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Abstract

The Argument Reasoning Comprehension
Task requires significant language understand-
ing and complex reasoning over world knowl-
edge. We focus on transfer of a sentence
encoder to bootstrap more complicated mod-
els given the small size of the dataset. Our
best model uses a pre-trained BiLSTM to en-
code input sentences, learns task-specific fea-
tures for the argument and warrants, then per-
forms independent argument-warrant match-
ing. This model achieves mean test set accu-
racy of 64.43%. Encoder transfer yields a sig-
nificant gain to our best model over random
initialization. Independent warrant matching
effectively doubles the size of the dataset and
provides additional regularization. We demon-
strate that regularization comes from ignoring
statistical correlations between warrant fea-
tures and position. We also report an exper-
iment with our best model that only matches
warrants to reasons, ignoring claims. Rela-
tively low performance degradation suggests
that our model is not necessarily learning the
intended task.

1 Introduction

The Argument Reasoning Comprehension Task
(ARCT) (Habernal et al., 2018) addresses a sig-
nificant open problem in argumentation mining:
connecting reasons and claims via inferential li-
censes, called warrants (Toulmin, 1958). War-
rants are a form of shared world knowledge and
are mostly implicit in argumentation. This makes
it difficult for machine learning algorithms to dis-
cover arguments, as they must acquire and use this
knowledge to identify argument components and
their relations. ARCT isolates the reasoning step
by not requiring warrants to be discovered. A cor-
rect warrant W and an incorrect alternative A are
given, and the correct one must be predicted given
the corresponding claim C and reason R.

Figure 1: Benefit of transfer to our best model, COMP.
Distributions come from 200 runs with different ran-
dom seeds. Mean accuracy for transfer (64.43%) is
higher than random (61.81%) and is significant with
p = 9.68× 10−41.

However, this does not eliminate the need for
other forms of world knowledge. Consider the fol-
lowing example from the test set:

C Google is not a harmful monopoly
R People can choose not to use Google
W Other search engines do not re-direct

to Google
A All other search engines re-direct to

Google

It is required to know how consumer choice and
web re-directs relate to the concept of monopoly
in this context, and that Google is a search engine.

We do not attempt to address these other forms
of world knowledge. Given the small size of the
dataset we focus on transfer of semantic knowl-
edge in the form of a sentence encoder to boot-
strap inference over learned features. Following
Conneau et al. (2017), we pre-train a BiLSTM
encoder with max pooling on natural language in-
ference (NLI) data (Williams et al., 2017; Bow-
man et al., 2015). Their results indicate transfer
from the NLI domain to be useful. They hypoth-
esized that due to the challenging nature of the

1099



Figure 2: COMP model architecture.

task, successful encoders must necessarily learn
good semantic representations. However, Nie et
al. (2017) argue that due to the relatively easy
nature of their out of domain generalization tasks
(sentiment classification and textual similarity),
they did not sufficiently demonstrate that deep se-
mantic understanding had been learned.

In this respect our work extends the results of
Conneau et al. (2017). They performed trans-
fer by passing encoded sentence vectors to a lo-
gistic regression classifier. Our implementation of
this model demonstrated very poor performance
on ARCT. However, we experiment with a more
complicated model (Figure 2) which significantly
benefits from transfer (Figure 1). We therefore
extend previous results to demonstrate the utility
of this technique not only for a more semantically
challenging task, but also a more complicated neu-
ral network architecture.

A key feature of our model is independent war-
rant classification which effectively doubles the
size of the dataset. We demonstrate that it also pro-
vides regularization due to ignoring statistical cor-
relations between warrant features and position.

Finally, we experiment with a version of our
model that only matches reasons to warrants, ig-
noring claims. The relatively low drop in perfor-
mance suggests that our model may not necessar-
ily be learning the intended task.

2 System Description

2.1 COMP Model

A diagram of our best model which we call COMP
is given in Figure 2. The key idea is to learn in-
dependent features for argument components and
then perform independent warrant matching.

The inputs are word vectors for the claim
C, reason R, and warrants W0 and W1. We
use GloVe embeddings with 300 dimensions pre-
trained on 640B tokens (Pennington et al., 2014).
First, a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) with max pooling learns se-
mantic representations of the input sentences.

c′ = BiLSTMmax(C)

r′ = BiLSTMmax(R)

w′0 = BiLSTMmax(W0)

w′1 = BiLSTMmax(W1)

Dropout (Srivastava et al., 2014) is then applied
to these vectors. If d is the encoder size then each
vector is of dimension 2d due to the concatenation
of forward and backward LSTMs.

Parameter matrix U ∈ R4d×h with ReLU acti-
vation (Nair and Hinton, 2010) learns argument
specific feature vectors of length h from the con-
catenation of the claim and reason. Parameter ma-
trix V ∈ R2d×h with ReLU activation learns spe-
cific features for each warrant independently. Bi-
ases are omitted for clarity.

a = ReLU(U[c′; r′])

w′′0 = ReLU(Vw′0)

w′′1 = ReLU(Vw′1)

Dropout is then applied to these vectors prior to
classification. Parameter vector z ∈ R2h is used
to independently determine a matching score for
each argument-warrant pair. The scores are con-
catenated and passed through softmax to deter-
mine a probability distribution ŷ over the two war-
rants. Cross entropy is then used to calculate loss
with respect to the gold label y.

s0 = z>[a;w′′0 ]

s1 = z>[a;w′′1 ]

ŷ = softmax([s0; s1])

J(θ) = CE(ŷ, y)
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Encoder Size Random Transfer Difference Significance (p)
2048 0.5975 0.5942 -0.55 % 1.72× 10−1

1024 0.6058 0.6025 -0.54 % 1.05× 10−1

512 0.6181 0.6443 +4.24 % 9.68× 10−41

300 0.6285 0.6260 -0.40 % 1.41× 10−1

100 0.6310 0.6329 +0.30 % 2.89× 10−1

Table 1: Transfer results for our COMP model with different encoder sizes. Learning rates and dropout are tuned
to specific encoder sizes. All other hyperparameters are the same. Results are the mean test set accuracy of 200
runs from different random seeds. “Difference” shows the percentage change of transfer relative to random.

2.2 Training Details

Pre-training BiLSTMs was done according to the
specifications of Conneau et al. (2017). For all
ARCT models we followed their annealing and
early stopping strategy: after each epoch, if devel-
opment set accuracy does not improve the learn-
ing rate is reduced by a factor of five. Training
stops when the learning rate drops below 1×10−5.
This algorithm was found to outperform a steadily
decaying learning rate. Adam (Kingma and Ba,
2014) was used for optimization.

We used grid search to find our best parameters.
Best results were achieved with a batch size of 16.
Dropout with p = 0.1 was found to be superior to
L2-regularization. For the COMP model, a hidden
representation size of 512 worked best. Tuning
word embeddings was found to overfit compared
to freezing them. However, tuning the transferred
encoder was far superior to freezing for the COMP
model.

We did not find reducing the learning rate on the
encoder helped transfer. Bowman et al. (2015)
also transfered AdaDelta accumulators along with
an encoder on the principle that lowering the start-
ing learning rate should help avoid blowing away
transferred knowledge. Our results rather agree
with Mou et al. (2016) who also found that learn-
ing rate reduction did not help transfer.

Our code is publicly available, including scripts
to reproduce our results.1

2.3 Submission

Our submission “NLITrans” was our COMP
model with a transferred encoder of dimension
2048. The principal learning rate was 0.002 and
we tuned embeddings at their own rate of 0.0002.
The encoder was tuned at the principal rate. Hid-
den representation size was 512.

Our submission test set accuracy of 59.0%

1https://github.com/IKMLab/arct

achieved fourth place. Following Riemers and
Gurevych (2017), we consider a single run an in-
sufficient indication of the performance of a model
due to the variation resulting from random initial-
ization. Evaluation over 20 runs with different
random seeds revealed our entry was close to the
mean for this configuration of 59.24%.

2.4 Best Configuration

Extended post-competition tuning on the develop-
ment set revealed better hyperparameter settings
that boost the generalization ability of our COMP
model. Specifically, we freeze word embeddings
and use an encoder of size 512. On the test set this
configuration achieves a mean accuracy of 64.43%
over 200 random initializations.

3 Analysis

3.1 Transfer Performance

We measure the performance of transfer by com-
parison with random initialization. The results in
Table 1 show the performance of different encoder
sizes for our best COMP model. Learning rate and
dropout are re-tuned via grid search for each en-
coder size. More investigation is required, how-
ever these results suggest that the success of trans-
fer depends on finding an optimal encoder size
for a given model. We note that the best random
performance came from the smallest encoder size,
confirming that transfer is helping us bootstrap the
use of more complicated models.

3.2 Independent Warrant Classification

Ablation studies showed that independent warrant
classification is a significant advantage. For com-
parison, we built a model that considers both war-
rants and the argument together by replacing pa-
rameter vector z with a matrix Z ∈ R3h×2. We
call this model CORR, as it considers correlations
between warrant features and position. The scores
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Model Dataset Train Test Overfit
COMP Full 0.8807 0.6443 36.69 %

Half 0.8925 0.6332 40.95 %
Unbal. 0.9109 0.6353 43.38 %

CORR Full 0.8155 0.5912 37.94 %
Half 0.8287 0.5649 46.70 %
Unbal. 0.9368 0.5750 62.92 %

Table 2: Comparison of independent (COMP) and cor-
related (CORR) models on full, half, and unbalanced
(Unbal.) datasets. COMP has 6,541,057 parameters
and CORR has 6,543,106.

for the warrants are then calculated as

s = Z[a;w′′0 ;w
′′
1 ]

The results in Table 2 demonstrate poorer gener-
alization and increased overfitting relative to the
independent model on the full dataset.

Independent warrant classification effectively
doubles the size of the dataset. It can be seen that
two separate multiplications of argument-warrant
vectors with z lead to two backpropagated super-
vision signals with each data sample. To quan-
tify this effect we evaluated the independent model
trained on a randomly sampled half of the the
training set. It still generalized better than CORR
on twice the data (Table 2).

We hypothesized that additional regularization
follows from ignoring statistical correlations be-
tween warrant features and position. To inves-
tigate this hypothesis, we picked an obvious lin-
guistic phenomenon and looked at the statistics of
its occurrence at each warrant position. We used
SpaCy’s dependency parser to identify tokens with
the negation relation to its head. Results showed
negation is ubiquitous in this dataset, covering ap-
proximately 70% of training samples - perhaps re-
flecting a natural way to generate pairs of conflict-
ing warrants. Whilst the warrant with negation is
correct half of the time in the training set, negation
in position one is slightly more likely to be correct
than position zero (26% to 25%).

To quantify model susceptibility to such corre-
lations we created an unbalanced training set in
which all correct warrants with negation occur in
position one. This resulted in relabeling 300 war-
rants. We randomly relabeled the same amount
of warrants without negation to position zero to
re-balance the dataset. The results (Table 2) con-

Figure 3: Results of our COMP-RW model that doesn’t
consider the claim, compared to our best model COMP.
Distributions are calculated from 200 runs with differ-
ent random seeds. The mean for COMP is 64.43%,
compared to 60.60% for COMP-RW.

firm that the CORR model is more susceptible to
this change, resulting in a large overfit, whilst the
generalization ability of the independent model is
essentially unaffected.

3.3 Matching Warrants to Reasons

In the following example a position toward the
claim seems to be embedded in the reason.

C Comment sections have not failed
R They add a lot to the piece and I look

forward to reading comments
W Comments sections are a welcome dis-

traction from my work
A Comments sections always distract me

from my work

Cases such as this may provide an alternative
learning signal and lead our model to stray from
the intended task. For example it might be possi-
ble to correctly classify this example by compar-
ing the sentiment of the warrants to that of the rea-
son.

To quantify this effect we experimented with a
model that considers only the reasons and war-
rants, called COMP-RW. Since we do not input the
claim we resize U from R4d×h to R2d×h. We use
an encoder of size 640 to balance this reduction
which evens the parameter count for a fair com-
parison. Figure 3 shows the relative performance
of COMP-RW versus our best COMP model. Test
set accuracy deteriorates from 64.43% to 60.60%.
This suggests there is enough signal coming from
the reasons alone to achieve approximately two
thirds of what our model is capable of above ran-
dom guessing. We therefore suspect our model is
not necessarily learning the intended task.
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4 Conclusion

Our entry NLITrans achieved test set accuracy of
59.0% for fourth place, close to the mean for its
configuration of 59.24% over 20 random initial-
izations. Extended post-competition tuning on the
development set led us to a superior configura-
tion of our COMP model that achieved a mean
of 64.43%. Transfer of an encoder pre-trained on
NLI data resulted in a 4.24% boost to test set ac-
curacy for this model. This extends previous re-
sults with this transfer technique, demonstrating
its effectiveness in a more complicated neural net-
work architecture, and for a much more semanti-
cally challenging task. An outstanding question is
whether there is an optimal encoder size for trans-
fer given a specific architecture, and how to effi-
ciently and reliably find it. Independent argument-
warrant matching proved to be beneficial, dou-
bling the effective size of the dataset and provid-
ing additional regularization. We demonstrated
that regularization comes from ignoring the cor-
relations between warrant features and position.
Adapting our model to ignore the claims resulted
in a relatively low drop in performance, suggesting
our model is not necessarily learning the intended
task. We leave a more thorough analysis of this
phenomenon for future work.
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