
Translating Treebank Annotation for Evaluation

Stephen Watkinson and Suresh Manandhar

Department of Computer Science,
University of York,
York YO10 5DD,

UK.
stephen.watkinson@cs.york.ac.uk
suresh.manandhar@cs.york.ac.uk

Abstract

In this paper we discuss the need for
corpora with a variety of annotations
to provide suitable resources to evalu-
ate different Natural Language Process-
ing systems and to compare them. A
supervised machine learning technique
is presented for translating corpora be-
tween syntactic formalisms and is ap-
plied to the task of translating the Penn
Treebank annotation into a Categorial
Grammar annotation. It is compared
with a current alternative approach and
results indicate annotation of broader
coverage using a more compact gram-
mar.

1 Introduction

Annotated corpora have become a vital tool for
Natural Language Processing (NLP) systems, as
they provide both a standard against which results
can be evaluated and a resource from which to ex-
tract linguistic information e.g. lexicons. This is
especially true in any NLP task that requires the
annotation of examples, e.g. part-of-speech tag-
ging, parsing and semantic annotation, where it
is vital to have a correct standard against which
to compare the results of systems attempting to
solve the task. Similarly, it is crucial in a lan-
guage learning context, where what is learned can
be used to annotate examples e.g. syntax learning,
lexical learning. In this case the learned artefact
is used to annotate the examples, which can then

be compared against the correctly annotated ver-
sion. Hence, correctly annotated corpora are vital
for the evaluation of a very large number of NLP
tasks.

Unfortunately, there are often no suitably an-
notated corpora for a given task. For example, the
Penn Treebank (Marcus et al., 1993; Marcus et
al., 1994; Bies et al., 1994) provides a large cor-
pus of syntactically annotated examples mostly
from the Wall Street Journal. It is an excellent
resource for tasks dealing with the syntax of writ-
ten English. However, if the annotation formal-
ism (a phrase-structure grammar with some sim-
ple features) does not match that of one’s NLP
system, it is of very little use. For example, sup-
pose a parser using Categorial Grammar (Wood,
1993; Steedman, 1993) is developed and applied
to the examples in the corpus. While the bracket-
ing of the examples will bear a strong relationship
to the bracketing of the treebank, the labelling of
the lexical items and the inner nodes of the tree
will be entirely different and no labelling evalua-
tion will be possible.

However, intuitively, plenty of syntactic infor-
mation is available. In fact, for most evaluation,
all the syntactic information required is available,
but in the wrong form. It seems obvious that a
system for translating the syntactic information
between formalisms would be a useful tool.

Here, we present a system that translates the
annotation of the Penn Treebank from the stan-
dard phrase structure annotation to a Categorial
Grammar (CG) annotation and in the process in-
duces large scale CG lexicons. It is a data-driven
multi-pass system that uses both predefined rules



and machine learning techniques to translate the
trees and in the process induce a large scale CG
lexicon. The system was designed to produce the
lexical annotations for the sentences without null
elements (i.e. without movement) from the Penn
Treebank, so that these could be used to evalu-
ate the results produced by an unsupervised CG
lexicon learner (Watkinson and Manandhar, 2000;
Watkinson and Manandhar, 2001).

The system has four major features. Firstly,
there is significant control over how the treebank
is annotated. This is vital if the results are to be
used for evaluation. Secondly, the system pre-
vents propagation of translation errors throughout
the trees by being data-driven. Thirdly, the system
deals elegantly with erroneous annotation, even
providing a degree of self-correction. Finally, the
approach is general enough to apply to other sim-
ilar problems.

The system is compared with a top-down alter-
native based on the algorithm of Hockenmaieret
al (Hockenmaier et al., 2000), which is currently
the system which has been applied to the most
similar task, although it is really for CG lexicon
extraction. The comparison suggests that the al-
gorithm presented here gives more compact and
linguistically elegant solutions. Investigation also
indicates that the corpus produced is effectively
translated for its purpose.

In Section 2 other work in the area is briefly re-
viewed. In Section 3 the precise translation task
is described. This is followed in Section 4 with
a detailed description of the algorithms used for
this task and some discussion as to their appropri-
ateness. The results from the experiments are in
Section 5. Finally, in Section 6 the results are dis-
cussed along with the contributions of the work
and some suggestions for future work.

2 Previous Work

The most appropriate work to consider within this
context is the grammar extraction literature. Per-
haps the earliest example is the approach of Char-
niak (Charniak, 1996), who simply extracted a
context-free grammar by reading off the produc-
tion rules implied by the trees in the Penn Tree-
bank. While not translating the formalism of the
treebank, this has led to work extracting gram-
mars of different formalisms.

The majority of work is based on the most obvi-
ous extension of the Charniak approach, which is
to extract subtree-based grammars e.g. the Data-
Oriented Parsing (DOP) approach (Bod, 1995),
or extracting Lexicalised Tree Adjoining Gram-
mars (LTAGs), or more generally Lexicalised
Tree Grammars (LTGs) (Neumann, 1998; Xia,
1999; Chen and Vijay-Shanker, 2000). Each ap-
proach involves a process that splits up the anno-
tated trees in the treebank into a set of subtrees
that define the grammar. These approaches still
continue to work with the syntactic data in the
same form as it is found in the corpora.

A slightly different approach has been followed
by Krotov et al (Krotov et al., 1998), where they
extract the grammar from the Penn Treebank like
Charniak, but then compact it. This provides a
smaller grammar of similar quality to a grammar
that has not been compacted, when a linguisti-
cally motivated compaction is used. However, the
formalism remains unchanged. Similarly, John-
son (Johnson, 1998) modifies the labelling of the
Penn Treebank, but remains within a CFG frame-
work.

Hockenmaieret al (Hockenmaier et al., 2000),
although to some extent following the approach
of Xia (Xia, 1999) where LTAGs are extracted,
have pursued an alternative by extracting Com-
binatory Categorial Grammar (CCG) (Steedman,
1993; Wood, 1993) lexicons from the Penn Tree-
bank. In this case the data in the treebank is
truly translated into another formalism providing
an entire CCG annotation for the corpus based
on a top-down algorithm. The lexicon is built by
reading off the lexical assignments made for each
tree. This is the most closely related work to this
research, especially as it translates into a formal-
ism very closely related to CG.

The algorithm presented by Hockenmaieret al
(Hockenmaier et al., 2000) has been used to build
a top-down system against which to compare our
data-driven system. The algorithms are both de-
scribed in detail in Section 4.

3 The Task

Given a subset of the examples from the Penn
Treebank annotated with syntactic and part-of-
speech information (slightly modified), the sys-
tem should return the examples annotated with



the correct CG categories attached to the words
of the sentence and the lexicons these imply.

The context of the task explains some parts of
its definition. The translated corpus is to be used
as a standard against which to compare the lex-
ical annotation (i.e. the categories assigned to
the words) of the output of an unsupervised CG
learner that annotated the words of the examples
with CG categories and then extracts a proba-
bilistic lexicon (see Watkinson and Manandhar
(Watkinson and Manandhar, 2001) for details).
Hence, there is no need for specific tree annota-
tion. The learner currently uses a slightly mod-
ified subset of the treebank, which is described
below.

3.1 The Corpus

The systems are applied to examples from the
Penn Treebank (Marcus et al., 1993; Marcus et
al., 1994; Bies et al., 1994) a corpus of over
4.5 million words of American English annotated
with both part-of-speech and syntactic tree infor-
mation.

To be exact, we are using the Treebank II ver-
sion (Bies et al., 1994; Marcus et al., 1994),
which attempts to address the problem of com-
plement/adjunct distinction, which previous ver-
sions had ignored. While the documentation is
clear that the complement/adjunct structure is not
explicitly marked (Marcus et al., 1994), the anno-
tation includes a set of labels that relate to the role
of a particular constituent in the sentence. These
labels are attached to the standard constituent la-
bel and it is possible to use heuristics to determine
the probable complement/adjunct structure in the
trees (Collins, 1999; Xia, 1999), which is obvi-
ously useful in translating the annotation.

The full Penn Treebank is not being used. As
mentioned already, the current research only uses
sentences without null elements (i.e. without
movement) from the treebank and does not in-
clude any of the sentence fragments. However,
as Categorial Grammar formalisms do not usually
change the lexical entries of words to deal with
movement, but use further rules (Wood, 1993;
Steedman, 1993; Hockenmaier et al., 2000), the
lexicons learned here will be valid over corpora
with movement. The extracted corpus, C1, in fact
contains 5000 of the declarative sentences of fif-

teen words or less (although the sentence length
makes little difference to either of the translation
procedures described) from the Wall Street Jour-
nal section of the treebank. To give an indication
of the complexity of the corpus, the number of
tokens, i.e. the total number of words including
repetitions of the same word, is 47,782. The total
number of unique words, i.e. not including repe-
titions of the same word, is 12,277. We also ex-
tracted C2, a 1000 example corpus (also of declar-
ative sentences from the Wall Street Journal sec-
tion) with 9467 tokens and 3731 words, which is
used in the evaluation process.

The corpora also have some small modifica-
tions, which mean that adjacent nominals in the
same subtree are combined to form a single nom-
inal and the punctuation is removed. These mod-
ifications are made for use with the unsuper-
vised learner (Watkinson and Manandhar, 2000;
Watkinson and Manandhar, 2001) to simplify the
learning process. They may also slightly simplify
the translation process, but it is necessary for the
corpus annotation that we want.

3.2 Categorial Grammar

Categorial Grammar (CG) (Wood, 1993; Steed-
man, 1993) provides a functional approach to lex-
icalised grammar, and so can be thought of as
defining a syntacticcalculus. Below we describe
the basic (AB) CG. The current work uses this
simple form of the grammar, which suffices for
the syntactic annotation of the corpora currently
being used.

There is a set ofatomiccategories in CG, which
are usually nouns (n), noun phrases (np) sen-
tences (s) and sometimes prepositional phrases
(pp), although this can be consider shorthand for
the full category (Wood, 1993). It is then possible
to build upcomplexcategories using the two slash
operators “/” and “n”. If A and B are categories
then A/B and AnB are categories, where (follow-
ing Steedman’s notation (Steedman, 1993)) A is
the resulting category when B, the argument cate-
gory, is found. The direction of the “slash” func-
tors indicates the position of the argument in the
sentencei.e. a “/” indicates that a word or phrase
with the category of the argument should imme-
diately follow in the sentence. With the “n” the
word or phrase with the argument category should



immediatelyprecedethe word or phrase with this
category. This is most easily seen with examples.

Suppose we consider an intransitive verb like
“run”. The category that is required to complete
the sentence is a subject noun phrase. Hence, the
category of “run” is a sentence that is missing a
preceding noun phrasei.e. snnp. Similarly, with
a transitive verb like “ate”, the verb requires a
subject noun phrase. However, it also requires an
object noun phrase, which is attached first. The
category for “ate” is therefore(snnp)/np.

With basic CG there are just two rules for com-
bining categories: the forward (FA) and back-
ward (BA) functional applicationrules. Follow-
ing Steedman’s notation (Steedman, 1993) these
are:

X=Y Y ) X (FA)

Y XnY ) X (BA)

whereX andY are CG categories. In Figure 1
the parse derivation for “John ate the apple” is
presented, showing examples of how these rules
are applied to categories.

ate the apple

np (s\np)/np np/n n

np

s\np

s

FA

FA

BA

John

Figure 1: An Example Parse in Basic CG

The CG formalism described above has been
shown to be weakly equivalent to context-free
phrase structure grammars (Bar-Hillel et al.,
1964). While such expressive power covers a
large amount of natural language structure, it
has been suggested that a more flexible and ex-
pressive formalism may capture natural language
more accurately (Wood, 1993; Steedman, 1993).
In future we may consider applying the principle
developed here to perform translations to these
more complex formalisms, although many of the
changes will not actually change the lexical en-
tries, just the way they can be combined.

4 Alternative Approaches

This section presents the two approaches to trans-
lation that are being compared. Firstly, there is

also

H(RB)

A(ADVP)

declined

H(VBD)

H(VP)

the dollar

A(DT) H(NN)

C(NP-SBJ)

H(VP)

H(S)

Figure 2: A tree with constituents marked

the top-down method, which is a version of the
algorithm described by Hockenmaier et al (Hock-
enmaier et al., 2000), but used for translating into
simple (AB) CG rather than the Steedman’s Com-
binatory Categorial Grammar (CCG) (Steedman,
1993). The algorithm here does not need to deal
with movement, as the corpus does not contain
any. The atomic pp category is included in the CG
with this approach, but not with our approach, as
it is a convenient shorthand for the prepositional
phrase category.

The second approach is a multiple-pass data-
driven system. Rules for translating the trees are
applied in order of complexity starting with sim-
ple part-of-speech translation and finishing with a
category generation stage.

4.1 Top-Down Category Generation

The algorithm has two stages.

Mark constituents All the nodes of all trees
are marked with their roles i.e. as heads, com-
plements or adjuncts. While Hockenmaier et
al (Hockenmaier et al., 2000) are unclear, it is
assumed that this is achieved using heuristics.
Collins (Collins, 1999) describes such a set of
heuristics, which are used with some minor mod-
ifications for CG and the changed Penn Treebank
annotation. Figure 2 shows an example of an an-
notated tree.

Assign categories This is a recursive top-down
process, where the top category in the tree is an s.
The category of the complements is determined
by a mapping between Treebank labels and cate-
gories e.g. NP in the treebank becomes np. Hock-
enmaier et al (Hockenmaier et al., 2000) do not
provide the mapping, so it was built specially for
this system. This mapping led to the inclusion



the

s

also

(s\np)/(s\np)

declined

np

np/np np

dollar

s\np

s\np

(s\np)/(s\np) s\np

Figure 3: An example with categories assigned

of the pp category as shorthand for prepositional
complements. It should make no difference to the
annotation process, but could lead to the genera-
tion of a few more categories. The head child of a
subtree is given the category of the parent plus the
complements required, which are found by look-
ing first to the left of the head and then to the
right, and adding them in the order they should
processed in. Finally, adjuncts are assigned the
generic X=X or XnX where X is the head cate-
gory with the complements removed which have
been dealt with before the adjunct is processed.
Figure 3 shows an example of a tree with the cat-
egories assigned to it.

This algorithm has several advantages. It is
simple and robust and has been shown by Hock-
enmaier et al (Hockenmaier et al., 2000) to pro-
vide good lexical annotation leading to useful
CCG lexicons.

However, it has two main disadvantages.
Firstly, there is no control over category gener-
ation other than the rather weak constraints of the
formalism and the heuristic syntactic roles. This
is likely to lead to some linguistically implausible
annotation. Secondly, the top-down nature of the
algorithm is likely to lead to any translation errors
being propagated down the tree, which will lead
to some unusual and large categories, as Hocken-
maier et al (Hockenmaier et al., 2000) report.

4.2 Bottom-Up Sequential

Our system uses a four stage process, where the
type of translation changes at each stage.

4.2.1 Stage 1: Parts-of-Speech

This is the simplest level of translation. The
mapping between the Penn Treebank part-of-
speech annotation and the CG category annota-
tion is many-to-many, but some parts-of-speech

the dollar also declined

S

VP

NP-SBJ

NNnp/n

ADVP

RB

VP

VBD

Figure 4: Example of the output of Stage 1

can be translated directly into categories using
simple rules e.g. the following rule states that
words with the determiner part of speech (DT)
can be translated into the CG category np/n.

DT! np=n

The system passes through the full set of ex-
amples and translates the appropriate parts-of-
speech. See Figure 4 for an example of the output
of this stage.

4.2.2 Stage 2: Subtrees

The next pass through the data allows more
complex rules to be used. Consider the part-of-
speech label NNS, used in the Penn Treebank an-
notation scheme to indicate a plural noun. Its syn-
tactic role can be that of a simple noun (n) or a
noun phrase (np), so we need a mechanism for
choosing between these two possibilities.

The most obvious mechanism is to use the sur-
rounding subtree to provide the context to select
the correct rule. If the NNS tag is part of a noun
phrase which begins with something fulfilling the
determiner role, then the tag should be translated
to the CG category n, otherwise it should be trans-
lated as an np.

The algorithm for applying the set of context-
based rules is a simple matching process through-
out the treebank. Figure 5 shows the output from
this stage on an example.

4.2.3 Stage 3: Structural Heuristic

In this stage, the system uses further knowl-
edge to attempt to inform the translation process.
Where words have not been translated, the system
annotates the subtree with the head, complements
and adjuncts using a modified version of Collins’
heuristics (Collins, 1999).



the dollar also declined

S

VP

NP-SBJ

np/n

ADVP

RB

VP

VBDn

Figure 5: Example of the output of Stage 2

the also declined

S

VP

NP-SBJ

np/n

ADVP

RB

VP

s\npn

dollar

Figure 6: Example of the output of Stage 3

Further categories can now be obtained. For
example, if the head of the subtree requires an np
category to its right as its first complement and
there is a word marked as a complement in this
position, then it can be translated as an np. Alter-
natively, if the head category is unknown, but it is
verbal according to the Penn Treebank label then
looking at the categories of the complements can
determine the type of verb it is e.g. no comple-
ments following a verb indicates a CG category
snnp. Figure 6 shows the effects of this stage on
the example.

4.2.4 Stage 4: Category Generation

In the final stage each lexical category that has
not been annotated is given a variable for a cat-
egory. The tree is then traversed bottom-up in-
stantiating these categories by using head, com-
plement and adjunct annotation and the already
annotated categories. The building of head and
adjunct categories follows the same process de-
scribed for the top-down algorithm. Comple-
ments either gain their categories through this
process or have already had them assigned. Fig-
ure 7 shows the final output.

This approach has two main advantages.
Firstly, the user has control over the type of CG
to which the treebank is translated, due to the

the also declined

s

s\np

np/n

s\np

s\npn

dollar

np
(s\np)/(s\np)

(s\np)/(s\np)

Figure 7: Example of the output of Stage 4

use of predefined categories for predefined con-
texts. Secondly, the bottom-up approach ensures
that translation errors are not propagated seriously
through the tree.

A further advantage exists that has not, as yet,
been fully investigated. The system, due to its
multi-pass nature, has the potential for transla-
tions to clash. Experience has shown that this oc-
curs when there is an annotation error, so the sys-
tem can be used to highlight these and can also
provide some level of self-correction. This has
not been investigated in detail, but the current ap-
proach, which gives satisfactory results, is to as-
sume the head category is correct and adjust com-
plements and adjuncts accordingly. In future, a
simple correction scheme could easily be added
to produce a self-correcting translator.

The main weakness of the system is the re-
liance upon the head/complement/adjunct anno-
tating heuristics, which were not designed to be
used with a CG.

The system also returns some categories with
variables. This is due in part to the heuristics and
in part to the small number of rules currently used
in the early stages of the translation process. Most
of the problem categories could be dealt with by
the addition of a few more rules in stages 2 and 3.

5 Results

Here we provide similar evaluation of the systems
as others (Hockenmaier et al., 2000; Xia, 1999)
for easy comparison. Both systems were used
translate C1 and C2. C2 is used for determin-
ing the coverage of the grammar used by the two
systems. Both systems, at times, failed to trans-
late examples (frequently due to annotation error
in the original treebank). The top-down system
failed on 60 and 15 examples from C1 and C2



Top-down Bottom-up

No. of cats 167 106

Lexicon size 15887 15136

Ave. cats/word 1.31 1.25

Ave. cat size 8.02 5.12

Table 1: Table of category and lexicon informa-
tion on the translated corpora

Freq. Range Number of Categories

Top-down Bottom-up

1�f�1 42 29

2�f�10 61 34

11�f�20 14 9

21�f�100 24 11

101�f�1000 17 13

1001�f�5000 7 7

5001�f�10000 1 2

10001�f�12000 0 1

12001�f�15000 1 0

Table 2: Table of the category frequencies for
both approaches

respectively. The bottom-up system failed on 66
and 15 examples from C1 and C2 respectively.

Table 1 describes the type of categories used
to translate C1 and the size of the lexicons gen-
erated. Categories with variables in were ig-
nored, as they could usually be unified with an
already existing category. With this in mind, the
bottom-up algorithm extracted a more compact
lexicon. The average category sizes (the number
of slash operators in categories) are interesting,
as they indicate the profligacy of the top-down al-
gorithm in creating unwieldy categories, whereas
the bottom-up approach uses smaller and, on in-
spection, more plausible categories. These results
seem, in part, to vindicate the choice of a con-
trolled bottom-up approach.

Tables 2 and 3 present the results for both sys-
tems for the frequency distribution of categories
(i.e. the number of categories that appeared with
a particular frequency) and the frequency distri-
bution of the number of categories for a word (i.e.
the number of words that had a particular num-
ber of categories). The trends for both systems
are similar. There are a large number of cate-
gories that appear very infrequently, these tend

Freq. Range Word frequency

Top-down Bottom-up

f=1 10486 10377

f=2 1263 1264

f=3 264 264

f=4 86 86

5 � f� 9 100 100

10 � f � 14 20 20

15 � f � 24 10 10

25 � f � 30 2 2

Table 3: Frequencies of words appearing in a fre-
quency range of number of categories

to be the larger, generated categories and often
fit unusual circumstances e.g. misannotation of
the treebank, or mistakes in the use of the heuris-
tics. The bottom-up approach has many fewer of
these categories, indicating the problem of propa-
gating of errors down the tree with the top-down
approach. There are also a few exceptionally fre-
quent categories, these are noun phrases, nouns,
and some of the common verbs.

The number of categories per word is simi-
lar, suggesting the approaches are similar in their
ability to produce the variety of categories re-
quired for words.

While these figures give some indication of the
quality and compactness of the translation, it is
useful to determine the coverage of the lexicon
extracted from C1 by comparing it with a lexicon
extracted from C2 and so determine the quality
and generality of the lexicon that has been pro-
duced in the translation. Table 4 shows the com-
parison. Here entry means the C1 lexicon con-
tains an entry the same as the C2 entry. kwkc
means that the entry from C2 is not in C1, but
both the word and the category are known. kwuc
means the word is in the C1 lexicon, but the cat-
egory is not. Finally, uw indicates that the word
is in C1. Despite a smaller lexicon and a smaller
number of categories, the bottom-up system gives
better coverage. Note especially that there are no
unknown categories with with the bottom-up ap-
proach and that the percentage of exact entries is
much higher.



Top-down Bottom-up

Categories 98 65

New categories 4 0

entry % 37.29 48.31

kwkc % 10.55 11.09

kwuc % 11.46 0

uw % 40.70 40.60

Table 4: Table comparing the coverage of the two
approaches

6 Conclusions

The system presented provides a useful and accu-
rate method for translating the annotation of the
Penn Treebank into a CG annotation. Compar-
isons with an alternative approach suggest that the
increase of control provided by the system lead to
a more accurate and compact translation, which is
more linguistically plausible. Most importantly,
the system is flexible enough to allow the user to
annotate corpora with the kind of CG they are in-
terested in, which is vital when it is to be used for
evaluation.

It would be useful to expand the systems to
work on the full treebank i.e. including sentences
with movement (see Hockenmaier et al (Hocken-
maier et al., 2000) for discussion of a possible
method). The correcting of the annotation of the
treebank during translation should also be inves-
tigated further.

References

Y. Bar-Hillel, C. Gaifman, and E. Shamir. 1964. On
categorial and phrase structure grammars. In Lan-
guage and Information, pages 99 – 115. Addison-
Wesley. First appeared in The Bulletin of the Re-
search Council of Israel, vol. 9F, pp. 1-16, 1960.

Ann Bies, Mark Ferguson, Karen Katz, and Robert
MacIntyre, 1994. Bracketing Guidlines for Tree-
bank II Style Penn Treebank Project.

Rens Bod. 1995. Enriching Linguistics with Statis-
tics: Performance Models of Natural Language.
Ph.D. thesis, Department of Computational Lin-
guistics, Universiteit van Amsterdam.

Eugene Charniak. 1996. Treebank grammars. In Pro-
ceedings of AAAI/IAAI.

John Chen and K. Vijay-Shanker. 2000. Automated
extraction of tags from the Penn Treebank. In Pro-

ceedings of the 6th International Workshop on Pars-
ing Technologies.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Julia Hockenmaier, Gann Bierner, and Jason
Baldridge. 2000. Providing robustness for a
ccg system. In Proceedings of the Workshop on
Linguistic Theory and Grammar Implementation,
ESSLLI 2000.

Mark Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguistics,
24(4):613–632.

Alexander Krotov, Mark Hepple, Robert Gaizauskas,
and Yorick Wilks. 1998. Compacting the
Penn Treebank grammar. In Proceedings of
COLING’98–ACL’98.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn Treebank: Annotating
predicate argument structure. In The ARPA Human
Language Technology Workshop.

Günter Neumann. 1998. Automatic extraction of
stochastic lexicalized tree grammars from tree-
banks. In Proceedings of the 4th Workshop on tree-
adjoining grammars and related frameworks.

Mark Steedman. 1993. Categorial grammar. Lingua,
90:221 – 258.

Stephen Watkinson and Suresh Manandhar. 2000.
Unsupervised lexical learning with categorial gram-
mars using the LLL corpus. In James Cussens
and Sašo Džeroski, editors, Learning Language in
Logic, volume 1925 of Lecture Notes in Artificial
Intelligence. Springer.

Stephen Watkinson and Suresh Manandhar. 2001. A
psychologically plausible and computationally ef-
fective approach to learning syntax. To appear at
CoNLL’01.

Mary McGee Wood. 1993. Categorial Grammars.
Linguistic Theory Guides. Routledge. General Ed-
itor Richard Hudson.

F. Xia. 1999. Extracting tree adjoining grammars
from bracketed corpora. In Proceedings of the 5th
Natural Language Processing Pacific Rim Sympo-
sium (NLPRS-99).


