
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 890–893
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Flytxt NTNU at SemEval-2018 Task 8:
Identifying and Classifying Malware Text Using

Conditional Random Fields and Naı̈ve Bayes Classifiers

Utpal Kumar Sikdar1, Biswanath Barik2 and Björn Gambäck2

1Flytxt, Thiruvananthapuram, India
2Department of Computer Science, NTNU, Norway

utpal.sikdar@gmail.com
{biswanath.barik,gamback}@ntnu.no

Abstract

Cybersecurity risks such as malware threaten
the personal safety of users, but to identify
malware text is a major challenge. The pa-
per proposes a supervised learning approach
to identifying malware sentences given a doc-
ument (subTask1 of SemEval 2018, Task 8),
as well as to classifying malware tokens in the
sentences (subTask2). The approach achieved
good results, ranking second of twelve partic-
ipants for both subtasks, with F-scores of 57%
for subTask1 and 28% for subTask2.

1 Introduction

Malware is a major problem in the digital world.
Recently, Lim et al. (2017) addressed the mal-
ware threat by creating a new database of malware
texts. In addition, they constructed different mod-
els for identifying and classifying malware sen-
tences, and discussed the outstanding challenges.
Sutskever et al. (2016) also pointed to cybersecu-
rity defense as a key area because of its long-term
impact on society. Still, there have been very few
efforts addressing the problem. Many cybersecu-
rity agencies such as Cylance (Gross, 2016) and
Symantec (DiMaggio, 2015) have collected large
repositories of malware-related online texts. The
diversity of those texts shows that identifying mal-
ware is quite challenging.

The organizers of SemEval 2018, Task 8 de-
fined four subtasks for Semantic Extraction from
CybersecUrity REports using NLP, SecureNLP
(Phandi et al., 2018). The paper outlines a su-
pervised approach to the first two subtasks, on
malware sentence and token identification, respec-
tively. In subTask1, given a sentence, the systems
need to predict whether the sentence is relevant
for inferring the malware’s actions and capabili-
ties. For this subtask, two machine learning clas-
sifiers were used, Naı̈ve Bayes (Rish, 2001) and

Total Malware
Data Sents Tokens Sents Tokens

Train 9,435 231,180 2,204 12,165
Dev 1,213 32,029 79 459
Test 618 13,080 90 453

Table 1: Malware dataset statistics

Conditional Random Fields (CRF, Lafferty et al.,
2001), as well as a combination of the two models.

In subTask2, the systems should predict and
classify malware tokens in the sentences into three
different categories, namely Action, Entity, and
Modifier. A CRF-based classifier was used also
for the second subtask.

The paper is organized as follows: The datasets
are presented in Section 2. The malware sentence
identification is described in Section 3, while the
token label malware identification is described in
Section 4. Results are presented in Section 5, with
system comparison and error analysis reported in
Sections 6 and 7, respectively. Section 8 addresses
future work and concludes.

2 Datasets

The SecureNLP shared task organizers provided
three different datasets: training, development and
test sets. The statistics of the datasets are reported
in Table 1, with the total number of sentences and
tokens in each set as well as the number of those
sentences and tokens containing malware.

3 Malware Sentence Identification

Two classifiers, CRF and Naı̈ve Bayes were used
for malware sentence identification. When both
the classifiers identified a sentence as malware, the
outputs of the classifiers were combined. The sys-
tem architecture is shown in Figure 1.

890

Figure 1: Overall system architecture

3.1 Conditional Random Fields
Token level malware words were identified in the
texts described in Section 2. If a sentence con-
tains malware token(s) as identified by the CRF
classifier, the sentence is considered as a potential
malware sentence. A range of features (further de-
scribed in Section 4 below) were utilized to train
the CRF classifier to predict malware tokens.

3.2 Naı̈ve Bayes
A Naı̈ve Bayes classifier is a probabilistic clas-
sifier based on Bayes’ theorem an independence
assumption between the features. As an initial
step, a dictionary was created using the vocabu-
lary found in all the sentences. In the next step, a
term-document matrix was built for each sentence.
Then Bayes’ Theorem was applied to calculate the
malware (y = 1) and non-malware (y = 0) prob-
abilities for each sentence. Equation 1 represents
the malware probability, P for each sentence.

P (y = 1|S) = P (S|y = 1)× P (y = 1)

P (S)
(1)

Here S denotes the set of words in a particular sen-
tence and P (S) = P (S|y = 1) × P (y = 1) +
P (S|y = 0)× P (y = 0). The non-malware prob-
ability for each sentence can be calculated in the
same way. If P (malware) > P (non-malware),
the sentence is considered to be a malware sen-
tence, otherwise it is assumed to be non-malware.

3.3 Classifier Ensemble Prediction
An ensemble classifier was created by merging
the outputs of the two classifiers described above.
If both classifiers identify a sentence as malware,

it is considered to be malware, otherwise non-
malware. Combining the two classifiers gave bet-
ter accuracy than using each classifier individually.

4 CRF-based Malware Token
Identification and Classification

To identify and classify each token from unstruc-
tured text into the three categories Action, Entity
and Modifier, a supervised CRF-based approach
was used. The task was divided into two steps. In
the first step, each token (called a mention) was
identified as belonging to one of the three cate-
gories or not. In the next step, the identified tokens
were classified into one of the three categories.

The CRF token label malware identification
model was implemented using the C++ CRF++
package1, which allows for fast training by utiliz-
ing L-BFGS (Liu and Nocedal, 1989), a limited
memory quasi-Newton algorithm for large scale
numerical optimization. The classifier was trained
with L2 regularization and the following features:
• local context (with a -1 to +2 window, i.e.,

from one preceding to two following tokens),
• part-of-speech information (-1 to +3 tokens),
• suffix (last two or three characters)
• prefix characters (three initial characters)
• starts-with-upper-case,
• stem (-3 to +2 tokens),
• is-a-stop-word,
• is-alphanumeric,
• is-sentence-initial,
• identified mention (-3 to +3 tokens),
• bi-gram: a combination of the current token

output and previous token output.

1https://taku910.github.io/crfpp/

891

System Precision Recall F-score

CRF 0.30 0.80 0.43
Naı̈ve Bayes 0.30 0.89 0.45
Ensemble 0.43 0.75 0.55

Table 2: SubTask1 Development Results

System Precision Recall F-score

CRF 0.40 0.71 0.51
Naı̈ve Bayes 0.32 0.88 0.47
Ensemble 0.49 0.67 0.57

Table 3: SubTask1 Test Results

To identifying the mentions, the above features
(except the mention feature) were used together
with the current word and a context consisting of
the previous two and the next two words.

5 Results

The supervised learning approaches were applied
to subTask1 and subTask2. The systems were
learned from the training data and tested on the
development data. Table 2 reports the precision,
recall and F1-score on the subTask1 development
data for the CRF approach, the Naı̈ve Bayes, and
the combined ensemble approach. The ensemble
achieved 10% better F-score than the Naı̈ve Bayes
approach, which in turned slightly out-performed
the CRF classifier. Before evaluating on the un-
seen test data, the development set was merged
with the training set to build the classifiers. The
combined approach also produced the best results
on unseen test data, as reported in Table 3. Note
that the enlarged training set helped to increase
precision on the test set for all classifiers, while
recall went down in all cases.

For subTask2, token label malware identifica-
tion, we applied the Conditional Random Fields
classifier using the features given in Section 4. The
results are shown in Table 4. When tested on the
development data, the classifier and achieved an
F-score of 24.90%, with slightly higher recall than
precision. Again, the unseen test data results were
somewhat better, with an F-score of 28%. Ten-
tatively since also here the development data was
merged with the training data when learning the
classifier used for the unseen test data.

Data Precision Recall F-score

Dev 22.22 28.32 24.90
Test 26.00 29.40 28.00

Table 4: SubTask2 Results (%)

Team Name T1 T2 T2-rel

Villani 0.57 0.23 0.31
Flytxt NTNU 0.57 0.28 0.36
DM NLP 0.52 0.29 0.39
HCCL 0.52 0.22 0.38
TeamDL 0.50 0.25 0.36
NLP Found 0.49 0.28 0.39
ACL benchmark 0.51 0.23 0.31

Table 5: Top-7 results (F-score) for SubTask-1 (T1),
SubTask-2 (T2), and SubTask2-relaxed (T2-rel)

6 Comparison with Other Systems

Comparing our system (‘Flytxt NTNU’) with the
other systems participating in the shared task, Ta-
ble 5 reports the top 7 results and shows that in
subTask1 (malware sentence identification) we se-
cured second position, while achieving the same
F-score (57%) as the top-rated system (Villani).
Also for token label malware identification (sub-
Task2), our system got second position with a
28% F-score. For both subtasks, we achieved
clearly better scores than the baseline system
(‘ACL benchmark’).

7 Error Analysis and Discussion

To analyze the outputs of the development data for
subTask1 and subTask2, Tables 6 and 7 draws the
confusion matrices for each subtask.

For subTask1, Table 6 shows that many non-
malware sentences are identified as malware sen-
tences by both classifiers, tentatively since many
common words are shared by both malware and
non-malware sentences. Both classifiers gener-
ate higher recall than precision values because the
classifiers try to identify as many sentences as pos-
sible as malware. Once the outputs of the two
classifiers were combined (when both classifiers
agreed on a sentence being potential malware),
about half of the non-malware sentence classifica-
tion errors were removed, and the ensemble thus
produced better F-scores than the Naı̈ve Bayes and
CRF models in isolation.

892

CRF Naı̈ve Bayes Ensemble
Non-Malware Malware Non-Malware Malware Non-Malware Malware

Non-Malware 985 149 969 165 1057 77
Malware 16 63 9 70 20 59

Table 6: Confusion Matrix for SubTask1 on the development data

B-Entity I-Entity B-Action I-Action B-Modifier I-Modifier O

B-Entity 51 68 1 0 1 0 135
I-Entity 8 122 1 0 7 0 383
B-Action 2 1 57 7 0 0 57
I-Action 0 0 0 0 0 0 6
B-Modifier 0 6 0 0 28 1 44
I-Modifier 0 0 0 0 0 0 0
O 277 537 107 12 46 3 30061

Table 7: Confusion Matrix for SubTask2 on the development data

The confusion matrix for subTask2 is reported
in Table 7, in the BIO (beginning, inside, out-
side) format for each of the three classes (entity,
action, modifier). We observe that many non-
malware tokens (O) are identified as malware and
vice versa. Again, this might be due to same words
occurring as both malware and non-malware to-
kens in the sentences, which is why the system
achieved low precision and recall values. Further-
more, two of the inside mention classes (I-Action
and I-Modifier) are tiny, indicating that training
machine learners on them will be difficult.

8 Conclusion and Future Work

The paper has proposed Naı̈ve Bayes and CRF
based approaches to identify malware sentences
(subTask1). In the future, we will incorporate
other features such as tf-idf and information gain
to improve system performance. Furthermore, we
aim to apply deep learning-based approaches such
as LSTM (Long Short-Term Memory) and CNN
(Convolution Neural Network) to malware sen-
tence classification.

For subTask2, many features were developed to
identify malware tokens using Conditional Ran-
dom Fields. Most of the features were extracted
directly from training data, but the features could
have been further optimized using grid search and
evolutionary approaches. Also for this subtask, we
will in the future experiment with applying other
approaches, such as LSTM and CNN, to identify
the types of malware tokens in the sentences.

References
Jon DiMaggio. 2015. The Black Vine cyberespionage

group. Technical report, Symantec.

Jon Gross. 2016. Operation Dust Storm. Technical
report, Cylance.

John Lafferty, Andrew McCallum, and Fernando C.N.
Pereira. 2001. Conditional Random Fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 282–
289, Williamstown, MA, USA. IMIS.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. MalwareTextDB: A database
for annotated malware articles. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, volume 1: Long Papers,
pages 1557–1567, Vancouver, Canada. ACL.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, Louisiana.

Irina Rish. 2001. An empirical study of the Naı̈ve
Bayes classifier. In Proceedings of the IJCAI-01
Workshop on Empirical Methods in Artificial Intelli-
gence, pages 41–46. AAAI.

Ilya Sutskever, Dario Amodei, and Sam Altman. 2016.
Special projects. Technical report, OpenAI.

893

