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Abstract 

In most research on concept acquisition from 
corpora, concepts are modeled as vectors of 
relations extracted from syntactic structures.  
In the case of modifiers, these relations often 
specify values of attributes, as in (attr 
red); this is unlike what typically proposed in 
theories of knowledge representation, where 
concepts are typically defined in terms of their 
attributes (e.g., color).  We compared 
models of concepts based on values with 
models based on attributes, using lexical 
clustering as the basis for comparison. We 
find that attribute-based models work better 
than value-based ones, and result in shorter 
descriptions; but that mixed models including 
both the best attributes and the best values 
work best of all. 

1 Introduction 

In most recent research on concept acquisition 
from corpora (e.g., for lexicon construction), 
concepts are viewed as vectors of relations, or 
properties, extracted from syntactic structures 
(Grefenstette, 1993; Lin, 1998; Curran and Moens, 
2002; Kilgarriff, 2003, and many others).  These 
properties often specify values of attributes such as 
color, shape, or size: for example, the vector used 
by Lin (1998) for the concept dog includes the 
property (dog adj-mod brown). (We will 
use the term values here to refer to any modifier.)  
To our knowledge, however, no attempt has been 
made by computational linguists to use the 
attributes themselves in such vectors: i.e., to learn 
that the description of the concept dog includes 
elements such as (dog color) or (dog 
size).  This is surprising when considering that 
most models of concepts in the AI literature are 
based on such attributes (Brachman and Levesque, 
1985). 

Two problems need to be addressed when trying 
to identify concept attributes.  The first problem is 
that values are easier to extract. We found, 
however, that patterns like the X of the dog, 

already used in (Berland and Charniak, 1999; 
Poesio et al, 2002) to find part-of relations (using  
techniques derived from those used in (Hearst, 
1998; Caraballo, 1999) to find hyponymy 
relations) are quite effective at finding attributes.  
A second problem might be that instances of such 
patterns are less frequent than those used to extract 
values, even in large corpora such as the British 
National Corpus (BNC).  But this problem, as well, 
is less serious when using the Web as a corpus 
(Kilgarriff and Schuetze, 2003; Keller and Lapata, 
2003; Markert et al, submitted).   

We report on two experiments whose goal was 
to test whether identifying attributes leads to better 
lexical descriptions of concepts. We do this by 
comparing the results obtained by using attributes 
or more general modifiers – that we will simply 
call values – as elements of concept vectors used 
to identify concept similarities via clustering.  In 
Section 2, we discuss how Web data were used to 
build attribute- and value- based concept vectors, 
and our clustering and evaluation methods.  In 
Section 3, we discuss a first experiment using the 
set of concepts used in (Lund and Burgess, 1996).  
In Section 4, we discuss a second experiment using 
214 concepts from WordNet (Fellbaum, 1998).  In 
Section 5 we return to the notion of attribute.  

2 Methods 

2.1 Using Text Patterns to Build Concept 
Descriptions 

Our techniques for extracting concept 
descriptions are simpler than those used in other 
work in at least two respects.  First of all, we only 
extracted values expressed as nominal modifiers, 
ignoring properties expressed by verbal 
constructions in which the concept occurred as an 
argument (e.g., Lin’s (dog obj-of have)). 
(We originally made this simplification to 
concentrate on the comparison between attributes 
and values (many verbal relations express more 
complex properties), but found that the resulting 
descriptions were still adequate for clustering.) 
Secondly, our data were not parsed or POS-tagged 
prior to extracting concept properties; our patterns 
are word-based.  Full parsing is essential when 



complete descriptions are built (see below) and 
allows the specification of much more general 
patterns (e.g., matching descriptions modified in a 
variety of ways, see below), but is computationally 
much more expensive, particularly when Web data 
are used, as done here. We also found that when 
using the Web, simple text patterns not requiring 
parsing or POS tagging were sufficient to extract 
large numbers of instances of properties with a 
good degree of precision.  

Our methods for extracting 'values' are 
analogous to those used in the previous literature, 
apart from the two simplifications just mentioned:  
i.e., we just consider every nominal modifier as 
expressing a potential property.  The pattern we 
use to extract values is as follows: 

• "[a|an|the] * C [is|was]" 

where C is a concept, and  the wildcard (*) stands 
for  an unspecified value.  The restriction to 
instances containing is or was to ensure that the C 
actually stands for a concept (i.e., avoiding 
modifiers) proved adequate to ensure precision. An 
example of text matching this pattern is: 

• … an inexpensive car is … 

The pattern we use for extracting concept 
attributes is based on linguistic tests for attributes 
already discussed, e.g., in (Woods, 1975).  
According to Woods, A is an attribute of C if we 
can say [V is a/the A of C]: e.g., brown is a color 
of dogs.  If no V can be found which is a value of 
A, then A can not be an attribute for the concept C.  
This test only selects attributes that have values, 
and is designed to exclude other functions defined 
over concepts, such as parts.  But some of these 
functions can be (and have been) viewed as 
defining attributes of concepts as well; so for the 
moment we used more general patterns identifying 
all relational nouns taking a particular concept as 
arguments.  (We return on the issue of the 
characterization of attributes below.)  Our pattern 
for attributes is shown below:  

• "the * of the C [is|was]"  

where again C is a concept, but the wildcard 
denotes an unspecified attribute. Again, is/was is 
used to increase precision.  An example of text 
matching this pattern is: 

• … the price of the car was … 

Both of the patterns we use satisfy Hearst's 
desiderata for good patterns (Hearst, 1998): they 
are (i) frequent, (ii) precise, and (iii) easy to 
recognize.  Patterns similar to our attribute pattern 
were used by Berland and Charniak (1999) and 
Poesio et al (2002) to find object parts only; after 

collecting their data, Berland and Charniak filtered 
out words ending with "ness", "ing", and "ity", 
because these express qualities of objects, and used 
a ranking method to rank the remaining words.  
(An accuracy of 55% for the top 50 proposed parts 
was reported.)  We found that these patterns can be 
used to collect other sorts of 'attributes', as well. 

2.2 Web Data Collection through Google 

In recent years there has been growing evidence 
that using the Web as a corpus greatly reduces the 
problem of data sparseness, and its size more than 
compensates the lack of balance (e.g., (Keller and 
Lapata, 2003)).  The benefits from using the Web 
over even large corpora like the BNC for 
extracting semantic relations, particularly when 
using simple text patterns, were informally pointed 
out in (Poesio, 2003) and demonstrated more 
systematically by Markert et al (submitted).  These 
findings were confirmed by our experiments.  A 
comparison of numbers of instances of some 
patterns using the Web and the BNC is shown in 
Table 1. 

Pattern Web BNC 
"the * of the *" 23,100,000 208,155
"the * of the * is" 10,900,000 3,627 
"the * of the car is" 26,400 5 
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"the * of the hat is" 2,770 1 
"the fast * is" 38,100 3 
"an electronic * is" 120,000 5 
"the * car is" 84,500 24 V

al
ue

 

"the * hat is" 17,100 1 

Table 1:  Comparison of frequencies of some 
patterns in BNC and the Web.  Web frequency is 

based on Google counts 

We collect our data from the Web using the 
Google search engine, accessed via the freely 
available Google Web API1.  The API only allows 
to retrieve the first 1,000 results per search request; 
to overcome this restriction, we use the daterage 
feature of the Google search request.  This feature 
allows the user to fragment the search space into a 
number of periods, hence retrieving only pages that 
have been updated during a specified period. In the 
two experiments presented here, we aimed to 
collect up to 10,000 matches per search request 
using the daterage feature: we divided the search 
space into 100 days starting from January, 1990 
until mid 2004.  (The procedure we used does not 
guarantee collecting all the instances in the 
accessed periods, because if there are more than 

                                                      
1 Google Web API is available on the Web at 
http://www.google.com/apis/ 



1,000 instances in one period, then only the first 
1,000 instances will be collected.) 2 

Our requests to Google take the general form "s1 
* s2" (including the double quotes), where s1 and s2 
are two strings and the wildcard denotes an 
unspecified single word.  For example, the search 
request "a * car is" catches instances such as: [a 
red car is], [a small car is], and [a sport car is]. It 
is worth mentioning that Google does not pay 
attention to punctuation marks; this is one area in 
which parsing would help. 

When receiving results from Google, we do not 
access the actual Web pages, but instead we 
process the snippets that are returned by Google.3 

2.3 Clustering Methods 

The task that we use to compare concept 
descriptions is lexical acquisition via clustering. 
We experimented with clustering systems such as 
COBWEB (Fisher, 1987) and SUBDUE (Cook and 
Holder, 2000) before settling on CLUTO 2.1 
(Karypis, 2002).  CLUTO is a general-purpose 
clustering tool that implements three different 
clustering algorithms: partitional, agglomerative, 
and graph partitioning algorithms.  CLUTO 
produces both flat and hierarchical clusters.  It uses 
a hard clustering technique, where each concept 
can be assigned to only one cluster.  The software 
allows to choose a similarity metric between a set 
including extended Jaccard and cosine.  CLUTO 
was optimized to cluster data of large sizes in a 
reasonable time.  The software also provides 
analysis and visualization tools. 

In this paper, we use extended Jaccard, which 
was found to produce more accurate results than 
the cosine function in similar tasks (Karypis, 2002; 
Curran and Moens, 2003).  In CLUTO, the 
extended Jaccard function works only with the 
graph partitioning algorithm. 

2.4 Evaluation Measures 

We used two types of measures to evaluate the 
clusters produced by CLUTO using the concept 
descriptions discussed above, both of which 
compare the clusters produced by the system to 
model clusters. Accuracy is computed by dividing 
the number of correctly clustered concepts by the 
total number of concepts.  The number of correctly 
clustered concepts is determined by examining 

                                                      
2 Also, registered users of the API can send up to 1,000 
requests per day, but our daily limit was increased by 
Google to 20,000 requests per day. 
3 Snippets are text excerpts captured from the actual 
web pages with embedded HTML tags.  We process the 
snippets by removing the HTML tags and extracting the 
targeted piece of text that was specified in the request. 

each system cluster, finding the class of each 
concept in the model clusters, and determining the 
majority class. The cluster is then labeled with this 
class;   the concepts belonging to it are taken to be 
correctly clustered, whereas the remaining 
concepts are judged to be incorrectly clustered. 

In the contingency table evaluation (Swets, 
1969; Hatzivassiloglou and McKeown, 1993), the 
clusters are converted into two lists (one for the 
system clusters and one for the model clusters) of 
yes-no answers to the question "Does the pair of 
concepts occur in the same cluster?" for each pair 
of concepts.  A contingency table is then built, 
from which recall (R), precision (P), fallout, and F 
measures can be computed.  For example, if the 
model clusters are: (A, B, C) and (D), and the 
system clusters are: (A, B) and (C, D), the yes-no 
lists are as in Table 2, and the contingency table is 
as in Table 3.   

Question Model 
Answer 

System 
Answer 

Does the pair (A, B) occur in 
the same cluster? Yes Yes 

Does the pair (A, C) occur in 
the same cluster? Yes No 

Does the pair (A, D) occur in 
the same cluster? No No 

Does the pair (B, C) occur in 
the same cluster? Yes No 

Does the pair (B, D) occur in 
the same cluster? No No 

Does the pair (C, D) occur in 
the same cluster? No Yes 

Table 2: Model and the system answers for the 
co-occurrence question 

Model Answer System Answer 
 Yes  No 
a b Yes 
 

1 
 

1 

c d No 
 

2 
 

2 

Table 3: The contingency table 
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3 First Experiment: Using a Set of Concepts 
from Lund and Burgess 

One limitation of using Google is that even with 
an increased daily limit of 20,000, it wouldn’t 
really be feasible to attempt to cluster, say, all of 
WordNet 100,000 noun concepts. For this reason, 



we used much smaller sets of concepts in our two 
experiments. The first set allowed us to compare 
our results with those obtained by Lund and 
Burgess (1996); the second set consisted of a larger 
number of concepts from WordNet. 

Lund and Burgess (1996) used a set of 34 
concepts belonging to 3 different classes (animals, 
body parts, and geographical locations) to evaluate 
their method for acquiring lexical representations, 
HAL (Hyperspace Analogue to Language). Lund 
and Burgess were able to correctly cluster all of the 
concepts except for one body part, tooth, which 
was incorrectly clustered with animals.  In this first 
experiment, we used the 34 Lund and Burgess 
concepts plus Italy, horse, and tongue (37 in total) 
to compare value-based and attribute-based 
description when used for clustering, using concept 
descriptions collected using the methods described 
above.   

The input to clustering is a frequency table with 
concepts as rows and values, attributes, or both 
attributes and values as columns.  Each cell in the 
table contains the frequency of co-occurrence 
between the concept and corresponding value or 
attribute.  Before clustering, the frequencies are 
transformed into weighted values using the t test 
(Manning and Schutze, 1999).  (The t test was 
found by Curran and Moens (2002) to be the best 
weighting method.)  The t test formula we used for 
attributes is shown below: 

2

ji

2

jiji

j,i

N
)attribute,concept(C

N
)attribute(C)concept(C

N
)attribute,concept(C

t
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−

≈
 

(1)

where N is the total number of relations, and C is a 
count function.  The values formula is similar. 

We use the CLUTO vcluster command for 
clustering, with parameters: similarity function = 
Extended Jaccard Coefficient, clustering method = 
Graph Partitioning, no. of clusters = 3. 

Vector Size4 
Used Data 

500 1522 3044 4753 4969 
Values  
Only 64.86% 94.59% - - 94.59%

Attributes 
Only 97.30% 97.30% - 97.30% - 

Attributes1522 
and Values1522 

- - 100.00% - - 

Table 4: Clustering accuracy with  values, 
attributes, and their combination, using different 

vector sizes 
                                                      
4 Here, we choose the top k features by their overall 
frequency. 

Table 4 shows the accuracy of the produced 
clusters when using values, attributes, and the 
combination with different vector sizes.  The 
results show that with concept descriptions of 
length 500, attributes (97.30%) are much more 
accurate than values (64.86%).  With vectors of 
size 1522, the accuracy with attributes remains the 
same, while the accuracy with values improves, 
but is still lower than the accuracy with attributes 
(94.59%).  This indicates that attributes have more 
discriminatory power than values: an attribute 
vector of size 500 is sufficient to produce a more 
accurate result than using a value vector of three 
times the size. But perhaps the most interesting 
result is that even though further  increasing the 
size of pure attribute- and value- descriptions (to 
4753 and 4969, respectively) does not improve 
accuracy, perfect accuracy can be obtained by 
using vectors  of length 3044, including the 1522 
best attributes and the 1522 best values.  This 
suggests that while attributes are a good way of 
generalizing across properties, not all properties of 
concepts can be viewed as attribute/value pairs 
(section 5; also (Poesio and Almuhareb, 
submitted)). 

4 Second Experiment: Using a Set of 
Concepts from WordNet 

In order to get a more realistic evaluation and a 
better comparison with work such as (Lin, 1998; 
Curran and Moens, 2002), we also ran a second 
experiment using a larger set of concepts from the 
WordNet noun hierarchy (Fellbaum, 1998).  We 
chose 214 relatively common concepts from 13 
different classes covering a variety of 
subhierarchies (see Appendix A).  Each class 
contains a set of concepts that share a common 
hypernym in the WordNet hierarchy. 

Model Answer Systems Answer 
Yes No 

Yes 1294 503 Boolean 
No 387 20607 
Yes 1117 950 Frequency No 564 20160 

Table 5: The contingency table based on boolean 
and frequency for the combined attributes and 

values 

The frequencies for attributes and values were 
again collected as in the first experiment.  
However, these data were used in a different way.  
In determining the weight, we performed the t test5 
on boolean values instead of the original 
                                                      
5 We consider only positive values of t. 



frequencies6, treating all positive frequencies as 1 
and everything else as 0.  This eliminates the effect 
of variations in frequencies in the original data, the 
intuition being that frequencies do not add to the 
semantics of concepts: what we are interested in is 
the fact that a concept has a given attribute/value, 
regardless of how many times we have 
encountered this fact.  This approach is similar to 
the approach adopted in (Hearst, 1998); see also 
(Curran and Moens, 2002) for a comparison of 
methods dealing with concept vectors based on 
raw frequencies or boolean values.  The 
transformed table is a binary table that contains 
only zeros and ones in its cells.  Table 5 shows the 
contingency table for clusters produced based on 
boolean and frequency for the combined data of 
attributes and values; it shows that boolean data is 
more accurate in the four cases.  

For clustering, as well, we used CLUTO in a 
different way.  Instead of asking CLUTO to 
compute the similarities between the concepts, we 
computed them ourselves, using the version of the 
extended Jaccard similarity function used by 
Curran and Moens, as this version produces better 
results than the one used in CLUTO.  The two 
versions of the extended Jaccard function are 
shown below: 

 
where tm,i and tn,i are the weighted co-occurrence 
values between concept m and concept n with 
attribute/value i, and computed as in equation (1). 

Measures Used 
Data7 Accuracy Recall Precision Fallout F 

Values 
Only 71.96% 58.48% 52.91% 04.14% 55.55%

Attributes 
Only 64.02% 59.90% 53.54% 04.14% 56.54%
Attributes  
And Values 85.51% 76.98% 72.01% 02.38% 74.41%

Table 6: Clustering evaluation based on values, 
attributes, and the combination 

We compute the similarity between each pair of 
concepts, produce a similarity matrix and send it to 
CLUTO for clustering.  We then call the scluster 

                                                      
6 In equation (1), this will effect only C(concepti, 
attributej), other counts will not be effected. 
7 Here, we use full size vectors that contain all the 
features. 

command of CLUTO with the following 
parameters: clustering method = Graph 
Partitioning, no. of clusters = 13. The results of the 
evaluation are shown in Table 6.   

Value-based concept descriptions resulted in 
better clusters than attribute-based when measured 
using Accuracy (71.96% vs. 64.02%), but the other 
measures all indicate that attributes work slightly 
better than values: e.g., F=55.55% for values, 
56.64% for attributes.  The reason for this 
difference is that the Accuracy measure simply 
evaluates if each concept is assigned to its correct 
cluster, while the remaining measures concern 
about the relation between each pair of concepts 
(i.e., if they were assigned to the same cluster or 
not).  But, just as in Experiment 1, the best results 
by any measure are again obtained when using 
concept descriptions containing the best 'attributes' 
and the best 'values'; this time, however, the 
difference is much more significant: Accuracy is 
85.51%, F is 74.41%.  
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1 0 2 0 11 0 0 0 0 0 0 0 0 0 
2 0 0 13 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 17
4 0 0 0 0 0 0 2 0 18 0 0 6 0 
5 2 0 0 1 0 16 0 0 1 0 0 1 0 
6 1 16 0 0 0 0 0 0 0 0 0 0 1 
7 0 0 0 0 0 0 15 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 15 0 0 0 0 0 
9 0 0 0 0 16 0 0 0 0 4 0 0 1 
10 0 0 0 0 0 0 0 0 1 0 0 9 0 
11 1 0 1 0 0 0 0 0 0 6 0 0 0 
12 0 0 0 0 0 0 0 0 0 2 16 0 0 
13 15 0 0 1 0 0 0 1 0 2 0 0 0 

Table 7: The confusion matrix for the clusters 
produced using both attributes and values 

Table 7 shows the confusion matrix for the 
clusters produced using both attributes and values.  
A close inspection of these clusters reveals that 
'furniture' concepts were the less homogeneous 
because they were scattered among four different 
clusters. There are 14 'furniture' concepts; six of 
them (bookcase, cabinet, couch, cradle, desk and 
wardrobe) were grouped in a separate cluster 
which also contains two more concepts (pickup 
and greenhouse).  Four of the concepts (bed, 
lamp, seat, and table) were clustered with 'body 
part' concepts.  Two of the concepts (dresser and 
sofa) were clustered with 'cloth' concepts, and the 
remaining two concepts (chair and lounge) were 
clustered with 'building' concepts. 

∑
∑

∑
∑

×−+

×
=

+

×
=

i
i,ni,mi,ni,m

i
i,ni,m

nmCLUTO

i
i,ni,m

i
i,ni,m

nmMoens&Curran

))tt(tt(

)tt(
)concept,concept(sim

)tt(

)tt(
)concept,concept(sim



Two points should be noted about the furniture 
concepts.  First, at least two concepts (seat and 
lounge) have more than one sense in WordNet.  
Seat was clustered with body part concepts, which 
is acceptable if we think of seat as "the fleshy part 
of the human body that you sit on" (WordNet, 
sense 2).  The same for lounge, which was 
clustered with buildings, which is consistent with 
its second sense in WordNet: "a public room (as in 
a hotel or airport) with seating where people can 
wait".  This indicates that techniques for 
differentiating between different senses are needed 
– e.g., using a soft clustering technique as in 
(Pereira et al, 1993) instead of a hard clustering 
technique.  Second, furniture concepts may not 
have a common prototype that is shared by all of 
the member concepts.  This is a well known 
problem in the prototype theory of concepts 
(Laurence and Margolis, 1999). 

The greater compactness of attribute-based 
representations vs. value-based ones was more 
evident in this second experiment. We collected 
51,045 distinct values and 8,934 distinct attributes; 
the total number of value-concept relations is 
1,026,335, compared to 422,621 attribute-concept 
relations. 

5 Attributes and Values: A discussion 

Although our results suggest that trying to 
identify attributes is beneficial, the notion of 
'attribute' is not completely clear, and has been 
used in widely different ways in Knowledge 
Representation literature.   An attempt of defining 
the notion has been made by Guarino (1992), who 
classifies attributes into relational and non-
relational attributes.  Relational attributes include 
qualities such as color and position, and relational 
roles such as son and spouse.  Non-relational 
attributes include parts such as wheel and engine.  
The Qualia Structure of the Generative Lexicon 
(Pustejovsky, 1991) is another attempt at 
identifying "the essential attributes of an object as 
defined by the lexical item".  Pustejovsky 
identifies four roles: Constitutive Role (Guarino's 
parts), Formal Role (Guarino's qualities), Agentive 
Role (Guarino's relational roles), and Telic Role 
(not included in Guarino's classification). 

Our analysis of the attribute data shows that the 
attributes we found can be mapped in the four roles 
of the Qualia structure.  Table 8 shows how we 
manually mapped the top 50 attributes of the 
concept car to the Qualia roles and the Guarino's 
classes. This mapping is not trivial (e.g., a path is 
not part of a car, and design can be regarded as a 
quality), but a variety of tests may help: 

Morphological and Ontological Tests:  
Dixon (1991) proposed a semantic classification 

for nouns.  According to Dixon, parts are concrete 
concepts and mostly basic noun roots or rarely 
derived from verbs, while qualities are abstract 
concepts and many of them are basic noun roots or 
derived from adjectives, some derived from stems, 
and few derived from verbs.  Our observations also 
suggest that telic attributes are usually derived 
from verbs. 

Attributes Test:  Since attributes can also be 
viewed as concepts (e.g., in WordNet), they 
themselves should have some shared attributes.  
For example: since parts are concrete objects they 
should share attributes such as size, length, and 
geometry.  Also, since qualities usually can be 
assigned values (e.g. age (25)), then they should 
share attributes such as range and average. 

Question Type Test:  Different types of 
attributes tend to occur with different types of 
questions.  For example, relational role attributes 
tend to occur with who-questions like "Who is the 
driver of the car?" and "Who is the manufacturer of 
the car?" 

Guarino 
Class 

Qualia 
Role Car Attributes 

Part Constitutive 
Role 

front, rear, interior, inside, side, 
body, trunk, exterior, underside, 
hood, back, nose, roof, engine, 
frame, floor, rest, silhouette, 
backseat, wheelbase, battery, 
chassis, path 

Quality Formal 
Role 

speed, value, weight, price, 
velocity, color, condition, 
momentum, convenience, 
propulsion, look, inertia, state, 
model, history, balance, motion, 
performance 

Relational 
Role 

Agentive 
Role driver, owner 

- Telic 
Role8 

handling, use, search, design, 
benefit 

Table 8: The classification of the top 50 
attributes of the concept car 

In future work, we plan to use some of these 
tests to classify attributes, and possibly filter some 
of them; this might improve the discrimination 
power of attributes. Also, concepts may share 
certain Qualia, but differ in other respects: for 
example, the chair concept and the man concept 
share some parts (e.g., arm, back, leg, and seat) 
and even some qualities (e.g., color, size, and 
shape) but differ in other levels (i.e., Agentive 
Role, and Telic Role). 
                                                      
8 Telic roles define purposes, functions, and activities 
that are related to the concept. Some valid telic roles for 
the concept car would be: driving, selling, and buying. 



6 Conclusions 

Simple text patterns were used to automatically 
extract both basic value-based and attribute-based 
concept descriptions for clustering purposes. Our 
preliminary results suggest, first of all, that when 
large amounts of data such as the Web are 
accessed, these simple patterns may be sufficient to 
compute descriptions rich enough to discriminate 
quite well, at least with small sets of concepts 
belonging to clearly distinct classes. Secondly, we 
found that even though attributes are fewer than 
values, attribute-based descriptions need not be as 
long as value-based ones to achieve as good or 
better results. Finally, we found that the best 
descriptions included both attributes and more 
general properties. We plan to extend this work 
both by refining our notion of attribute and by 
using more sophisticated patterns working off the 
output of a parser. 
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Appendix A. The 214 Concepts from the 13 WordNet Classes Used in Experiment 2 

Class Concepts 

Animal bear, bull, camel, cat, cow, deer, dog, elephant, horse, kitten, lion, monkey, mouse, 
oyster, puppy, rat, sheep, tiger, turtle, zebra 

Building abattoir, center, clubhouse, dormitory, greenhouse, hall, hospital, hotel, house, inn, 
library, nursery, restaurant, school, skyscraper, tavern, theater, villa, whorehouse 

Cloth pants, blouse, coat, costume, gloves, hat, jacket, jeans, neckpiece, pajamas, robe, scarf, 
shirt, suit, trousers, uniform 

Creator architect, artist, builder, constructor, craftsman, designer, developer, farmer, inventor, 
maker, manufacture, musician, originator, painter, photographer, producer, tailor 

Disease acne, anthrax, arthritis, asthma, cancer, cholera, cirrhosis, diabetes, eczema, flu, 
glaucoma, hepatitis, leukemia, malnutrition, meningitis, plague, rheumatism, smallpox 

Feeling anger, desire, fear, happiness, joy, love, pain, passion, pleasure, sadness, sensitivity, 
shame, wonder 

Fruit apple, banana, berry, cherry, grape, kiwi, lemon, mango, melon, olive, orange, peach, 
pear, pineapple, strawberry, watermelon  

Furniture bed, bookcase, cabinet, chair, couch, cradle, desk, dresser, lamp, lounge, seat, sofa, table, 
wardrobe 

Body Part ankle, arm, ear, eye, face, finger, foot, hand, head, leg, nose, shoulder, toe, tongue, tooth, 
wrist 

Publication atlas, book, booklet, brochure, catalog, cookbook, dictionary, encyclopedia, handbook, 
journal, magazine, manual, phonebook, reference, textbook, workbook  

Family 
Relation  

boy, child, cousin, daughter, father, girl, grandchild, grandfather, grandmother, husband, 
kid, mother, offspring, sibling, son, wife  

Time century, decade, era, evening, fall, hour, month, morning, night, overtime, quarter, 
season, semester, spring, summer, week, weekend, winter, year 

Vehicle aircraft, airplane, automobile, bicycle, boat, car, cruiser, helicopter, motorcycle, pickup, 
rocket, ship, truck, van 

 


