted from
gold annotation is “these configuration issued
commands to attack following domain and IPs.”
After deleting stop words this token group we get
“configuration,” “issued,” “commands,” “attack,”
“domain,” and “IPs.” In the gold annotation, this
token group has label Capability12 in attribute cat-
egory of Capability. In MAEC vocabulary (Kir-
illov et al., 2011) keywords given for this capa-
bility label are “machine access,” “control,” “exe-
cute,” “terminate,” and “create.” All these token
words and keywords will have an annotation of
Capability12 in our AWE model.

After creating the text annotation we train an
AWE model with 100 dimension feature vectors,
window size 5 and negative sampling. After train-
ing embeddings we use these embeddings to create
features for classifier. We use average embeddings
of all the words in each token group to create clas-
sifier instance. We use SVM as classifier. On the
test dataset we get F-score of 0.19.
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4.3 Discussion

This task is one of the most challenging tasks be-
cause of data sparsity and large number of at-
tribute labels. In fact, out of the 444 attribute
labels, 185 labels do not appear in dataset. For
the remaining 259 attribute labels 169 labels oc-
cur less than five times. In addition, among 3348
instances there are 2298 instances without any Ac-
tionName attribute, 642 instances without a Capa-
bility attribute, 1244 instances without a Strategic-
Objective attribute and 1675 instances without a
TacticalObjective attribute.

To improve classifier performance future work
can try training a classifier that focuses on the
common classes, with non frequent classes labeled
as “other.” Applying other techniques like similar-
ity score to classify infrequent classes may also
be beneficial. Additionally, we noticed that in the
gold annotation there are often missing relation
labels. This missing relation labels result in in-
complete token group as token groups are tokens
linked by relation labels.

5 Conclusion

We described the systems developed by the
UMBC team for 2018 SemEval Task 8, Se-
cureNLP (Semantic Extraction from CybersecU-
rity REports using Natural Language Processing).
We participated in three of the subtasks: (1) clas-
sifying sentences as relevant or irrelevant for fur-
ther malware analysis, (2) predicting token la-
bels for sentences about malware, and (4) adding
detained attribute labels to sentences from the
MAEC vocabulary for defining malware charac-
teristics. Our cybersecurity embeddings are avail-
able at https://bit.ly/cybr2vec.

We plan to continue development our systems
by getting additional annotations for training, ex-
ploring the application of different machine learn-
ing algorithms, making use of the knowledge in
our Unified Cybersecurity Ontology (Syed et al.,
2016) and associated data, and through our ongo-
ing collaboration with colleagues at IBM as part
of the AI Horizons Network.
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