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Abstract

Tree-structured LSTMs have shown advan-
tages in learning semantic representations by
exploiting syntactic information. Most exist-
ing methods model tree structures by bottom-
up combinations of constituent nodes using the
same shared compositional function and often
making use of input word information only.
The inability to capture the richness of com-
positionality makes these models lack expres-
sive power. In this paper, we propose multi-
plicative tree-structured LSTMs to tackle this
problem. Our model makes use of not only
word information but also relation information
between words. It is more expressive, as dif-
ferent combination functions can be used for
each child node. In addition to syntactic trees,
we also investigate the use of Abstract Mean-
ing Representation in tree-structured models,
in order to incorporate both syntactic and se-
mantic information from the sentence. Experi-
mental results on common NLP tasks show the
proposed models lead to better sentence repre-
sentation and AMR brings benefits in complex
tasks.

1 Introduction

Learning the distributed representation for long
spans of text from its constituents has been a
crucial step of various NLP tasks such as text
classification (Zhao et al., 2015; Kim, 2014), se-
mantic matching (Liu et al., 2016), and machine
translation (Cho et al., 2014). Seminal work
uses recurrent neural networks (RNN) (Elman,
1990), convolutional neural networks (Kalchbren-
ner et al., 2014), and tree-structured neural net-
works (Socher et al., 2011; Tai et al., 2015) for
sequence and tree modeling. Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) networks are a type of recurrent neural net-
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Figure 1: Topology of sequential LSTM and
TreeLSTM: (a) nodes in sequential LSTM and (b)
nodes in tree-structured LSTM

work that are capable of learning long-term de-
pendencies across sequences and have achieved
significant improvements in a variety of sequence
tasks. LSTM has been extended to model tree
structures (e.g., TreeLSTM) and produced promis-
ing results in tasks such as sentiment classification
(Tai et al., 2015; Zhu et al., 2015) and relation ex-
traction (Miwa and Bansal, 2016).

Figure 1 shows the topologies of the con-
ventional chain-structured LSTM (Hochreiter and
Schmidhuber, 1997) and the TreeLSTM (Tai et al.,
2015), illustrating the input (x), cell (c) and hid-
den node (h) at a time step t. The key difference
between Figure 1 (a) and (b) is the branching fac-
tor. While a cell in the sequential LSTM only de-
pends on the single previous hidden node, a cell in
the tree-structured LSTM depends on the hidden
states of child nodes.

Despite their success, the tree-structured mod-
els have a limitation in their inability to fully cap-
ture the richness of compositionality (Socher et al.,
2013a). The same combination function is used
for all kinds of semantic compositions, though the
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compositions have different characteristics in na-
ture. For example, the composition of the ad-
jective and the noun differs significantly from the
composition of the verb and the noun.

To alleviate this problem, some researchers
propose to use multiple compositional functions,
which are predefined according to some parti-
tion criterion (Socher et al., 2012, 2013a; Dong
et al., 2014). Socher et al. (2013a) defined dif-
ferent compositional functions in terms of syntac-
tic categories, and a suitable compositional func-
tion is selected based on the syntactic categories.
Dong et al. (2014) introduced multiple composi-
tional functions and a proper one is selected based
on the input information. These models accom-
plished their objective to a certain extent but they
still face critical challenges. The predefined com-
positional functions cannot cover all the compo-
sitional rules and they add much more learnable
parameters, bearing the risk of overfitting.

In this paper, we propose multiplicative TreeL-
STM, an extension to the TreeLSTM model, which
injects relation information into every node in the
tree. It allows the model to have different semantic
composition matrices to combine child nodes. To
reduce the model complexity and keep the number
of parameters manageable, we define the compo-
sition matrices using the product of two dense ma-
trices shared across relations, with an intermediate
diagonal matrix that is relation dependent.

Though the syntactic-based models have shown
to be promising for compositional semantics, they
do not make full use of the linguistic informa-
tion. For example, semantic nodes are often the
argument of more than one predicate (e.g., coref-
erence) and it is generally useful to exclude se-
mantically vacuous words like articles or comple-
mentizers, i.e., leave nodes unattached that do not
add further meaning to the resulting representa-
tions. Recently, Banarescu et al. (2013) introduced
Abstract Meaning Representation (AMR), single
rooted, directed, acyclic graphs that incorporate
semantic roles, correference, negation, and other
linguistic phenomena. In this paper, we investigate
a combination of the semantic process provided by
TreeLSTM model with the lexical semantic rep-
resentation of the AMR formalism. This differs
from most of existing work in this area, where
syntactic rather than semantic information is in-
corporated to the tree-structured models. We seek
to answer the question: To what extent can we do

better with AMR as opposed to syntactic represen-
tations, such as constituent and dependency trees,
in tree-structured models?

We evaluate the proposed models on three com-
mon tasks: sentiment classification, sentence re-
latedness, and natural language inference. The re-
sults show that the multiplicative TreeLSTM mod-
els outperform TreeLSTM models on the same
tree structures. The results further suggest that us-
ing AMR as the backbone for tree-structured mod-
els is helpful in the complex task such as for longer
sentences in natural language inference but not in
sentiment classification, where lexical information
alone suffices.

In short, our contribution is twofold:

1. We propose the new multiplicative TreeL-
STM model that effectively learns distributed
representation of a given sentence from its
constituents, utilizing not only the lexical in-
formation of words, but also the relation in-
formation between the words.

2. We conduct an extensive investigation on
the usefulness of lexical semantic represen-
tation induced by AMR formalism in tree-
structured models.

2 Tree-Structured LSTM

A standard LSTM processes a sentence in a se-
quential order, e.g., from left to right. It esti-
mates a sequence of hidden vectors given a se-
quence of input vectors, through the calculation
of a sequence of hidden cell vectors using a gate
mechanism. Extending the standard LSTM from
linear chains to tree structures leads to TreeL-
STM. Unlike the standard LSTM, TreeLSTM al-
lows richer network topologies, where each LSTM
unit is able to incorporate information from multi-
ple child units.

As in standard LSTM units, each TreeLSTM
unit contains input gate ij , output gate oj , a mem-
ory cell cj , and hidden state hj for node j. Unlike
the standard LSTM, in TreeLSTM the gating vec-
tors and the memory cell updates are dependent
on the states of one or more child units. In addi-
tion, the TreeLSTM unit contains one forget gate
fjk for each child k instead of having a single for-
get gate. The transition equations of node j are as
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follows:

h̃j =
∑

k∈C(j)

hk ,

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
,

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
,

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
,

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
,

cj = ij � uj +
∑

k∈C(j)

fjk � ck ,

hj = oj � tanh(cj) ,

(1)

where C(j) is the set of children of node j, k ∈
C(j) in fjk, σ is the sigmoid function, and � is
element-wise (Hadamard) product. W (∗), U (∗),
b(∗) are model parameters with ∗ ∈ {u, o, i, f}.1

3 Multiplicative Tree-Structured LSTM

Encoding rich linguistic analysis introduces many
distinct edge types or relations between nodes,
such as syntactic dependencies and semantic roles.
This opens up many possibilities for parametriza-
tion, but was not considered in most exist-
ing syntax-aware LSTM approaches, which only
make use of input node information.

In this paper, we fill this gap by proposing
multiplicative TreeLSTM, an extension to the
TreeLSTM model, injecting relation information
into every node in the tree. The multiplicative
TreeLSTM model, mTreeLSTM for short, intro-
duces more fined-grained parameters based on the
edge types. Inspired by the multiplicative RNN
(Sutskever et al., 2011), the hidden-to-hidden
propagation in mTreeLSTM contains a separately
learned transition matrix Whh for each possible
edge type and is given by

h̃j =
∑

k∈C(j)

W
r(j,k)
hh hk , (2)

where r(j, k) signifies the connection type be-
tween node k and its parent node j. This
parametrization is straightforward, but requires a
large number of parameters when there are many
edge types. For instance, there are dozens of syn-
tactic edge types, each corresponding to a Stanford
dependency label.

1 In Tai et al. (2015), the TreeLSTM defined in Eq. (1) was
referred to as child-sum TreeLSTM, which is a good choice
for trees with high branching factor.

To reduce the number of parameters and lever-
age potential correlation among fine-grained edge
types, we learned an embedding of the edge types
and factorized the transition matrix W

r(j,k)
hh by

using the product of two dense matrices shared
across edge types, with an intermediate diagonal
matrix that is edge-type dependent:

W
r(j,k)
hh =Whmdiag(Wmrejk)Wmh , (3)

where ejk is the edge-type embedding and is
jointly trained with other parameters. The map-
ping from hk to h̃j is then given by

mjk = (Wmrejk)� (Wmhhk) ,

h̃j =
∑

k∈C(j)

Whmmjk . (4)

The gating units – input gate i, output gate o, and
forget gate f – are computed in the same way as
in the TreeLSTM with Eq. (1).2

Multiplicative TreeLSTM can be applied to any
tree, where connection types between nodes are
given. For example, in dependency trees, the se-
mantic relations r(j, k) between nodes are pro-
vided by a dependency parser.

4 Tree-Structured LSTMs with Abstract
Meaning Representation

Tree-structured LSTMs have been applied suc-
cessfully to syntactic parse trees (Tai et al., 2015;
Miwa and Bansal, 2016). In this work, we look
beyond syntactic properties of the text and incor-
porate semantic properties to the tree-structured
LSTM model. Specifically, we utilize the network
topology offered by a tree-structured LSTM and
incorporate semantic features induced by AMR
formalism. We aim to address the following ques-
tions: In which tasks using AMR structures as the
backbone for the tree-structured LSTM is useful?
Furthermore, which semantic properties are use-
ful for the given task?

AMR is a semantic formalism where the mean-
ing of a sentence is encoded as a single rooted, di-
rected and acyclic graph (Banarescu et al., 2013).
For example, the sentence “A young girl is playing
on the edge of a fountain and an older woman is
not watching her” is represented as:

2In the rest of the paper, we use the term TreeLSTM in
a narrow sense to refer to the model corresponding to Eq.
(1) and the term tree-structured LSTM to include both TreeL-
STM and mTreeLSTM, unless specified otherwise.
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Figure 2: An AMR representing the sentence “A
young girl is playing on the edge of a fountain and
an older woman is not watching her”.

(a / and
:op1 (p / play-01

:ARG0 (g / girl
:mod (y / young))

:ARG1 (e / edge-01
:ARG1 (f / fountain)))

:op2 (w / watch-01
:ARG0 (w2 / woman

:mod (o / old))
:ARG1 g
:polarity -))

The same AMR can be represented as in Figure
2, in which the nodes in the graph (also called con-
cepts) map to words in the sentence and the edges
represent the relations between words. AMR con-
cepts consist of predicate senses, named entity an-
notations, and in some cases, simply lemmas of
English words. AMR relations consist of core se-
mantic roles drawn from the Propbank (Palmer
et al., 2005) as well as fine-grained semantic re-
lations defined specifically for AMR. Since AMR
provides a whole-sentence semantic representa-
tion, it captures long-range dependencies among
constituent words in a sentence. Similar to other
semantic schemes, such as UCCA (Abend and
Rappoport, 2013), GMB (Basile et al., 2012),
UDS (White et al., 2016), AMR abstracts away
from morphological and syntactic variability and
generalize cross-linguistically.

To use AMR structures in a tree-structured
LSTM, we first parse sentences to AMR graphs
and transform the graphs to tree structures. The
transformation follows the procedure used by
Takase et al. (2016), splits the nodes with an inde-
gree larger than one, which mainly present coref-
erential concepts, to a set of separate nodes, whose
indegrees exactly equal one. We use JAMR (Flani-
gan et al., 2014, 2016), a statistical semantic parser

trained on AMR bank, for AMR parsing.
On one hand, the AMR tree structure can be

used directly with the TreeLSTM architecture de-
scribed in Section 2, in which only node infor-
mation is utilized to encode sentences into cer-
tain fixed-length embedding vectors. On the other
hand, since AMR provides rich information about
semantic relations between nodes, the mTreeL-
STM architecture is more applicable due to its ca-
pability of modeling edges in the tree. We evaluate
both encoded vectors produced by TreeLSTM and
mTreeLSTM on AMR trees in Section 6.

5 Applications

In this section, we describe three specific models
that apply the mTreeLSTM architecture and the
AMR tree structures described above.

5.1 Sentiment Classification

In this task, we wish to predict the sentiment of
sentences, in which two sub-tasks are considered:
binary and fine-grained multiclass classification.
In the former, sentences are classified into two
classes (positive and negative), while in the latter
they are classified into five classes (very positive,
positive, neutral, negative, and very negative).

For a sentence x, we first apply tree-structured
LSTMs over the sentence’s parse tree to obtain the
representation hr at the root node r. A softmax
classifier is then used to predict the class ŷ of the
sentence, with p̂θ (y |x) = softmax

(
W (s)hr

)
,

where θ is the model parameters and ŷ =
argmaxy p̂θ (y |x). The cost function is the neg-
ative log-likelihood of the true sentiment class of
the sentence with L2 regularization.

5.2 Semantic Relatedness

Given a sentence pair, the goal is to predict an
integer-valued similarity score in {1, 2, ...,K},
where higher scores indicate greater degrees of
similarity between the sentences.

Following Tai et al. (2015), we first produce se-
mantic representation hL and hR for each sentence
in the pair using the described models over each
sentence’s parse trees. Then, we predict the sim-
ilarity score ŷ using additional feedforward lay-
ers that consider a feature vector xs consisting of
both distance and angle between the pair (hL, hR):
p̂θ = softmax

(
W (p) σ

(
W (s)xs

))
, ŷ = r>p̂θ,

where r> = [1, 2, . . . ,K]. Similar to Tai et al.
(2015), we define a sparse target distribution p
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such that the ground-truth rating y ∈ [1,K] equals
r>p and use the regularized KL-divergence from
p̂θ to p as the cost function.

5.3 Natural Language Inference (NLI)

In this task, the model reads two sentences (a
premise and a hypothesis), and outputs a judge-
ment of entailment, contradiction, or neutral, re-
flecting the relationship between the meanings of
the two sentences.

Following Bowman et al. (2016), we frame
the inference task as a sentence pair classifica-
tion. First we produce representations hP and
hH for the premise and hypothesis and then con-
struct a feature vector xc for the pair that con-
sists of the concatenation of these two vectors,
their difference, and their element-wise product.
This feature vector is then passed to a feed-
forward layer followed by a softmax layer to
yield a distribution over the three classes: p̂θ =
softmax

(
W (p)σ

(
W (c)xc

))
. The negative log-

likelihood of the true class labels for sentence pairs
is used as the cost function.

6 Experiments

6.1 Hyperparameters and Training

The model parameters are optimized using Ada-
Grad (Duchi et al., 2011) with a learning rate of
0.05 for the first two tasks, and Adam (Kingma
and Ba, 2015) with a learning rate of 0.001 for the
NLI task. The batch size of 25 was used for all
tasks and the model parameters were regularized
with a per-minibatch L2 regularization strength
of 10−4. The sentiment and inference classifiers
were additionally regularized using dropout with
a dropout rate of 0.5.

Following Tai et al. (2015) and Zhu et al.
(2015), we initialized the word embeddings with
300-dimensional GloVe vectors (Pennington et al.,
2014). In addition, we use the aligner provided by
JAMR parser to align the sentences with the AMR
trees and then generate the embedding by using
the GloVe vectors. The relation embeddings were
randomly sampled from an uniform distribution in
[−0.05, 0.05] with a size of 100. The word and
relation embeddings were updated during training
with a learning rate of 0.1.

We use one hidden layer and the same dimen-
sionality settings for sequential LSTM and tree-
structured LSTMs. LSTM hidden states are of size
150. The output hidden size is 50 for the related-

ness task and the NLI task. Each model is trained
for 10 iterations. (We did not observe better re-
sults with more iterations.) The same training pro-
cedure repeats 5 times with parameters being eval-
uated at the end of every iteration on the develop-
ment set. The model having the best results on the
development set is used for final tests.

For all sentences in the datasets, we parse
them with constituency parser (Klein and Man-
ning, 2003), dependency parser (Chen and Man-
ning, 2014), and AMR parser (Flanigan et al.,
2014, 2016) to obtain the tree structures. We
compare our mTreeLSTM model with two base-
lines: LSTM and TreeLSTM. We use the nota-
tion (C), (D), and (A) to denote the tree structures
that the models are based on, where they stand for
constituency trees, dependency trees, and AMR
trees, respectively. The code to reproduce the re-
sults is available at https://github.com/
namkhanhtran/m-treelstm.3

6.2 Sentiment Classification
For this task, we use the Stanford Sentiment Tree-
bank (Socher et al., 2013b) with the standard
train/dev/test splits of 6920/872/1821 for the bi-
nary classification sub-task, and 8544/1101/2210
for the fine-grained classification sub-task. We
used two different settings for training: root-level
and phrase-level. In the root-level setting, each
sentence is a data point, while in the phrase-level
setting, each phrase is reconstructed from nodes
in the parse tree and treated as a separate data
point. In the phrase-level setting we obtain much
more data for training, but the root-level setting is
closer to real-world applications. For AMR trees,
we only report results in the root-level setting, as
the annotation cost for the phrase-level setting is
prohibitively high. We evaluate our models and
baseline models at the sentence level.

Table 1 shows the main results for the sentiment
classification task. While LSTM model obtains
quite good performance in both settings, TreeL-
STM model on constituency tree obtains better re-
sults, especially in the phrase level setting, which
has more supervision. It confirms the conclu-
sion from Tai et al. (2015) that combining linguis-
tic knowledge with LSTM leads to better perfor-
mance than sequence models in this task. Table 1
also shows mTreeLSTM consistently outperforms

3The correctness of our implementation is also suggested
by the fact that we have reproduced the results of LSTM and
TreeLSTM in Tai et al. (2015), up to small variations.
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Model Phrase-level Root-level

5-class 2-class 5-class 2-class

LSTM 48.0 (1.0) 86.7 (0.7) 45.6 (1.1) 85.6 (0.5)

TreeLSTM(C) 49.8 (0.8) 87.9 (0.9) 46.3 (0.7) 85.8 (0.5)
TreeLSTM(D) 46.9 (0.2) 85.5 (0.4) 46.0 (0.3) 85.0 (0.4)
TreeLSTM(A) n/a n/a 44.4 (0.2) 82.9 (0.6)

mTreeLSTM(A) n/a n/a 45.2 (0.5) 83.2 (0.5)
mTreeLSTM(D) 47.5 (0.7) 85.7 (0.1) 46.7 (0.8) 85.7 (0.8)

Table 1: Accuracy on the Stanford Sentiment Tree-
bank dataset with standard deviation in parenthe-
ses (numbers in percentage)

.

TreeLSTM on the same tree structures in both set-
tings – Whenever a tree structure is applicable
to both mTreeLSTM and TreeLSTM, the perfor-
mance of mTreeLSTM with that tree structure is
better. That is, in phrase-level setting, mTreeL-
STM (D) outperforms TreeLSTM (D) and simi-
larly in root-level setting, mTreeLSTM (D) and
mTreeLSTM (A) perform better than TreeLSTM
(D) and TreeLSTM (A), respectively. It demon-
strates the effectiveness of the relation multipli-
cation mechanism and the importance of mod-
eling relation information. The TreeLSTM and
mTreeLSTM models with AMR trees do not per-
form well on this task. Synthetic information
along goes a long way in determining the senti-
ment of a sentence. Noisy sentences in this task
also impact the accuracy of the AMR parser.

We now dive deep into what the models learn,
by listing the composition matrices W r(j,k)

hh with
the largest Frobenius norms. These matrices have
learned larger weights, which are in turn being
multiplied with the child hidden states. That
child will therefore have more weight in the com-
posed parent vector. In decreasing order of Frobe-
nius norm, the relationship matrices for mTreeL-
STM on dependency trees are: conjunction, ad-
jectival modifier, object of a preposition, negation
modifier, verbal modifier. The relationship ma-
trices for mTreeLSTM on AMR trees are: nega-
tion (:polarity), attribute (:ARG3, :ARG2),
modifier (:mod), conjunction (:opN). The model
learns that verbal and adjective modifiers are more
important than nouns, as they tend to affect the
sentiment of sentences.

6.3 Sentence Relatedness

For this task, we use the Sentences Involving
Compositional Knowledge (SICK) dataset, con-

Model Pearson Spearman MSE

LSTM .841 (.004) .778 (.006) .304 (.003)

TreeLSTM (C) .849 (.005) .790 (.004) .286 (.010)
TreeLSTM (D) .863 (.003) .803 (.002) .260 (.005)
TreeLSTM (A) .842 (.002) .774 (.001) .299 (.005)

mTreeLSTM (A) .853 (.001) .788 (.001) .279 (.002)
mTreeLSTM (D) .872 (.004) .814 (.005) .244 (.007)

Table 2: Results on the SICK dataset for semantic
relatedness task with standard deviation in paren-
theses

sisting of 9927 sentence pairs with the standard
train/dev/test split of 4500/500/4927. Each pair is
annotated with a relatedness score y ∈ [1, 5], with
1 indicating the two sentences are completely un-
related, and 5 indicating they are very related. Fol-
lowing Tai et al. (2015), we use Pearson, Spear-
man correlations and mean squared error (MSE)
as evaluation metrics.

Our results are summarized in Table 2. The tree-
structured LSTMs, both TreeLSTM and mTreeL-
STM, reach better performance than the standard
LSTM. The model using dependency tree as the
backbone achieves best results. The mTreeL-
STM with AMR trees obtain slightly better results
than the TreeLSTM with constituency trees. The
multiplicative TreeLSTM models outperform the
TreeLSTM models on the same parse trees, illus-
trating again the usefulness of incorporating rela-
tion information into the model.

Similar to the previous experiment, we list
the composition matrices W r(j,k)

hh with the largest
Frobenius norms. The relationship matrices
for dependency trees include: indirect object,
marker for introducing a finite clause subordi-
nate to another clause, negation modifier, ad-
jectival modifier, phrasal verb particle, conjunc-
tion. The relationship matrices for AMR trees are:
patient (:ARG1), comparatives and superlatives
(:degree), agent (:ARG0), attribute (:ARG3),
medium (:medium), possession (:poss), man-
ner (:manner).

6.4 Natural Language Inference

In this task, we first look at the SICK dataset de-
scribed in the previous section. In this setting each
sentence pair is classified into three labels, entail-
ment, contradiction, and neutral.

In addition to the standard test set, we also re-
port performances of our models on two different
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Model All LS Negation

LSTM 77.3 (0.5) 74.6 (1.4) 77.5 (0.4)

TreeLSTM (C) 79.0 (1.4) 78.1 (2.9) 85.3 (1.2)
TreeLSTM (D) 82.9 (0.3) 81.0 (2.6) 84.3 (1.2)
TreeLSTM (A) 82.6 (0.2) 84.0 (1.5) 88.2 (0.4)

mTreeLSTM (A) 83.3 (0.2) 85.3 (0.4) 88.5 (0.8)
mTreeLSTM (D) 84.0 (0.5) 81.6 (1.3) 87.8 (0.8)

Table 3: Accuracy on the SICK dataset for the NLI
task with standard deviation in parentheses (num-
bers in percentage)

subsets. The first subset, Long Sentence (LS), con-
sists of sentence pairs in the test set where the
premise sentence contains at least 18 words. We
hypothesize that long sentences are more difficult
to handle by sequential models as well as tree-
structured models. The second subset, Negation,
is a set of sentence pairs where negation words
(not, n’t or no) do not appear in the premise but
appear in the hypothesis. In the test set, 58.7% of
these examples are labeled as contradiction.

Table 3 summarizes the results of our mod-
els on different test sets. The mTreeLSTM mod-
els obtain highest results, followed by TreeLSTM
models. The standard LSTM model does not
work well on this task. The results reconfirm the
benefit of using the structure information of sen-
tences in learning semantic representations. In ad-
dition, Table 3 shows that TreeLSTM on depen-
dency trees and AMR trees outperform the mod-
els with constituency trees. The dependency trees
provide some semantic information, i.e., semantic
relations between words at some degrees, while
AMR trees present more semantic information.
The multiplicative TreeLSTM on AMR trees per-
form much better than other models on the LS and
Negation subsets. The results on the LS subset
shows that mTreeLSTM on AMR trees can han-
dle long-range dependencies in a sentence more
effectively. For example, only mTreeLSTM (A)
is able to predict the following example correctly:
Premise: The grotto with a pink interior is be-
ing climbed by four middle eastern children, three
girls and one boy.
Hypothesis: A group of kids is playing on a col-
orful structure.
Label: entailment

Similar to previous experiments, we list the
composition matrices with the largest Frobenius
norms to get some insights into what the mod-

Model Acc (%)

LSTM (Bowman et al., 2015) 77.6
Syntax TreeLSTM (Yogatama et al., 2017) 80.5
CYK TreeLSTM (Maillard et al., 2017) * 81.6
Gumbel TreeLSTM (Choi et al., 2018) 81.8
Gumbel TreeLSTM + leaf LSTM (Choi et al., 2018) 82.6

TreeLSTM (D) 81.0
mTreeLSTM (D) 81.9

Table 4: Results on the SNLI dataset. The first
group contains results of some best-performing
tree-structured LSTM models on this data. (*: a
preprint)

Model rDim # Params Acc (%)

TreeLSTM (A) n/a 301K 82.6

mTreeLSTM (A) 50 354K 82.7
mTreeLSTM (A) 75 358K 83.1
mTreeLSTM (A) 100 361K 83.6
mTreeLSTM (A) 200 376K 83.0

Table 5: Effects of the relation embedding size on
SICK dataset for the NLI task

els learn. The relationship matrices for mTreeL-
STM on dependency trees are: negation modifier,
nominal subject, adjectival modifier, direct object,
passive auxiliary, adverb modifier. These matri-
ces for mTreeLSTM on AMR trees are: attribute
(:ARG2), patient (:ARG1), conjunction (:opN),
location, negation (:polarity), domain. In
contrast to the sentiment classification task, where
adjectives are crucial, the model learns that sub-
jects and objects are important to determine the
meaning of sentences.

Furthermore, we evaluate our mTreeLSTM
model with SNLI (Stanford Natural Language In-
ference), a larger NLI dataset (Bowman et al.,
2015). It is composed of about 550K/10K/10K
sentence pairs in train/dev/test sets. We use de-
pendency tree as the backbone for tree-structured
LSTMs. All models in Table 4 use a hidden size
of 100 for a fair comparison. The table shows
that mTreeLSTM (D) outperforms many other
syntax-based TreeLSTM models including TreeL-
STM (D), reconfirming our conclusion drawn with
SICK.

6.5 Additional Tests and Discussions

Incorporating relation information in the tree-
structured LSTM increases model complexity. In
this experiment, we analyze the impact of the di-
mensionality of relation embedding on the model
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Model # Params Acc (%)

TreeLSTM (D) 301K 82.9

addTreeLSTM (D) 361K 83.4
fullTreeLSTM (D) 1.1M 83.5
mTreeLSTM (D) 361K 84.0

Table 6: Comparison between different methods
using relation information on the SICK dataset for
the NLI task

size and accuracy. Table 5 shows the model with
the relation embedding size of 100 achieves the
best accuracy, while the overall impact of the em-
bedding size is mild. The multiplicative TreeL-
STM has only 1.2 times the number of weights
in TreeLSTM (with the same number of hidden
units). We did not count the number of parameters
in the embedding models since these parameters
are the same for all models.

Table 6 shows a comparison between mTreeL-
STM and two other plausible methods for inte-
grating relation information with TreeLSTM. In
addTreeLSTM, a relation is treated as an addi-
tional node input in the TreeLSTM model; In
fullTreeLSTM, the model corresponds to Eq. (2),
where each edge type has a separate transition
matrix. Both models achieve better results than
TreeLSTM, indicating the usefulness of relation
information. While addTreeLSTM and fullTreeL-
STM obtain comparable performances, mTreeL-
STM outperforms both of them. It is also to note
that the number of parameters of mTreeLSTM is
much less than those of fullTreeLSTM.

7 Other Related Work

There is a line of research that extends the standard
LSTM (Hochreiter and Schmidhuber, 1997) in or-
der to model more complex structures. Tai et al.
(2015) and Zhu et al. (2015) extended sequen-
tial LSTMs to tree-structured LSTMs by adding
branching factors. They showed such extensions
outperform competitive LSTM baselines on sev-
eral tasks such as sentiment classification and se-
mantic relatedness prediction (which is also con-
firmed in this paper). Li et al. (2015) further inves-
tigated the effectiveness of TreeLSTMs on various
tasks and discussed when tree structures are neces-
sary. Chen et al. (2017) combined sequential and
tree-structured LSTM for NLI and has achieved
state-of-the-art results on the benchmark dataset.
Their approach uses n-ary TreeLSTM based on

syntactic constituency parsers. In contrast, we fo-
cus more on child-sum TreeLSTM which is better
suited for trees with high branching factor.

Previous works have studied the use of relation
information. Dyer et al. (2015) considered each
syntactic relation as an additional node and in-
cluded its embedding to their composition func-
tion for dependency parsing. Peng et al. (2017)
introduced a different set of parameters for each
edge-type in their LSTM-based approach for re-
lation extraction. In contrast to these works, our
mTreeLSTM model incorporates relation informa-
tion via a multiplicative mechanism, which we
have shown is more effective and uses less param-
eters.

AMR has been successfully applied to a num-
ber of NLP tasks, besides the ones we considered
in this paper. For example, Mitra and Baral (2016)
made use of AMR to improve question answering;
Liu et al. (2015) utilized AMR to produce promis-
ing results toward abstractive summarization. Us-
ing AMR as the backbone in TreeLSTM has been
investigated in Takase et al. (2016). They incor-
porated AMR information by a neural encoder to
the attention-based summarization method (Rush
et al., 2015) and it performed well on headline
generation. Our work differs from these studies
in the sense that we aim to investigate how seman-
tic information induced by AMR formalism can
be incorporated to tree-structured LSTM models,
and study which properties introduced by AMR
turn out to be useful in various tasks. In this paper,
we use the start-of-the-art AMR parser provided
by Flanigan et al. (2016) which additionally pro-
vides the alignment between words and nodes in
the tree.

Though we have considered AMR in this paper,
we believe the conclusions we drew here largely
apply to other semantic schemes, such as GMB
and UCCA, as well. Abend and Rappoport (2017)
has recently noted that the differences between
these schemes are not critical, and the main dis-
tinguishing factors between them are their relation
to syntax, their degree of universality, and the ex-
pertise they require from annotators.

8 Conclusions

We presented multiplicative TreeLSTM, an exten-
sion of existing tree-structured LSTMs to incor-
porate relation information between nodes in the
tree. Multiplicative TreeLSTM allows different
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compositional functions for child nodes, which
makes it more expressive. In addition, we inves-
tigated how lexical semantic representation can be
used with tree-structured LSTMs. Experiments on
three common NLP tasks showed that multiplica-
tive TreeLSTMs outperform conventional TreeL-
STMs, illustrating the usefulness of relation infor-
mation. Moreover, with AMR as backbone, tree-
structured models can effectively handle long-
range dependencies.
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