
Discourse Parsing: Learning FOL Rules based on Rich Verb Semantic
Representations to automatically label Rhetorical Relations

Rajen Subba

Computer Science

University of Illinois

Chicago, IL, USA

rsubba@cs.uic.edu

Barbara Di Eugenio

Computer Science

University of Illinois

Chicago, IL, USA

bdieugen@cs.uic.edu

Su Nam Kim

Department of CSSE

University of Melbourne

Carlton, VIC, Australia

snkim@csse.unimelb.edu.au

Abstract

We report on our work to build a dis-

course parser (SemDP) that uses seman-

tic features of sentences. We use an In-

ductive Logic Programming (ILP) System

to exploit rich verb semantics of clauses

to induce rules for discourse parsing. We

demonstrate that ILP can be used to learn

from highly structured natural language

data and that the performance of a dis-

course parsing model that only uses se-

mantic information is comparable to that

of the state of the art syntactic discourse

parsers.

1 Introduction

The availability of corpora annotated with syntac-

tic information have facilitated the use of prob-

abilistic models on tasks such as syntactic pars-

ing. Current state of the art syntactic parsers

reach accuracies between 86% and 90%, as mea-

sured by different types of precision and recall

(for more details see (Collins, 2003)). Recent

semantic (Kingsbury and Palmer, 2002) and dis-

course (Carlson et al., 2003) annotation projects

are paving the way for developments in seman-

tic and discourse parsing as well. However unlike

syntactic parsing, significant development in dis-

course parsing remains at large.

Previous work on discourse parsing ((Soricut

and Marcu, 2003) and (Forbes et al., 2001))

have focused on syntactic and lexical features

only. However, discourse relations connect

clauses/sentences, hence, descriptions of events

and states. It makes linguistic sense that the

semantics of the two clauses —generally built

around the semantics of the verbs, composed with

that of their arguments— affects the discourse re-

lation(s) connecting the clauses. This may be

even more evident in our instructional domain,

where relations derived from planning such as

Precondition-Act may relate clauses.

Of course, since semantic information is hard

to come by, it is not surprising that previous work

on discourse parsing did not use it, or only used

shallow word level ontological semantics as spec-

ified in WordNet (Polanyi et al., 2004). But when

rich sentence level semantics is available, it makes

sense to experiment with it for discourse parsing.

A second major difficulty with using such rich

verb semantic information, is that it is rep-

resented using complex data structures. Tradi-

tional Machine Learning methods cannot han-

dle highly structured data such as First Or-

der Logic (FOL), a representation that is suit-

ably used to represent sentence level seman-

tics. Such FOL representations cannot be reduced

to a vector of attribute/value pairs as the rela-

tions/interdependencies that exist among the pred-

icates would be lost.

Inductive Logic Programming (ILP) can learn

structured descriptions since it learns FOL de-

scriptions. In this paper, we present our first steps

using ILP to learn semantic descriptions of dis-

course relations. Also of relevance to the topic of

this workshop, is that discourse structure is inher-

ently highly structured, since discourse structure

is generally described in hierarchical terms: ba-

sic units of analysis, generally clauses, are related

by discourse relations, resulting in more complex

units, which in turn can be related via discourse re-

lations. At the moment, we do not yet address the

problem of parsing at higher levels of discourse.

We intend to build on the work we present in this

paper to achieve that goal.

The task of discourse parsing can be di-

vided into two disjoint sub-problems ((Soricut and

Marcu, 2003) and (Polanyi et al., 2004)). The two

sub-problems are automatic identification of seg-

ment boundaries and the labeling of rhetorical re-

lations. Though we consider the problem of auto-

matic segmentation to be an important part in dis-

course parsing, we have focused entirely on the

latter problem of automatically labeling rhetorical

33



Figure 1: SemDP System Architecture (Discourse Parser)

relations only. Our approach uses rich verb seman-

tics1 of elementary discourse units (EDUs)2 based

on VerbNet(Kipper et al., 2000) as background

knowledge and manually annotated rhetorical re-

lations as training examples. It is trained on a lot

fewer examples than the state of the art syntax-

based discourse parser (Soricut and Marcu, 2003).

Nevertheless, it achieves a comparable level of

performance with an F-Score of 60.24. Figure 1

shows a block diagram of SemDP’s system archi-

tecture. Segmentation, annotation of rhetorical re-

lations and parsing constitute the data collection

phase of the system. Learning is accomplished

using an ILP based system, Progol (Muggleton,

1995). As can be seen in Figure 1, Progol takes

as input both rich verb semantic information of

pairs of EDUs and the rhetorical relations between

them. The goal was to learn rules using the se-

mantic information from pairs of EDUs as in Ex-

ample 1:

(1) EDU1: ”Sometimes, you can add a liquid to the water

EDU2: ”to hasten the process”

relation(EDU1,EDU2,”Act:goal”).

to automatically label unseen examples with the

correct rhetorical relation.

The rest of the paper is organized as follows.

Section 2 describes our data collection methodol-

ogy. In section 3, Progol, the ILP system that we

1The semantic information we used is composed of Verb-
Net semantic predicates that capture event semantics as well
as thematic roles.

2EDUs are minimal discourse units produced as a result
of discourse segmentation.

used to induce rules for discourse parsing is de-

tailed. Evaluation results are presented in section

4 followed by the conclusion in section 5.

2 Data Collection

The lack of corpora annotated with both rhetorical

relations as well as sentence level semantic rep-

resentation led us to create our own corpus. Re-

sources such as (Kingsbury and Palmer, 2002) and

(Carlson et al., 2003) have been developed man-

ually. Since such efforts are time consuming and

costly, we decided to semi-automatically build our

annotated corpus. We used an existing corpus of

instructional text that is about 9MB in size and is

made up entirely of written English instructions.

The two largest components are home repair man-

uals (5Mb) and cooking recipes (1.7Mb). 3

Segmentation. The segmentation of the corpus

was done manually by a human coder. Our seg-

mentation rules are based on those defined in

(Mann and Thompson, 1988). For example, (as

shown in Example 2) we segment sentences in

which a conjunction is used with a clause at the

conjunction site.

(2) You can copy files (//) as well as cut messages.

(//) is the segmentation marker. Sentences are

segmented into EDUs. Not all the segmentation

3It was collected opportunistically off the internet and
from other sources, and originally assembled at the Informa-
tion Technology Research Institute, University of Brighton.

34



rules from (Mann and Thompson, 1988) are im-

ported into our coding scheme. For example, we

do not segment relative clauses. In total, our seg-

mentation resulted in 10,084 EDUs. The seg-

mented EDUs were then annotated with rhetorical

relations by the human coder4 and also forwarded

to the parser as they had to be annotated with se-

mantic information.

2.1 Parsing of Verb Semantics

We integrated LCFLEX (Rosé and Lavie, 2000),

a robust left-corner parser, with VerbNet (Kipper

et al., 2000) and CoreLex (Buitelaar, 1998). Our

interest in decompositional theories of lexical se-

mantics led us to base our semantic representation

on VerbNet.

VerbNet operationalizes Levin’s work and ac-

counts for 4962 distinct verbs classified into 237

main classes. Moreover, VerbNet’s strong syntac-

tic components allow it to be easily coupled with a

parser in order to automatically generate a seman-

tically annotated corpus.

To provide semantics for nouns, we use

CoreLex (Buitelaar, 1998), in turn based on the

generative lexicon(Pustejovsky, 1991). CoreLex

defines basic types such as art (artifact) or com

(communication). Nouns that share the same bun-

dle of basic types are grouped in the same System-

atic Polysemous Class (SPC). The resulting 126

SPCs cover about 40,000 nouns.

We modified and augmented LCFLEX’s exist-

ing lexicon to incorporate VerbNet and CoreLex.

The lexicon is based on COMLEX (Grishman et

al., 1994). Verb and noun entries in the lexicon

contain a link to a semantic type defined in the on-

tology. VerbNet classes (including subclasses and

frames) and CoreLex SPCs are realized as types in

the ontology. The deep syntactic roles are mapped

to the thematic roles, which are defined as vari-

ables in the ontology types. For more details on

the parser see (Terenzi and Di Eugenio, 2003).

Each of the 10,084 EDUs was parsed using the

parser. The parser generates both a syntactic tree

and the associated semantic representation – for

the purpose of this paper, we only focus on the

latter. Figure 2 shows the semantic representation

generated for EDU1 from Example 1, ”sometimes,

you can add a liquid to the water”.

The semantic representation in Figure 2 is part

4Double annotation and segmentation is currently being
done to assess inter-annotator agreement using kappa.

(*SEM*

((AGENT YOU)

(VERBCLASS ((VNCLASS MIX-22.1-2))) (EVENT +)

(EVENT0

((END

((ARG1 (LIQUID))

(FRAME *TOGETHER) (ARG0 PHYSICAL)

(ARG2 (WATER)))))))

(EVENTSEM

((FRAME *CAUSE) (ARG1 E) (ARG0 (YOU)))))

(PATIENT1 LIQUID)

(PATIENT2 WATER)

(ROOT-VERB ADD))

Figure 2: Parser Output (Semantic Information)

of the F-Structure produced by the parser. The

verb add is parsed for a transitive frame with a PP

modifier that belongs to the verb class ’MIX-22.1-

2’. The sentence contains two PATIENTs, namely

liquid and water. you is identified as the AGENT

by the parser. *TOGETHER and *CAUSE are the

primitive semantic predicates used by VerbNet.

Verb Semantics in VerbNet are defined as events

that are decomposed into stages, namely start, end,

during and result. The semantic representation in

Figure 2 states that there is an event EVENT0 in

which the two PATIENTs are together at the end.

An independent evaluation on a set of 200 sen-

tences from our instructional corpus was con-

ducted. 5 It was able to generate complete parses

for 72.2% and partial parses for 10.9% of the verb

frames that we expected it to parse, given the re-

sources. The parser cannot parse those sentences

(or EDUs) that contain a verb that is not cov-

ered by VerbNet. This coverage issue, coupled

with parser errors, exacerbates the problem of data

sparseness. This is further worsened by the fact

that we require both the EDUs in a relation set

to be parsed for the Machine Learning part of our

work. Addressing data sparseness is an issue left

for future work.

2.2 Annotation of Rhetorical Relations

The annotation of rhetorical relations was done

manually by a human coder. Our coding scheme

builds on Relational Discourse Analysis (RDA)

(Moser and Moore, 1995), to which we made mi-

5The parser evaluation was not based on EDUs but rather
on unsegmented sentences. A sentence contained one or
more EDUs.

35



nor modifications; in turn, as far as discourse rela-

tions are concerned, RDA was inspired by Rhetor-

ical Structure Theory (RST) (Mann and Thomp-

son, 1988).

Rhetorical relations were categorized as infor-

mational, elaborational, temporal and others. In-

formational relations describe how contents in

two relata are related in the domain. These re-

lations are further subdivided into two groups;

causality and similarity. The former group con-

sists of relations between an action and other ac-

tions or between actions and their conditions or

effects. Relations like ’act:goal’, ’criterion:act’

fall under this group. The latter group con-

sists of relations between two EDUs according

to some notion of similarity such as ’restate-

ment’ and ’contrast1:contrast2’. Elaborational

relations are interpropositional relations in which

a proposition(s) provides detail relating to some

aspect of another proposition (Mann and Thomp-

son, 1988). Relations like ’general:specific’ and

’circumstance:situation’ belong to this category.

Temporal relations like ’before:after’ capture time

differences between two EDUs. Lastly, the cate-

gory others includes relations not covered by the

previous three categories such as ’joint’ and ’inde-

terminate’.

Based on the modified coding scheme manual,

we segmented and annotated our instructional cor-

pus using the augmented RST tool from (Marcu et

al., 1999). The RST tool was modified to incor-

porate our relation set. Since we were only inter-

ested in rhetorical relations that spanned between

two adjacent EDUs 6, we obtained 3115 sets of

potential relations from the set of all relations that

we could use as training and testing data.

The parser was able to provide complete parses

for both EDUs in 908 of the 3115 relation sets.

These constitute the training and test set for Pro-

gol.

The semantic representation for the EDUs along

with the manually annotated rhetorical relations

were further processed (as shown in Figure 4) and

used by Progol as input.

3 The Inductive Logic Programming

Framework

We chose to use Progol, an Inductive Logic Pro-

gramming system (ILP), to learn rules based on

6At the moment, we are concerned with learning relations
between two EDUs at the base level of a Discourse Parse Tree
(DPT) and not at higher levels of the hierarchy.

the data we collected. ILP is an area of research

at the intersection of Machine Learning (ML) and

Logic Programming. The general problem speci-

fication in ILP is given by the following property:

B ∧ H |= E (3)

Given the background knowledge B and the ex-

amples E, ILP systems find the simplest consistent

hypothesis H, such that B and H entails E.

While most of the work in NLP that involves

learning has used more traditional ML paradigms

like decision-tree algorithms and SVMs, we did

not find them suitable for our data which is rep-

resented as Horn clauses. The requirement of us-

ing a ML system that could handle first order logic

data led us to explore ILP based systems of which

we found Progol most appropriate.

Progol combines Inverse Entailment with

general-to-specific search through a refinement

graph. A most specific clause is derived using

mode declarations along with Inverse Entailment.

All clauses that subsume the most specific clause

form the hypothesis space. An A*-like search

is used to search for the most probable theory

through the hypothesis space. Progol allows arbi-

trary programs as background knowledge and ar-

bitrary definite clauses as examples.

3.1 Learning from positive data only

One of the features we found appealing about Pro-

gol, besides being able to handle first order logic

data, is that it can learn from positive examples

alone.

Learning in natural language is a universal hu-

man process based on positive data only. How-

ever, the usual traditional learning models do not

work well without negative examples. On the

other hand, negative examples are not easy to ob-

tain. Moreover, we found learning from positive

data only to be a natural way to model the task of

discourse parsing.

To make the learning from positive data only

feasible, Progol uses a Bayesian framework. Pro-

gol learns logic programs with an arbitrarily low

expected error using only positive data. Of course,

we could have synthetically labeled examples of

relation sets (pairs of EDUs), that did not belong

to a particular relation, as negative examples. We

plan to explore this approach in the future.

A key issue in learning from positive data

only using a Bayesian framework is the ability

to learn complex logic programs. Without any

36



negative examples, the simplest rule or logic

program, which in our case would be a single

definite clause, would be assigned the highest

score as it captures the most number of examples.

In order to handle this problem, Progol’s scoring

function exercises a trade-off between the size of

the function and the generality of the hypothesis.

The score for a given hypothesis is calculated

according to formula 4.

ln p(H | E) = m ln

(

1

g(H)

)

−sz(H)+dm (4)

sz(H) and g(H) computes the size of the hy-

pothesis and the its generality respectively. The

size of a hypothesis is measured as the number

of atoms in the hypothesis whereas generality is

measured by the number of positive examples the

hypothesis covers. m is the number of examples

covered by the hypothesis and dm is a normaliz-

ing constant. The function ln p(H|E) decreases

with increases in sz(H) and g(H). As the number

of examples covered (m) grow, the requirements

on g(H) become even stricter. This property fa-

cilitates the ability to learn more complex rules

as they are supported by more positive examples.

For more information on Progol and the computa-

tion of Bayes’ posterior estimation, please refer to

(Muggleton, 1995).

3.2 Discourse Parsing with Progol

We model the problem of assigning the correct

rhetorical relation as a classification task within

the ILP framework. The rich verb semantic repre-

sentation of pairs of EDUs, as shown in Figure 3 7,

form the background knowledge and the manually

annotated rhetorical relations between the pairs of

EDUs, as shown in Figure 4, serve as the positive

examples in our learning framework. The num-

bers in the definite clauses are ids used to identify

the EDUs.

Progol constructs logic programs based on the

background knowledge and the examples in Fig-

ures 3 and 4. Mode declarations in the Progol in-

put file determines which clause to be used as the

head (i.e. modeh) and which ones to be used in

the body (i.e. modeb) of the hypotheses. Figure 5

shows an abridged set of our mode declarations.

7The output from the parser was further processed into
definite clauses.

...

agent(97,you).

together(97,event0,end,physical,liquid,water).

cause(97,you,e).

patient1(97,liquid).

patient2(97,water).

theme(98,process).

rushed(98,event0,during,process).

cause(98,AGENT98,e).

...

Figure 3: Background Knowledge for Example 1

...

relation(18,19,’Act:goal’).

relation(97,98,’Act:goal’).

relation(1279,1280,’Step1:step2’).

relation(1300,1301,’Step1:step2’).

relation(1310,1311,’Step1:step2’).

relation(412,413,’Before:after’).

relation(441,442,’Before:after’).

...

Figure 4: Positive Examples

Our mode declarations dictate that the predicate

relation be used as the head and the other pred-

icates (has possession, transfer and visible) form

the body of the hypotheses. ’*’ indicates that the

number of hypotheses to learn for a given relation

is unlimited. ’+’ and ’-’ signs indicate variables

within the predicates of which the former is an in-

put variable and the latter an output variable. ’#’

is used to denote a constant. Each argument of the

predicate is a type, whether a constant or a vari-

able. Types are defined as a single definite clause.

Our goal is to learn rules where the LHS of the

rule contains the relation that we wish to learn and

:- modeh(*,relation(+edu,+edu,#relationtype))?

:- modeb(*,has possession(+edu,#event,
#eventstage,+verbarg,+verbarg))?

:- modeb(*,has possession(+edu,#event,
#eventstage,+verbarg,-verbarg))?

:- modeb(*,transfer(+edu,#event,#eventstage,-verbarg))?
:- modeb(*,visible(+edu,#event,#eventstage,+verbarg))?
:- modeb(*,together(+edu,#event,

#eventstage,+verbarg,+verbarg,+verbarg))?
:- modeb(*,rushed(+edu,#event,#eventstage,+verbarg))?

Figure 5: Mode Declarations

37



RULE1:

relation(EDU1,EDU2,’Act:goal’) :-

degradation material integrity(EDU1,event0,result,C),

allow(EDU2,event0,during,C,D).

RULE2:

relation(EDU1,EDU2,’Act:goal’) :-

cause(EDU1,C,D),

together(EDU1,event0,end,E,F,G),

cause(EDU2,C,D).

RULE3:

relation(EDU1,EDU2,’Step1:step2’) :-

together(EDU2,event0,end,C,D,E),

has possession(EDU1,event0,during,C,F).

RULE4:

relation(EDU1,EDU2,’Before:after’) :-

motion(EDU1,event0,during,C),

location(EDU2,event0,start,C,D).

RULE6:

relation(EDU1,EDU2,’Act:goal’) :-

motion(EDU1,event0,during,C).

Figure 6: Rules Learned

the RHS is a CNF of the semantic predicates de-

fined in VerbNet with their arguments. Given the

amount of training data we have, the nature of the

data itself and the Bayesian framework used, Pro-

gol learns simple rules that contain just one or two

clauses on the RHS. 6 of the 68 rules that Progol

manages to learn are shown in Figure 6. RULE4

states that there is a theme in motion during the

event in EDU A (which is the first EDU) and that

the theme is located in location D at the start of

the event in EDU B (the second EDU). RULE2 is

learned from pairs of EDUs such as in Example

1. The simple rules in Figure 6 may not readily

appeal to our intuitive notion of what such rules

should include. It is not clear at this point as to

how elaborate these rules should be, in order to

correctly identify the relation in question. One

of the reasons why more complex rules are not

learned by Progol is that there aren’t enough train-

ing examples. As we add more training data in the

future, we will see if rules that are more elaborate

than the ones in Figure 6 are learned .

4 Evaluation of the Discourse Parser

Table 1 shows the sets of relations for which we

managed to obtain semantic representations (i.e.

for both the EDUs).

Relations like Preparation:act did not yield any

Relation Total Train Test

Set Set

Step1:step2: 232 188 44

Joint: 190

Goal:act: 170 147 23

General:specific: 77

Criterion:act: 53 46 7

Before:after: 53 42 11

Act:side-effect: 38

Co-temp1:co-temp2: 22

Cause:effect: 19

Prescribe-act:wrong-act: 14

Obstacle:situation: 11

Reason:act: 9

Restatement: 6

Contrast1:contrast2: 6

Circumstance:situation: 3

Act:constraint: 2

Criterion:wrong-act: 2

Set:member: 1

Act:justification: 0

Comparison: 0

Preparation:act: 0

Object:attribute: 0

Part:whole: 0

Same-unit: 0

Indeterminate: 0

908 423 85

Table 1: Relation Set Count (Total Counts include ex-

amples that yielded semantic representations for both EDUs)

examples that could potentially be used. For a

number of relations, the total number of examples

we could use were less than 50. For the time being,

we decided to use only those relation sets that had

more than 50 examples. In addition, we chose not

to use Joint and General:specific relations. They

will be included in the future. Hence, our training

and testing data consisted of the following four re-

lations: Goal:act, Step1:step2, Criterion:act and

Before:after. The total number of examples we

used was 508 of which 423 were used for training

and 85 were used for testing.

Table 2, Table 3 and Table 4 show the results

from running the system on our test data. A total

of 85 positive examples were used for testing the

system.

Table 2 evaluates our SemDP system against a

baseline. Our baseline is the majority function,

which performs at a 51.7 F-Score. SemDP outper-

forms the baseline by almost 10 percentage points

38



Discourse Precision Recall F-Score

Parser

SemDP 61.7 58.8 60.24

Baseline* 51.7 51.7 51.7

Table 2: Evaluation vs Baseline (* our baseline is

the majority function)

Relation Precision Recall F-Score

Goal:act 31.57 26.08 28.57

Step1:step2 75 75 75

Before:after 54.5 54.5 54.5

Criterion:act 71.4 71.4 71.4

Total 61.7 58.8 60.24

Table 3: Test Results for SemDP

with an F-Score of 60.24. To the best of our

knowledge, we are also not aware of any work that

uses rich semantic information for discourse pars-

ing. (Polanyi et al., 2004) do not provide any eval-

uation results at all. (Soricut and Marcu, 2003) re-

port that their SynDP parser achieved up to 63.8 F-

Score on human-segmented test data. Our result of

60.24 F-Score shows that a Discourse Parser based

purely on semantics can perform as well. How-

ever, since the corpus, the size of training data and

the set of rhetorical relations we have used differ

from (Soricut and Marcu, 2003), a direct compar-

ison cannot be made.

Table 3 breaks down the results in detail for

each of the four rhetorical relations we tested on.

Since we are learning from positive data only and

the rules we learn depend heavily on the amount

of training data we have, we expected the system

to be more accurate with the relations that have

more training examples. As expected, SemDP did

very well in labeling Step1:step2 relations. Sur-

prisingly though, it did not perform as well with

Goal:act, even though it had the second highest

number of training examples (147 in total). In fact,

SemDP misclassified more positive test examples

for Goal:act than Before:after or Criterion:act, re-

lations which had almost one third the number of

Relation Goal:act Step1:step2 Before:after Criterion:act

Goal:act 6 8 5 0

Step1:step2 6 33 5 0

Before:after 0 4 6 1

Criterion:act 0 0 2 5

Table 4: Confusion Matrix for SemDP Test Result

training examples. Overall SemDP achieved a pre-

cision of 61.7 and a Recall of 58.8.

In order to find out how the positive test exam-

ples were misclassified, we investigated the dis-

tribution of the relations classified by SemDP. Ta-

ble 4 is the confusion matrix that highlights this

issue. A majority of the actual Goal:act relations

are incorrectly classified as Step1:step1 and Be-

fore:after. Likewise, most of the misclassification

of actual Step1:step1 seems to labeled as Goal:act

or Before:after. Such misclassification occurs be-

cause the simple rules learned by SemDP are not

able to accurately distinguish cases where positive

examples of two different relations share similar

semantic predicates. Moreover, since we are learn-

ing using positive examples only, it is possible that

a positive example may satisfy two or more rules

for different relations. In such cases, the rule that

has the highest score (as calculated by formula 4)

is used to label the unseen example.

5 Conclusions and Future Work

We have shown that it is possible to learn First Or-

der Logic rules from complex semantic data us-

ing an ILP based methodology. These rules can

be used to automatically label rhetorical relations.

Moreover, our results show that a Discourse Parser

that uses only semantic information can perform

as well as the state of the art Discourse Parsers

based on syntactic and lexical information.

Future work will involve the use of syntactic in-

formation as well. We also plan to run a more thor-

ough evaluation on the complete set of relations

that we have used in our coding scheme. It is also

important that the manual segmentation and an-

notation of rhetorical relations be subject to inter-

annotator agreement. A second human annotator

is currently annotating a sample of the annotated

corpus. Upon completion, the annotated corpus

will be checked for reliability.

Data sparseness is a well known problem in Ma-

chine Learning. Like most paradigms, our learn-

ing model is also affected by it. We also plan to

explore techniques to deal with this issue.

39



Lastly, we have not tackled the problem of dis-

course parsing at higher levels of the DPT and seg-

mentation in this paper. Our ultimate goal is to

build a Discourse Parser that will automatically

segment a full text as well as annotate it with

rhetorical relations at every level of the DPT using

semantic as well as syntactic information. Much

work needs to be done but we are excited to see

what the aforesaid future work will yield.

Acknowledgments

This work is supported by award 0133123 from the National
Science Foundation. Thanks to C.P. Rosé for LCFLEX, M.
Palmer and K. Kipper for VerbNet, C. Buitelaar for CoreLex,
and Stephen Muggleton for Progol.

References

Paul Buitelaar. 1998. CoreLex: Systematic Polysemy
and Underspecification. Ph.D. thesis, Computer Science,
Brandeis University, February.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski.
2003. Building a discourse-tagged corpus in the frame-
work of Rhetorical Structure Theory. In Current Direc-
tions in Discourse and Dialogue, pp. 85-112, Jan van Kup-
pevelt and Ronnie Smith eds., Kluwer Academic Publish-
ers.

Michael Collins. 2003. Head-driven statistical methods for
natural language parsing. Computational Linguistics, 29.

Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad, Anoop
Sarkar, Aravind Joshi and Bonnie Webber. 2001. D-
LTAG System - Discourse Parsing with a Lexicalized Tree
Adjoining Grammar. Information Stucture, Discourse
Structure and Discourse Semantics, ESSLLI, 2001.

Ralph Grishman, Catherine Macleod, and Adam Meyers.
1994. COMLEX syntax: Building a computational lex-
icon. In COLING 94, Proceedings of the 15th Interna-
tional Conference on Computational Linguistics, pages
472–477, Kyoto, Japan, August.

Paul Kingsbury and Martha Palmer. 2000. From Treebank
to Propbank. In Third International Conference on Lan-
guage Resources and Evaluation, LREC-02, Las Palmas,
Canary Islands, Spain, May 28 - June 3, 2002.

Karin Kipper, Hoa Trang Dang, and Martha Palmer. 2000.
Class-based construction of a verb lexicon. In AAAI-2000,
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, Austin, TX.

Beth Levin and Malka Rappaport Hovav. 1992. Wiping the
slate clean: a lexical semantic exploration. In Beth Levin
and Steven Pinker, editors, Lexical and Conceptual Se-
mantics, Special Issue of Cognition: International Journal
of Cognitive Science. Blackwell Publishers.

William C. Mann and Sandra Thompson. 1988. Rhetorical
Structure Theory: toward a Functional Theory of Text Or-
ganization. Text, 8(3):243–281.

Daniel Marcu and Abdessamad Echihabi. 2002. An unsuper-
vised approach to recognizing discourse relations. In Pro-
ceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL-2002), Philadelphia, PA,
July.

Daniel Marcu, Magdalena Romera and Estibaliz Amorrortu.
1999. Experiments in Constructing a Corpus of Discourse
Trees: Problems, Annotation Choices, Issues. In The
Workshop on Levels of Representation in Discourse, pages
71-78, Edinburgh, Scotland, July.

M. G. Moser, and J. D. Moore. 1995. Using Discourse
Analysis and Automatic Text Generation to Study Dis-
course Cue Usage. In AAAI Spring Symposium on Empir-
ical Methods in Discourse Interpretation and Generation,
1995.

Stephen H. Muggleton. 1995. Inverse Entailment and Pro-
gol. In New Generation Computing Journal, Vol. 13, pp.
245-286, 1995.

Martha Palmer, Daniel Gildea and, Paul Kingsbury. 2005.
The Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics, 31(1):71–105.

Livia Polanyi, Christopher Culy, Martin H. van den Berg,
Gian Lorenzo Thione, and David Ahn. 2004. Senten-
tial Structure and Discourse Parsing. Proceedings of the
ACL2004 Workshop on Discourse Annotation, Barcelona,
Spain, July 25, 2004.

James Pustejovsky. 1991. The generative lexicon. Computa-
tional Linguistics, 17(4):409–441.

Carolyn Penstein Rosé and Alon Lavie. 2000. Balancing ro-
bustness and efficiency in unification-augmented context-
free parsers for large practical applications. In Jean-
Clause Junqua and Gertjan van Noord, editors, Robustness
in Language and Speech Technology. Kluwer Academic
Press.

Radu Soricut and Daniel Marcu. 2003. Sentence Level Dis-
course Parsing using Syntactic and Lexical Information.
In Proceedings of the Human Language Technology and
North American Assiciation for Computational Linguis-
tics Conference (HLT/NAACL-2003), Edmonton, Canada,
May-June.

Elena Terenzi and Barbara Di Eugenio. 2003. Building lex-
ical semantic representations for natural language instruc-
tions. In HLT-NAACL03, 2003 Human Language Tech-
nology Conference, pages 100–102, Edmonton, Canada,
May. (Short Paper).

40


