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Abstract 

Web extraction systems attempt to use 
the immense amount of unlabeled text 
in the Web in order to create large lists 
of entities and relations. Unlike 
traditional IE methods, the Web 
extraction systems do not label every 
mention of the target entity or relation, 
instead focusing on extracting as many 
different instances as possible while 
keeping the precision of the resulting 
list reasonably high. URES is a Web 
relation extraction system that learns 
powerful extraction patterns from 
unlabeled text, using short descriptions 
of the target relations and their 
attributes. The performance of URES is 
further enhanced by classifying its 
output instances using the properties of 
the extracted patterns. The features we 
use for classification and the trained 
classification model are independent 
from the target relation, which we 
demonstrate in a series of experiments. 
In this paper we show how the 
introduction of a simple rule based 
NER can boost the performance of 
URES on a variety of relations. We 
also compare the performance of 
URES to the performance of the state-
of-the-art KnowItAll system, and to the 
performance of its pattern learning 
component, which uses a simpler and 
less powerful pattern language than 
URES. 

1   Introduction 

Information Extraction (IE) (Riloff 1993; 
Cowie and Lehnert 1996; Grishman 1996; 
Grishman 1997; Kushmerick, Weld et al. 1997; 
Freitag 1998; Freitag and McCallum 1999; 
Soderland 1999)  is the task of extracting 
factual assertions from text. 

Most IE systems rely on knowledge 
engineering or on machine learning to generate 
extraction patterns – the mechanism that 
extracts entities and relation instances from 
text. In the machine learning approach, a 
domain expert labels instances of the target 
relations in a set of documents. The system 
then learns extraction patterns, which can be 
applied to new documents automatically. 

Both approaches require substantial human 
effort, particularly when applied to the broad 
range of documents, entities, and relations on 
the Web.   In order to minimize the manual 
effort necessary to build Web IE systems, we 
have designed and implemented URES 
(Unsupervised Relation Extraction System). 
URES takes as input the names of the target 
relations and the types of their arguments. It 
then uses a large set of unlabeled documents 
downloaded from the Web in order to learn the 
extraction patterns. 

URES is most closely related to the 
KnowItAll system developed at University of 
Washington by Oren Etzioni and colleagues 
(Etzioni, Cafarella et al. 2005), since both are 
unsupervised and both leverage relation-
independent extraction patterns to 
automatically generate seeds, which are then 
fed into a pattern-learning component.  
KnowItAll is based on the observation that the 
Web corpus is highly redundant. Thus, its 
selective, high-precision extraction patterns 
readily ignore most sentences, and focus on 
sentences that indicate the presence of relation 
instances with very high probability. 

 In contrast, URES is based on the 
observation that, for many relations, the Web 
corpus has limited redundancy, particularly 
when one is concerned with less prominent 
instances of these relations (e.g., the 
acquisition of Austria Tabak).  Thus, URES 
utilizes a more expressive extraction pattern 
language, which enables it to extract 
information from a broader set of sentences.  
URES relies on a sophisticated mechanism to 
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assess its confidence in each extraction, 
enabling it to sort extracted instances, thereby 
improving its recall without sacrificing 
precision. 

 
Our main contributions are as follows: 

 
• We introduce the first domain-

independent system to extract relation 
instances from the Web with both high 
precision and high recall. 

• We show how to minimize the human 
effort necessary to deploy URES for 
an arbitrary set of relations, including 
automatically generating and labeling 
positive and negative examples of the 
relation.  

• We show how we can integrate a 
simple NER component into the 
classification scheme of URES in 
order to boost recall between 5-15% 
for similar precision levels. 

• We report on an experimental 
comparison between URES, URES-
NER and the state-of-the-art 
KnowItAll system, and show that 
URES can double or even triple the 
recall achieved by KnowItAll for 
relatively rare relation instances. 

 

The rest of the paper is organized as 
follows:  Section 2 describes previous work.  
Section 3 outlines the general design principles 
of URES, its architecture, and then describes 
each URES component in detail.  Section 4 
presents our experimental evaluation.  Section 
5 contains conclusions and directions for future 
work. 

2   Related Work 

The IE systems most similar to URES are 
based on bootstrap learning: Mutual 
Bootstrapping (Riloff and Jones 1999), the 
DIPRE system (Brin 1998), and the Snowball 
system (Agichtein and Gravano 2000 ). 
(Ravichandran and Hovy 2002) also use 
bootstrapping, and learn simple surface 
patterns for extracting binary relations from the 
Web. 

Unlike those unsupervised IE systems, 
URES patterns allow gaps that can be matched 
by any sequences of tokens. This makes URES 
patterns much more general, and allows to 
recognize instances in sentences inaccessible 

to the simple surface patterns of systems such 
as (Brin 1998; Riloff and Jones 1999; 
Ravichandran and Hovy 2002). The greater 
power of URES requires different and more 
complex methods for learning, scoring, and 
filtering of patterns. 

Another direction for unsupervised relation 
learning was taken in (Hasegawa, Sekine et al. 
2004; Chen, Ji et al. 2005). These systems use 
a NER system to identify pairs of entities and 
then cluster them based on the types of the 
entities and the words appearing between the 
entities. Only pairs that appear at least 30 times 
were considered. The main benefit of this 
approach is that all relations between two 
entity types can be discovered simultaneously 
and there is no need for the user to supply the 
relations definitions. Such a system could have 
been used as a preliminary step to URES, 
however its relatively low precision makes it 
unfeasible. Unlike URES, the evaluations 
performed in these papers ignored errors that 
were introduced by the underlying NER 
component. The precision reported by these 
systems (77% breakeven for the COM-COM 
domain) is inferior to that of URES. 

We compared our results directly to two 
other unsupervised extraction systems, the 
Snowball (Agichtein and Gravano 2000 ) and 
KnowItAll. Snowball is an unsupervised 
system for learning relations from document 
collections. The system takes as input a set of 
seed examples for each relation, and uses a 
clustering technique to learn patterns from the 
seed examples. It does rely on a full fledged 
Named Entity Recognition system. Snowball 
achieved fairly low precision figures (30-50%) 
on relations such as Merger and Acquisition on 
the same dataset we used in our experiments. 

KnowItAll is a system developed at 
University of Washington by Oren Etzioni and 
colleagues (Etzioni, Cafarella et al. 2005). We 
shall now briefly describe it and its pattern 
learning component. 

Brief description of KnowItAll 
KnowItAll uses a set of generic extraction 
patterns, and automatically instantiates rules by 
combining those patterns with user supplied 
relation labels. For example, KnowItAll has 
patterns for a generic “of” relation: 

NP1  <relation>  NP2 
NP1  's  <relation>  ,  NP2 
NP2  ,  <relation>  of  NP1 
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where NP1 and NP2 are simple noun phrases 
that extract values of attribute1 and attribute2 
of a relation, and <relation> is a user-supplied 
string associated with the relation. The rules 
may also constrain NP1 and NP2 to be proper 
nouns. 

The rules have alternating context strings 
(exact string match) and extraction slots 
(typically an NP or head of an NP).  Each rule 
has an associated query used to automatically 
find candidate sentences from a Web search 
engine. 

KnowItAll also includes mechanisms to 
control the amount of search, to merge 
redundant extractions, and to assign a 
probability to each extraction based on 
frequency of extraction or on Web statistics 
(Downey, Etzioni et al. 2004). 

KnowItAll-PL.  While those generic rules 
lead to high precision extraction, they tend to 
have low recall, due to the wide variety of 
contexts describing a relation. KnowItAll 
includes a simple pattern learning scheme 
(KnowItAll-PL) that builds on the generic 
extraction mechanism (KnowItAll-baseline). 
Like URES, this is a self-supervised method 
that bootstraps from seeds that are 
automatically extracted by the baseline system. 

KnowItAll-PL creates a set of positive 
training sentences by downloading sentences 
that contain both argument values of a seed 
tuple and also the relation label. Negative 
training is created by downloading sentences 
with only one of the seed argument values, and 
considering a nearby NP as the other argument 
value. This does not guarantee that the 
negative example will actually be false, but 
works well in practice. 

Rule induction tabulates the occurrence of 
context tokens surrounding the argument 
values of the positive training sentences. Each 
candidate extraction pattern has a left context 
of zero to k tokens immediately to the left of 
the first argument, a middle context of all 
tokens between the two arguments, and a right 
context of zero to k tokens immediately to the 
right of the second argument.  A pattern can be 
generalized by dropping the furthest terms 
from the left or right context. KnowItAll-PL 
retains the most general version of each pattern 
that has training frequency over a threshold 
and training precision over a threshold. 

 
 

3   Description of URES 

The goal of URES is extracting instances of 
relations from the Web without human 
supervision. Accordingly, the input of the 
system is limited to (reasonably short) 
definition of the target relations (composed of 
the relation's schema and a few keywords that 
enable gathering relevant sentences). For 
example, this is the description of the 
acquisition relation: 
 

     Acquisition(ProperNP, ProperNP) ordered 
          keywords={"acquired" "acquisition"} 

 
The word ordered indicates that Acquisition 

is not a symmetric relation and the order of its 
arguments matters. The ProperNP tokens 
indicate the types of the attributes. In the 
regular mode, there are only two possible 
attribute types – ProperNP and CommonNP, 
meaning proper and common noun phrases, 
respectively. When using the NER Filter 
component described in the section 4.1 we 
allow further subtypes of ProperNP, and the 
predicate definition becomes: 
          acquisition(Company, Company) … 

The keywords are used for gathering 
sentences from the Web and for instantiating 
the generic patterns for seeds generation. 
Additional keywords (such as “acquire”, 
“purchased”, “hostile takeover”, etc), which 
can be used for gathering more sentences, are 
added automatically by using WordNet [18]. 

URES consists of several largely 
independent components; their layout is shown 
on the Figure 1. The Sentence Gatherer 
generates (e.g., downloads from the Web) a 
large set of sentences that may contain target 
instances. The Seeds Generator, which is 
essentially equal to the KnowItAll-baseline 
system, uses a small set of generic patterns 
instantiated with the predicate keywords to 
extract a small set of high-confidence instances 
of the target relations. The Pattern Learner uses 
the seeds to learn likely patterns of relation 
occurrences. Then, the Instance Extractor uses 
the patterns to extracts the instances from the 
sentences. Those instances can be filtered by a 
NER Filter, which is an optional part of the 
system. Finally, the Classifier assigns the 
confidence score to each extraction. 
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Figure 1. The architecture of URES 

3.1  Pattern Learner 

The task of the Pattern Learner is to learn the 
patterns of occurrence of relation instances. 
This is an inherently supervised task, because 
at least some occurrences must be known in 
order to be able to find patterns among them. 
Consequently, the input to the Pattern Learner 
includes a small set (10 instances in our 
experiments) of known instances for each 
target relation. Our system assumes that the 
seeds are a part of the target relation definition. 
However, the set of seeds need not be created 
manually. Instead, the seeds can be taken 
automatically from the top-scoring results of a 
high-precision low-recall unsupervised 
extraction system, such as KnowItAll. The 
seeds for our experiments were produced in 
exactly this way: we used two generic patterns 
instantiated with the relation name and 
keywords. Those patterns have a relatively 
high precision (although low recall), and the 
top-confidence results, which are the ones 
extracted many times from different sentences, 
have close to 100% probability of being 
correct. 

The Pattern Learner proceeds as follows: 
first, the gathered sentences that contain the 
seed instances are used to generate the positive 
and negative sets. From those sets the patterns 
are learned. Finally, the patterns are post-

processed and filtered. We shall now describe 
those steps in detail. 
 

PREPARING THE POSITIVE AND NEGATIVE 
SETS 
The positive set of a predicate (the terms 
predicate and relation are interchangeable in 
our work) consists of sentences that contain a 
known instance of the predicate, with the 
instance attributes changed to “<AttrN>”, 
where N is the attribute index. For example, 
assuming there is a seed instance 
Acquisition(Oracle, PeopleSoft), the sentence 
The Antitrust Division of the U.S. Department of 
Justice evaluated the likely competitive effects of 
Oracle's proposed acquisition of PeopleSoft. 

will be changed to 
The Antitrust Division… …of <Attr1>'s proposed 
acquisition of <Attr2>. 

The positive set of a predicate P is generated 
straightforwardly, using substring search. The 
negative set of a predicate consists of 
sentences with known false instances of the 
predicate similarly marked (with <AttrN> 
substituted for attributes). The negative set is 
used by the pattern learner during the scoring 
and filtering step, to filter out the patterns that 
are overly general. We generate the negative 
set from the sentences in the positive set by 
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changing the assignment of one or both 
attributes to other suitable entities in the 
sentence. In the shallow parser based mode of 
operation, any suitable noun phrase can be 
assigned to an attribute. 
 

GENERATING THE PATTERNS 
The patterns for the predicate P are 
generalizations of pairs of sentences from the 
positive set of P. The function Generalize(s1, 
s2)  is applied to each pair of sentences s1 and 
s2 from the positive set of the predicate.  The 
function generates a pattern that is the best 
(according to the objective function defined 
below) generalization of its two arguments. 

The following pseudocode shows the 
process of generating the patterns for the 
predicate P: 
 

For each pair s1, s2 from PositiveSet(P) 

    Let Pattern = Generalize(s1, s2). 

    Add Pattern to PatternsSet(P). 

The patterns are sequences of tokens, skips 
(denoted *), limited skips (denoted *?) and 
slots. The tokens can match only themselves, 
the skips match zero or more arbitrary tokens, 
and slots match instance attributes.  The 
limited skips match zero or more arbitrary 
tokens, which must not belong to entities of the 
types equal to the types of the predicate 
attributes. In the shallow parser based mode, 
there are only two different entity types – 
ProperNP and CommonNP, standing for 
proper and common noun phrases. 

The Generalize(s1, s2) function takes two 
sentences and generates the least (most 
specific) common generalization of both.  The 
function does a dynamical programming 
search for the best match between the two 
patterns (Optimal String Alignment algorithm), 
with the cost of the match defined as the sum 
of costs of matches for all elements. The exact 
costs of matching elements are not important 
as long as their relative order is maintained. 
We use the following numbers:  two identical 
elements match at cost 0, a token matches a 
skip or an empty space at cost 10, a skip 
matches an empty space at cost 2, and different 
kinds of skip match at cost 3. All other 
combinations have infinite cost. After the best 
match is found, it is converted into a pattern by 
copying matched identical elements and 
adding skips where non-identical elements are 

matched. For example, assume the sentences 
are 
   Toward this end, <Attr1> in July acquired 
<Attr2> 

   Earlier this year, <Attr1> acquired <Attr2> from 
X 

After the dynamic programming-based 
search, the following match will be found: 

Toward (cost 10)
Earlier   (cost 10)

this this (cost 0)
end (cost 10)

year (cost 10)
, , (cost 0)
<Attr1 > <Attr1 > (cost 0)
in   July (cost 20)
acquired acquired (cost 0)
<Attr2 > <Attr2 > (cost 0)

from (cost 10)
X (cost 10)  

 
at total cost = 80. Assuming that “X” 

belongs to the same type as at least one of the 
attributes while the other tokens are not 
entities, the match will be converted to the 
pattern 
     *?  this  *?  ,  <Attr1>  *?  acquired  <Attr2>   
* 

3.2  Classifying the Extractions 

The goal of the final classification stage is to 
filter the list of all extracted instances, keeping 
the correct extractions and removing mistakes 
that would always occur regardless of the 
quality of the patterns. It is of course 
impossible to know which extractions are 
correct, but there exist properties of patterns 
and pattern matches that increase or decrease 
the confidence in the extractions that they 
produce. Thus, instead of a binary classifier, 
we seek a real-valued confidence function c, 
mapping the set of extracted instances into the 
[0, 1] segment. 

Since confidence value depends on the 
properties of particular sentences and patterns, 
it is more properly defined over the set of 
single pattern matches. Then, the overall 
confidence of an instance is the maximum of 
the confidence values of the matches that 
produce the instance. 

Assume that an instance E was extracted 
from a match of a pattern P at a sentence S. 
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The following set of binary features may 
influence the confidence c(E, P, S): 
f1(E, P, S) = 1,  if the number of sentences  
                     producing E  is greater than one. 
f2(E, P, S) = 1,  if the number of sentences  
                     producing E is greater than two. 
f3(E, P, S) = 1,  if at least one slot of the pattern P is 
                      adjacent to a non-stop-word token. 
f4(E, P, S) = 1,  if both slots of the pattern P are 
                       adjacent to non-stop-word tokens. 
f5…f9(E, P, S)  = 1,  if the number of nonstop                    
                       words in P is 0 (f5), 1 or greater (f6),  
                       2 or greater (f7), 3 or greater (f8), and  
                       4 or greater (f9). 
f10…f15(E, P, S)  = 1, if the number of words 
                       between the slots of the match M                                  
                       that were matched to skips of the 
                       pattern P is 0 (f10), 1 or less (f11), 2  
                       or less (f12) , 3 or less(f13),  5 or less 
                       (f14), and 10 or less (f15). 
 

Utilizing the NER 

In the URES-NER version the entities of each 
candidate instance are passed through a simple 
rule-based NER filter, which attaches a score 
(“yes”, “maybe”, or “no”) to the argument(s) 
and optionally fixes the arguments boundaries. 
The NER is capable of identifying entities of 
type PERSON and COMPANY (and can be 
extended to identify additional types).   
 

The scores mean: 
   “yes” – the argument is of the correct 

entity type. 
   “no” – the argument is not of the right 

entity type, and hence 
              the candidate instance should be 

removed. 
   “maybe” – the argument type is uncertain, 

can be either 
                    correct or no.  
 
If “no” is returned for one of the arguments, 

the instance is removed. Otherwise, an 
additional binary feature is added to the 
instance's vector: 

     f16 = 1 iff the score for both arguments is 
“yes”. 

For bound predicates, only the second 
argument is analyzed, naturally. 

As can be seen, the set of features above is 
small, and is not specific to any particular 
predicate. This allows us to train a model using 
a small amount of labeled data for one 

predicate, and then use the model for all other 
predicates: 

Training: The patterns for a single model 
predicate are run over a relatively small set of 
sentences (3,000-10,000 sentences in our 
experiments), producing a set of extractions 
(between 150-300 extractions in our 
experiments). 

The extractions are manually labeled 
according to whether they are correct or not. 
For each pattern match Mk = (Ek, Pk, Sk), the 
value of the feature vector fk = (f1(Mk), …, 
f15(Mk)) is calculated, and the label Lk = ±1  
is set according to whether the extraction Ek is 
correct or no. 

A regression model estimating the function 
L(f) is built from the training data {(fk, Lk)}. 
For our classifier we used the BBR (Genkin, 
Lewis et al. 2004), but other models, such as 
SVM or NaiveBayes are of course also 
possible. 

Confidence estimation: For each pattern 
match M, its score L(f(M)) is calculated by the 
trained regression model. Note that we do not 
threshold the value of L, instead using the raw 
probability value between zero and one. 

The final confidence estimates c(E) for the 
extraction E is set to the maximum of L(f(M)) 
over all matches M that produced E. 

4   Experimental Evaluation 

Our experiments aim to answer three 
questions: 
  

1. Can we train URES’s classifier once, and 
then use the results on all other relations?  
2. What boost will we get by introducing a 

simple NER into the classification scheme of 
URES?   

3. How does URES’s performance compare 
with KnowItAll and KnowItAll-PL? 

 
Our experiments utilized five relations: 

Acquisition(BuyerCompany,AcquiredCompan
y), 
Merger(Company1, Company2), 
CEO_Of(Company, Person), 
MayorOf(City, Person), 
InventorOf(Person, Invention). 
 

Merger is a symmetric predicate, in the 
sense that the order of its attributes does not 
matter. Acquisition is antisymmetric, and the 
other three are tested as bound in the first 

478



attribute. For the bound predicates, we are only 
interested in the instances with particular 
prespecified values of the first attribute. The 
Invention attribute of the InventorOf predicate 
is of type CommonNP. All other attributes are 
of type ProperName. 

The data for the experiments were collected 
by the KnowItAll crawler. The data for the 
Acquisition and Merger predicates consist of 
about 900,000 sentences for each of the two 
predicates, where each sentence contains at 
least one predicate keyword. The data for the 
bounded predicates consist of sentences that 
contain a predicate keyword and one of a 
hundred values of the first (bound) attribute. 
Half of the hundred are frequent entities 
(>100,000 search engine hits), and another half 
are rare (<10,000 hits). 

The pattern learning for each of the 
predicates was performed using the whole 
corpus of sentences for the predicate. For 
testing the precision of each of the predicates 
in each of the systems we manually evaluated 
sets of 200 instances that were randomly 
selected out of the full set of instances 
extracted from the whole corpus. 

In the first experiment, we test the 
performance of the classification component 

using different predicates for building the 
model. In the second experiment we evaluate 
the full system over the whole dataset. 

 
4.1  Cross-Predicate Classification 

Performance 

In this experiment we test whether the choice 
of the model predicate for training the 
classifier is significant. 

The pattern learning for each of the 
predicates was performed using the whole 
corpus of sentences for the predicate. For 
testing we used a small random selection of 
sentences, run the Instance Extractor over 
them, and manually evaluated each extracted 
instance. The results of the evaluation for 
Acquisition, CEO_Of, and Merger are 
summarized in Figure 2. As can be seen, using 
any of the predicates as the model produces 
similar results. The graphs for the other two 
predicates are similar. We have used only the 
first 15 features, as the NER-based feature (f16) 
is predicate-dependent.  
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Figure 2.  Cross-predicate classification performance results. Each graph shows the five precision-recall curves produced by 

using the five different model predicates. As can be seen, the curves on each graph are very similar. 
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Figure 3.  Comparision between URES, URES-NER, KnowItAll-baseline, and KnowItAll-PL. 

 
4.2  Performance of the whole system 

In this experiment we compare the 
performance of URES with classification to the 
performance of KnowItAll. To carry out the 
experiments, we used extraction data kindly 
provided by the KnowItAll group. They 
provided us with the extractions obtained by 
the KnowItAll system and by its pattern 
learning component (KnowItAll-PL). Both are 
sketched in Section 2.1 and are described in 
detail in (Etzioni, Cafarella et al. 2005). 

In this experiment we used Acquisition as 
the model predicate for testing all other 
predicates except itself.  For testing 
Acquisition we used CEO_Of as the model 
predicate.  The results are summarized in the 
five graphs in the Figure 3. 

For three relations (Acquisition, Merger, and 
InventorOf) URES clearly outperforms 
KnowItAll. Yet for the other two (CEO_Of 
and MayorOf), the simpler method of 
KnowItAll-PL or even the KnowItAll-baseline 
do as well as URES. Close inspection reveals 
that the key difference is the amount of 
redundancy of instances of those relations in 

the data. Instances of CEO_Of and MayorOf 
are mentioned frequently in a wide variety of 
sentences whereas instances of the other 
relations are relatively infrequent. 

KnowItAll extraction works well when 
redundancy is high and most instances have a 
good chance of appearing in simple forms that 
KnowItAll is able to recognize. The additional 
machinery in URES is necessary when 
redundancy is low. Specifically, URES is more 
effective in identifying low-frequency 
instances, due to its more expressive rule 
representation, and its classifier that inhibits 
those rules from overgeneralizing. 

In the same graphs we can see that URES-
NER outperforms URES by 5-15% in recall 
for similar precision levels. We can also see 
that for Person-based predicates the 
improvement is much more pronounced, 
because Person is a much simpler entity to 
recognize.  Since in the InventorOf predicate 
the 2nd attribute is of type CommonNP, the 
NER component adds no value and URES-
NER and URES results are identical for this 
predicate. 
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5   Conclusions 

We have presented the URES system for 
autonomously extracting relations from the 
Web. We showed how to improve the 
precision of the system by classifying the 
extracted instances using the properties of the 
patterns and sentences that generated the 
instances and how to utilize a simple NER 
component. The cross-predicate tests showed 
that classifier that performs well for all 
relations can be built using a small amount of 
labeled data for any particular relation. We 
performed an experimental comparison 
between URES, URES-NER and the state-of-
the-art KnowItAll system, and showed that 
URES can double or even triple the recall 
achieved by KnowItAll for relatively rare 
relation instances, and get an additional 5-15% 
boost in recall by utilizing a simple NER. In 
particular we have shown that URES is more 
effective in identifying low-frequency 
instances, due to its more expressive rule 
representation, and its classifier (augmented by 
NER) that inhibits those rules from 
overgeneralizing. 
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