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Abstract

We present and evaluate an implemented sta-
tistical minimal parsing strategy exploiting DG
charateristics to permit fast, robust, deep-
linguistic analysis of unrestricted text, and com-
pare its probability model to (Collins, 1999) and
an adaptation, (Dubey and Keller, 2003). We
show that DG allows for the expression of the
majority of English LDDs in a context-free way
and o�ers simple yet powerful statistical mod-
els.

1 Introduction

We present a fast, deep-linguistic statistical
parser that pro�ts from DG characteristics and
that uses am minimal parsing strategy. First,
we rely on �nite-state based approaches as long
as possible, secondly where parsing is neces-
sary we keep it context-free as long as possible1.
For low-level syntactic tasks, tagging and base-
NP chunking is used, parsing only takes place
between heads of chunks. Robust, successful
parsers (Abney, 1995; Collins, 1999) have shown
that this division of labour is particularly at-
tractive for DG.
Deep-linguistic, Formal Grammar parsers

have carefully crafted grammars written by pro-
fessional linguists. But unrestricted real-world
texts still pose a problem to NLP systems that
are based on Formal Grammars. Few hand-
crafted, deep linguistic grammars achieve the
coverage and robustness needed to parse large
corpora (see (Riezler et al., 2002), (Burke et al.,
2004) and (Hockenmaier and Steedman, 2002)
for exceptions), and speed remains a serious
challenge. The typical problems can be grouped
as follows.

Grammar complexity Fully comprehensive
grammars are diÆcult to maintain and consid-

1Non-subject WH-question pronouns and support
verbs cannot be treated context-free with our approach.
We use a simple pre-parsing step to analyze them

erably increase parsing complexity.

Parsing complexity Typical formal gram-
mar parser complexity is much higher than
the O(n3) for CFG. The complexity of some
formal grammars is still unknown.2 Pars-
ing algorithms able to treat completely un-
restricted long-distance dependencies are NP-
complete (Neuhaus and Br�oker, 1997).

Ranking Returning all syntactically possible
analyses for a sentence is not what is expected
of a syntactic analyzer. A clear indication of
preference is needed.

Pruning In order to keep search spaces man-
ageable it is necessary to discard unconvincing
alternatives already during the parsing process.

A number of robust statistical parsers that
o�er solutions to these problems have become
available (Charniak, 2000; Collins, 1999; Hen-
derson, 2003). In a statistical parser, the rank-
ing of intermediate structures occurs naturally
and based on empirical grounds, while most
rule-based systems rely on ad hoc heuristics.
With an aggressive beam for parse-time prun-
ing (so in our parser), real-world parsing time
can be reduced to near-linear. If one were to
assume a constantly full �xed beam, or uses an
oracle (Nivre, 2004) it is linear in practice3.
Also worst-case complexity for exhaustive

parsing is low, as these parsers are CFG-
based (Eisner, 2000)4. But they typically pro-
duce CFG constituency data as output, trees
that do not express long-distance dependen-
cies. Although grammatical function and empty

2For Tree-Adjoining Grammars (TAG) it is O(n7) or
O(n8) depending on the implementation (Eisner, 2000).
(Sarkar et al., 2000) state that the theoretical bound of
worst time complexity for Head-Driven Phrase Structure
Grammar (HPSG) parsing is exponential.

3In practical terms, beam or oracle approach have
very similar e�ects

4Parsing complexity of the original Collins Models is
O(n5), but theoretically O(n3) would be possible



Antecedent POS Label Count Description Example
1 NP NP * 22,734 NP trace Sam was seen *
2 NP * 12,172 NP PRO * to sleep is nice
3 WHNP NP *T* 10,659 WH trace the woman who you saw *T*
(4) *U* 9,202 Empty units $ 25 *U*
(5) 0 7,057 Empty complementizers Sam said 0 Sasha snores
(6) S S *T* 5,035 Moved clauses Sam had to go, Sasha said *T*
7 WHADVP ADVP *T* 3,181 WH-trace Sam explained how to leave *T*
(8) SBAR 2,513 Empty clauses Sam had to go, said Sasha (SBAR)
(9) WHNP 0 2,139 Empty relative pronouns the woman 0 we saw
(10) WHADVP 0 726 Empty relative pronouns the reason 0 to leave

Table 1: The distribution of the 10 most frequent types of empty nodes and their antecedents in
the Penn Treebank (adapted from (Johnson, 2002)). Bracketed line numbers only involve LDDs as
grammar artifact

nodes annotation expressing long-distance de-
pendencies are provided in Treebanks such as
the Penn Treebank (Marcus et al., 1993), most
statistical Treebank trained parsers fully or
largely ignore them5, which entails two prob-
lems: �rst, the training cannot pro�t from valu-
able annotation data. Second, the extraction
of long-distance dependencies (LDD) and the
mapping to shallow semantic representations is
not always possible from the output of these
parsers. This limitation is aggravated by a lack
of co-indexation information and parsing errors
across an LDD. In fact, some syntactic relations
cannot be recovered on con�gurational grounds
only. For these reasons, (Johnson, 2002) refers
to them as \half-grammars".
An approach that relies heavily on DG char-

acteristics is explored in this paper. It uses
a hand-written DG grammar and a lexicalized
probability model. It combines the low com-
plexity of a CFG parser, the pruning and rank-
ing advantages of statistical parsers and the
ability to express the majority of LDDs of For-
mal Grammars. After presenting the DG bene-
�ts, we de�ne our DG and introduce our statis-
tical model. Then, we give an evaluation.

2 The Bene�t of DG Characteristics

In addition to some obvious bene�ts, such as
the integration of chunking and parsing (Abney,
1995), where a chunk largely corresponds to a
nucleus (Tesni�ere, 1959), or that in an endocen-
tric theory projection can never fail, we present
eight characteristics in more detail, which in
their combination allow us to treat the majority
of English long-distance dependencies (LDD) in
our DG parser Pro3Gres in a context-fee way.

5(Collins, 1999) Model 2 uses some of the functional
labels, and Model 3 some long-distance dependencies

The ten most frequent types of empty nodes
cover more than 60,000 of the approximately
64,000 empty nodes of sections 2-21 of the Penn
Treebank. Table 1, reproduced from (Johnson,
2002) [line numbers and counts from the whole
Treebank added], gives an overview.

2.1 No Empty Nodes

The fact that traditional DG does not know
empty nodes allows a DG parser to use the eÆ-
cient 0(n3) CYK algorithm.

2.2 Only Content Words are Nuclei

Only content words can be nuclei in a tradi-
tional DG. This means that empty units, empty
complementizers and empty relative pronouns
[lines 4,5,9,10] pose no problem for DG as they
are optional, non-head material. For example, a
complementizer is an optional dependent of the
subordinated verb.

2.3 No External Argument, ID/LP

Moved clauses [line 6] are mostly PPs or clausal
complements of verbs of utterance. Only verbs
of utterance allow subject-verb inversion in af-
�rmative clauses [line 8]. Our hand-written
grammar provides rules with appropriate re-
strictions for them, allowing an inversion of the
\canonical" dependency direction under well-
de�ned conditions, distinguishing between or-
dre lin�eaire (linear precedence(LP)) and ordre
structural (immediate dominance(ID)). Fronted
positions are available locally to the verb in a
theory that does not posit a distinction between
internal and external arguments.

2.4 Exploiting Functional DG Labels

The fact that dependencies are often labeled is
a main di�erence between DG and constituency.
We exploit this by using dedicated labels to
model a range of constituency LDDs, relations



Relation Label Example

verb{subject subj he sleeps
verb{�rst object obj sees it
verb{second object obj2 gave (her) kisses
verb{adjunct adj ate yesterday
verb{subord. clause sentobj saw (they) came
verb{prep. phrase pobj slept in bed
noun{prep. phrase modpp draft of paper
noun{participle modpart report written
verb{complementizer compl to eat apples
noun{preposition prep to the house

Table 2: Important Pro3Gres Dependency
types

spanning several constituency levels, including
empty nodes and functional Penn Treebank la-
bels, by a purely local DG relation6. The selec-
tive mapping patterns for MLE counts of pas-
sive subjects and control subjects from the Penn
Treebank, the most frequent NP traces [line 1],
are e.g. (@ stands for arbitrary nestedness):

?
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NP
-NONE-

*-X
?
hhhhh
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*-X
Our approach employs �nite-state approxima-
tions of long-distance dependencies, described
in (Schneider, 2003) for DG and (Cahill et al.,
2004) for Lexical Functional Grammar (LFG)It
leaves empty nodes underspeci�ed but largely
recoverable. Table 2 gives an overview of im-
portant dependencies.

2.5 Monostratalism and Functionalism

While multistratal DGs exist and several de-
pendency levels can be distinguished (Mel'�cuk,
1988) we follow a conservative view close to the
original (Tesni�ere, 1959), which basically parses
directly for a simple LFG f-structure without
needing a c-structure detour.

6In addition to taking less decisions due to the gained
high-level shallowness, it is ensured that the lexical in-
formation that matters is available in one central place,
allowing the parser to take one well-informed decision in-
stead of several brittle decisions plagued by sparseness.
Collapsing deeply nested structures into a single depen-
dency relation is less complex but has a similar e�ect as
selecting what goes in to the parse history in history-
based approaches.

2.6 Graphs

DG theory often conceives of DG structures
as graphs instead of trees (Hudson, 1984). A
statistical lexicalized post-processing module
in Pro3Gres transforms selected subtrees into
graphs, e.g. in order to express control.

2.7 Transformation to Semantic Layer

Pro3Gres is currently being applied in a Ques-
tion Answering system speci�cally targeted at
technical domains (Rinaldi et al., 2004b). One
of the main advantages of a DG parser such as
Pro3Gres over other parsing approaches is that
a mapping from the syntactic layer to a seman-
tic layer (meaning representation) is partly sim-
pli�ed (Moll�a et al., 2000).

2.8 Tesni�ere's Translations

The possible functional changes of a word called
translations (Tesni�ere, 1959) are an exception
to endocentricity. They are an important con-
tribution to a traceless theory. Gerunds (af-
ter winning/VBG the race) or in�nitives [line
2] may function as nouns, obviating the need
for an empty subject. In nounless NPs such as
the poor, adjectives function as nouns, obviating
the need for an empty noun head. Participles
may function as adjectives (Western industrial-
ized/VBN countries), again obviating the need
for an empty subject.

3 The Statistical Dependency Model

Most successful deep-linguistic Dependency
Parsers (Lin, 1998; Tapanainen and J�arvinen,
1997) do not have a statistical base. But one
DG advantage is precisely that it o�ers simple
but powerful statistical Maximum Likelihood
Estimation (MLE) models. We now de�ne our
DG and the probability model.
The rules of a context-free, unlabeled DG

are equivalent to binary-branching CFG rewrite
rules in which the head and the mother node are
isomorphic. When converting DG structures to
CFG, the order of application of these rules is
not necessarily known, but in a labeled DG, the
set of rules can specify the order (Covington,
1994). Fig. 1 shows such two structures, equiv-
alent except for the absence of functional la-
bels in CFG. Subj (but not PP ) has been used
in this example conversion to specify the appli-
cation order, hence we get a repetition of the
eat/V node, mirroring a traditional CFG S and
VP distinction.
In a binary CFG, any two constituents A and

B which are adjacent during parsing are candi-



ROOT the man eats apples with a fork
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Figure 1: DG and CFG representation

dates for the RHS of a rewrite rule. As terminal
types we use word tags.

X ! AB; e:g:NP ! DT NN (1)

In DG, one of these is isomorphic to the LHS,
i.e. the head. This grammar is also a Bare
Phrase Structure grammar known from Mini-
malism (Chomsky, 1995).

B ! AB; e:g: NN ! DT NN (2)

A ! AB; e:g: V B ! V B PP (3)

Labeled DG rules additionally use a syntactic
relation label R. A non-lexicalized model would
be:

p(RjA ! AB) �=
#(R;A ! AB)

#(A ! AB)
(4)

Research on PCFG and PP-attachment has
shown the importance of probabilizing on lexical
heads (a and b).

p(RjA ! AB;a; b) �=
#(R;A ! AB; a; b)

#(A ! AB; a; b)
(5)

All that A ! AB expresses is that the depen-
dency relation is towards the right.

p(Rjright; a; b) �=
#(R; right; a; b)

#(right; a; b)
(6)

e.g. for the Verb-PP attachment relation pobj
(following (Collins and Brooks, 1995) including
the description noun7)

p(pobjjright; verb; prep; desc:noun) �=

#(pobj; right; verb; prep; desc:noun)

#(right; verb; prep; desc:noun)

The distance (measured in chunks) between a
head and a dependent is a limiting factor for the
probability of a dependency between them.

p(R; distjright; a; b) �=
#(R; dist; right; a; b)

#(right; a; b)
(7)

7PP is considered to be an exocentric category, since
both the preposition and the description noun can be
seen as head; in LFG they appear as double-head

Many relations are only allowed towards one di-
rection, the left/right factor is absent for them.
Typical distances mainly depend on the rela-
tion. Objects usually immediately follow the
verb, while a PP attached to the verb may easily
follow only at the second or third position, after
the object and other PPs etc. By application of
the chain rule and assuming that distance is in-
dependent of the lexical heads we get:

p(R; distja; b) �=
#(R; a; b)

#(a; b)
�
#(R; dist)

#R
(8)

We now explore Pro3Gres' main probability
model by comparing it to (Collins, 1999), and
an adaptation of it, (Dubey and Keller, 2003).

3.1 Relation of Pro3Gres to Collins
Model 1

We will �rst consider the non-generative Model
1 (Collins, 1999). Both (Collins, 1999) Model
1 and Pro3Gres are mainly dependency-based
statistical parsers over heads of chunks, a
close relation can thus be expected. The
(Collins, 1999) Model 1 MLE estimation is:
P (Rjha; atagi; hb; btagi; dist) �=

#(R; ha; atagi; hb; btagi; dist)

#(ha; atagi; hb; btagi; dist)
(9)

Di�erences in comparison to (8) are:

� Pro3Gres does not use tag information.
This is because, �rst, the licensing hand-
written grammar is based on Penn tags.

� The second reason for not using tag infor-
mation is because Pro3Gres backs o� to se-
mantic WordNet classes (Fellbaum, 1998)
for nouns and to Levin classes (Levin, 1993)
for verbs instead of to tags, which has the
advantage of being more �ne-grained.

� Pro3Gres uses real distances, measured in
chunks, instead of a feature vector. Dis-
tance is assumed to be dependent only on
R, which reduces the sparse data problem.
(Chung and Rim, 2003) made similar ob-
servations for Korean.

� The co-occurrence count in the MLE de-
nominator is not the sentence-context, but
the sum of counts of competing relations.
E.g. the object and adjunct relation are
in competition, as they are licensed by the
same tag sequence V B� NN�. Pro3Gres
models attachment (thus decision) proba-
bilities, viewing parsing as a decision pro-
cess.

� Relations (R) have a Functional DG de�-
nition, including LDDs.



3.2 Relation to Collins Model 2

(Collins, 1999) Model 2 extends the parser to in-
clude a complement/adjunct distinction for NPs
and subordinated clauses, and it includes a sub-
categorisation frame model.
For the subcategorisation-dependent genera-

tion of dependencies in Model 2, �rst the prob-
abilities of the possible subcat frames are calcu-
lated and the selected subcat frame is added as
a condition. Once a subcategorized constituent
has been found, it is removed from the subcat
frame, ensuring that non-subcategorized con-
stituents cannot be attached as complement,
which is one of the two major function of a
subcat frame. The other major function of a
subcat frame is to �nd all the subcategorized
constituents. In order to ensure this, the prob-
ability when a rewrite rule can stop expanding
is calculated. Importantly, the probability of
a rewrite rule with a non-empty subcat frame
to stop expanding is low, the probability of a
rewrite rule with an empty subcat frame to stop
expanding is high.
Pro3Gres includes a complement/adjunct dis-

tinction for NPs. The examples given in sup-
port of the subcategorisation frame model in
(Collins, 1999) Model 2 are dealt with by the
hand-written grammar in Pro3Gres.
Every complement relation type, namely

subj, obj, obj2, sentobj, can only occur once per
verb, which ensures one of the two major func-
tions of a subcat frame, that non-subcategorized
constituents cannot be attached as comple-
ments. This amounts to keeping separate sub-
cat frames for each relation type, where the se-
lection of the appropriate frame and removing
the found constituent coincide, which has the
advantage of a reduced search space: no hy-
pothesized, but unfound subcat frame elements
need to be managed. As for the second major
function of subcat frames { to ensure that if pos-
sible all subcategorized constituents are found {
the same principle applies: selection of subcat
frame and removing of found constituents coin-
cide; lexical information on the verb argument
candidate is available at frame selection time al-
ready. This implies that Collins Model 2 takes
an unnecessary detour.
As for the probability of stopping the expan-

sion of a rule { since DG rules are always binary
{ it is always 0 before and 1 after the attach-
ment. But what is needed in place of interrela-
tions of constituents of the same rewrite rule is
proper cooperation of the di�erent subcat types.

For example, the grammar rules only allow a
noun to be obj2 once obj has been found, or a
verb is required to have a subject unless it is
non-�nite or a participle, or all objects need to
be closer to the verb than a subordinate clause.

3.3 Relation to Dubey & Keller 03

(Dubey and Keller, 2003) address the ques-
tion whether models such as Collins also im-
prove performance on freer word order lan-
guages, in their case German. German is con-
siderably more inectional which means that
discarding functional information is more harm-
ful, and which explains why the NEGRA an-
notation has been conceived to be quite at
(Skut et al., 1997). (Dubey and Keller, 2003)
observe that models such as Collins when ap-
plied directly perform worse than an unlexical-
ized PCFG baseline. The fact that learning
curves converge early indicates that this is not
mainly a sparse data e�ect. They suggest a lin-
guistically motivated change, which is shown to
outperform the baseline.
The (Collins, 1999) Model 2 rule generation

model for P ! Lm:::L1HR1:::Rn, is

P (RHSjLHS) = Ph(HjP; t(P ); l(P ))

�
mY

i=0

Pl(Li; t(Li); l(Li)jP;H; t(H); l(H); d(i))

�
nY

i=0

Pr(Ri; t(Ri); l(Ri)jP;H; t(H); l(H); d(i))

Ph P of head t(H) tag of H head word
LHS left-hand side RHS right-hand side
Pl:1::m P(words left of head) Pr:1::n P(words right of head)
H LHS Head Category P RHS Mother Category
L left Constit. Cat. R right Constit. Cat.
l(H) head word of H d distance measure

Dubey & Keller suggest the following change
in order to respect the NEGRA atness: Ph is
left unchanged, but Pl and Pr are conditioned
on the preceding sister instead of on the head:

P (RHSjLHS) = Ph(HjP; t(P ); l(P ))

�

mY

i=0

Pl(Li; t(Li); l(Li)jP;Li�1; t(Li�1); l(Li�1); d(i))

�
nY

i=0

Pr(Ri; t(Ri); l(Ri)jP;Ri�1; t(Ri�1); l(Ri�1); d(i))

Their new model performs considerably better
and also outperforms the unlexicalized baseline.
The authors state that \[u]sing sister-head re-
lationships is a way of counteracting the at-
ness of the grammar productions; it implicitly
adds binary branching to the grammar." (ibid.).
DG is binary branching by de�nition; adding
binary branching implicitly converts the CFG
rules into an ad-hoc DG.



Whether the combination ((Chomsky, 1995)
merge) of two binary constituents directly
projects to a \real" CFG rule LHS or an im-
plicit intermediate constituent does not matter.

Observations

� What counts is each individual Functional
DG dependency, no matter whether it is ex-
pressed as a sister-head or a head-head de-
pendency, or stretches across several CFG
levels (control, modpart etc.)

� Not adjacency (i,i-1) but headedness
counts. Instead of conditioning on the pre-
ceding (i-1) sister, conditioning on the real
DG head is linguistically more motivated8.

� Not adjacency (i,i-1) but the type of GR
counts: the question why Dubey & Keller
did not use the NEGRA GR labels has to
arise when discussing a strongly inectional
language such as German.

� The use of a generative model, calculating
the probability of a rule and ultimately the
probability of producing a sentence given
the grammar only has theoretical advan-
tages. For practical purposes, modeling
parsetime decision probabilities is as valid.

With these observations in mind, we can com-
pare Pro3Gres to (Dubey and Keller, 2003).
As for the Base-NP Model, Pro3Gres only re-
spects the best tagging & chunking result re-
ported to it { a major source of errors (see sec-
tion 4). In DG, projection (although not ex-
pansion) is deterministic. H and P are usually
isomorphic, if not Tesni�ere-translations are rule-
based. Since in DG, only lexical nodes are cat-
egories, P=t(P). Ph is thus l(h), the prior, we
ignore it for maximizing. In analogy, also cat-
egory (L/R) and their tags are identical. The
revised formula is

P (RHSjLHS) �= l(h)

�
mY

i=0

Pl(t(Li); l(Li)jP; t(Li�1); l(Li�1); d(i))

�
nY

i=0

Pr(t(Ri); l(Ri)jP; t(Ri�1); l(Ri�1); d(i))

If a DG rule is head-right, P is Li or Ri, if
it is head-left, P is Li�1 or Ri�1, respectively.

8In primarily right-branching languages such as En-
glish or German (i-1) actually amounts to being the head
in the majority of, but not all cases. In a more functional
DG perspective such as the one taken in Pro3Gres, these
languages turn out to be less right-branching, however,
with prepositions or determiners analyzed as markers to
the nominal head or complementizers or relative pro-
nouns as markers to the verbal head of the subclause.

Headedness and not direction matters. Li/Ri

is replaced by Hi and L/Ri�1=i+1 by H'. H' is
understood to be the DG dependent, although,
as mentioned, H' could also be the DG head in
this implicit ad-hoc DG.

P (RHSjLHS) �= l(h)

�

n+mY

i=0

Pl;r(t(Hi); l(Hi)jt(Hi); t(H
0

i); l(H
0

i); d(i))

P (t(Hi)jt(Hi); t(H
0
i)) is a projection or

attachment grammar model modeling the
unlexicalized probability of t(H) and t(H')
participating in a binary rule with t(H) as
head { the merge probability in Bare Phrase
Structure (Chomsky, 1995); an unlabeled ver-
sion of (4). P (t(Hi); l(Hi)jt(Hi); t(H

0
i); l(H

0
i))

is a lexicalized version of the same pro-
jection or attachment grammar model;
P (t(Hi); l(Hi)jt(Hi); t(H

0
i); l(H

0
i; d(i))) in

addition conditions on the distance9. Pro3Gres
expresses the unlexicalized rules by licensing
grammar rules for relation R. Tags are not used
in Pro3Gres' model, because semantic backo�s
and tag-based licensing rules are used.

P (d(i)jl(Hi); l(H
0

i)) (10)

The Pro3Gres main MLE estimation (8)
(l(H) = a; l(H 0) = b) di�ers from (10) by using
labeled DG, and thus from the Dubey & Keller
Model by using a consistent functional DG.

4 Evaluation

(Lin, 1995; Carroll et al., 1999) suggest eval-
uating on the linguistically meaningful level of
dependency relations. Two such evaluations are
reported now.
First, a general-purpose evaluation using a

hand-compiled gold standard corpus (Carroll et
al., 1999), which contains the grammatical re-
lation data of 500 random sentences from the
Susanne corpus. The performance (table 3), ac-
cording to (Preiss, 2003), is similar to a large
selection of statistical parsers and a grammat-
ical relation �nder. Relations involving LDDs
form part of these relations. A selection of them
is also given: WH-Subject (WHS), WH-Object
(WHO), passive Subject (PSubj), control Sub-
ject (CSubj), and the anaphor of the relative
clause pronoun (RclSubjA).

9Since normalized probabilities are used

P (t(Hi); l(Hi)jt(Hi); t(H
0

i); l(H
0

i; d(i))) =

P (t(Hi); d(i)jt(Hi); t(H
0

i); l(Hi); l(H
0

i))



CARROLL Percentages for some relations, general, on Carroll testset only LDD-involving
Subject Object noun-PP verb-PP subord. clause WHS WHO PSubj CSubj RclSubjA

Precision 91 89 73 74 68 92 60 n/a 80 89
Recall 81 83 67 83 n/a 90 86 83 n/a 63
GENIA Percentages for some relations, general, on GENIA corpus

Subject Object noun-PP verb-PP subord. clause
Precision 90 94 83 82 71
Recall 86 95 82 84 75

Table 3: Evaluation on Carroll's test suite on subj, obj, PP-attachment and clause subord. relations
and a selection of 5 LDD relations, and on the terminology-annotated GENIA corpus

Secondly, to answer how the parser performs
over domains markedly di�erent to the train-
ing corpus, to test whether terminology is the
key to a successful parsing system, and to assess
the impact of chunking errors, the parser has
been applied to the GENIA corpus (Kim et al.,
2003), 2000 MEDLINE abstracts of more than
400,000 words describing the results of Biomed-
ical research, which is annotated for multi-word
terms and thus contains near-perfect chunking.
100 random sentences from the GENIA corpus
have been manually annotated and compared to
the parser output (Rinaldi et al., 2004a).

5 Conclusions

We have discussed how DG allows the expres-
sion of the majority of LDDs in a context-
free way and shown that DG allows for simple
but powerful statistical models. An evaluation
shows that the performance of its implementa-
tion is state-of-the-art10 . Its parsing speed of
about 300,000 words per hour is very good for a
deep-linguistic parser and makes it fast enough
for unlimited application.
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