
Proceedings of the 10th Conference on Parsing Technologies, pages 133–143,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Dependency Parsing with Second-Order Feature Maps and Annotated
Semantic Information

Massimiliano Ciaramita
Yahoo! Research
Ocata 1, S-08003
Barcelona, Spain

massi@yahoo-inc.com

Giuseppe Attardi
Dipartimento di Informatica

Università di Pisa
L. B. Pontecorvo 3, I-56127

Pisa, Italy
attardi@di.unipi.it

Abstract

This paper investigates new design options
for the feature space of a dependency parser.
We focus on one of the simplest and most
efficient architectures, based on a determin-
istic shift-reduce algorithm, trained with the
perceptron. By adopting second-order fea-
ture maps, the primal form of the perceptron
produces models with comparable accuracy
to more complex architectures, with no need
for approximations. Further gains in accu-
racy are obtained by designing features for
parsing extracted from semantic annotations
generated by a tagger. We provide experi-
mental evaluations on the Penn Treebank.

1 Introduction

A dependency tree represents a sentence as a labeled
directed graph encoding syntactic and semantic in-
formation. The labels on the arcs can represent ba-
sic grammatical relations such as “subject” and “ob-
ject”. Dependency trees capture grammatical struc-
tures that can be useful in several language process-
ing tasks such as information extraction (Culotta &
Sorensen, 2004) and machine translation (Ding &
Palmer, 2005). Dependency treebanks are becoming
available in many languages, and several approaches
to dependency parsing on multiple languages have
been evaluated in the CoNLL 2006 and 2007 shared
tasks (Buchholz & Marsi, 2006; Nivre et al., 2007).

Dependency parsing is simpler than constituency
parsing, since dependency trees do not have extra
non-terminal nodes and there is no need for a gram-
mar to generate them. Approaches to dependency

parsing either generate such trees by considering all
possible spanning trees (McDonald et al., 2005), or
build a single tree by means of shift-reduce parsing
actions (Yamada & Matsumoto, 2003). Determinis-
tic dependency parsers which run in linear time have
also been developed (Nivre & Scholz, 2004; Attardi,
2006). These parsers process the sentence sequen-
tially, hence their efficiency makes them suitable for
processing large amounts of text, as required, for ex-
ample, in information retrieval applications.

Recent work on dependency parsing has high-
lighted the benefits of using rich feature sets
and high-order modeling. Yamada and Mat-
sumoto (2003) showed that learning an SVM model
in the dual space with higher-degree polynomial ker-
nel functions improves significantly the parser’s ac-
curacy. McDonald and Pereira (2006) have shown
that incorporating second order features relating to
adjacent edge pairs improves the accuracy of max-
imum spanning tree parsers (MST). In the SVM-
based approach, if the training data is large, it is not
feasible to train a single model. Rather, Yamada and
Matsumoto (see also (Hall et al., 2006)) partition the
training data in different sets, on the basis of Part-
of-Speech, then train one dual SVM model per set.
While this approach simplifies the learning task it
makes the parser more sensitive to the error rate of
the POS tagger. The second-order MST algorithm
has cubic time complexity. For non-projective lan-
guages the algorithm is NP-hard and McDonald and
Pereira (2006) introduce an approximate algorithm
to handle such cases.

In this paper we extend shift reduce parsing with
second-order feature maps which explicitly repre-

133

sent all feature pairs. Also the augmented fea-
ture sets impose additional computational costs.
However, excellent efficiency/accuracy trade-off is
achieved by using the perceptron algorithm, with-
out the need to resort to approximations, producing
high-accuracy classifiers based on a single model.

We also evaluate a novel set of features for pars-
ing. Recently various forms of shallow semantic
processing have been investigated such as named-
entity recognition (NER), semantic role labeling
(SRL) and relation extraction. Syntactic parsing can
provide useful features for these tasks; e.g., Pun-
yakanok et al. (2005) show that full parsing is effec-
tive for semantic role labeling (see also related ap-
proaches evaluated within the CoNNL 2005 shared
task (Carreras et al., 2005)). However, no evidence
has been provided so far that annotated semantic
information can be leveraged for improving parser
performance. We report experiments showing that
adding features extracted by an entity tagger im-
proves the accuracy of a dependency parser.

2 Dependency parsing

A dependency parser takes as input a sentence s and
returns a dependency graph d. Figure 1 shows a de-
pendency tree for the sentence “Last week CBS Inc.
canceled ’The People Next Door’.”1. Dependencies
are represented as labeled arrows from the head of
the relation to the modifier word; thus, in the exam-
ple, “Inc.” is the modifier of a dependency labeled
“SUB” (subject) to the main verb, the head, “can-
celed”.

In statistical syntactic parsing a generator (e.g.,
a PCFG) is used to produce a number of candi-
date trees (Collins, 2000) with associated proba-
bility scores. This approach has been used also
for dependency parsing, generating spanning trees
as candidates and computing the maximum span-
ning tree (MST) using discriminative learning algo-
rithms (McDonald et al., 2005). Second-order MST
dependency parsers currently represent the state of
the art in terms of accuracy. Yamada and Mat-
sumoto (2003) proposed a deterministic classifier-
based parser. Instead of learning directly which
tree to assign to a sentence, the parser learns which

1The figure also contains entity annotations which will be
explained below in Section 4.1.

Shift/Reduce actions to use in building the tree. Pars-
ing is cast as a classification problem: at each step
the parser applies a classifier to the features rep-
resenting its current state to predict which action
to perform on the tree. Similar deterministic ap-
proaches to parsing have been investigated also in
the context of constituent parsing (Wong & Wu,
1999; Kalt, 2004).

Nivre and Scholz (2004) proposed a variant of the
model of Yamada and Matsumoto that reduces the
complexity, from the worst case quadratic to linear.
Attardi (2006) proposed a variant of the rules that
handle non-projective relations while parsing deter-
ministically in a single pass. Shift-reduce algorithms
are simple and efficient, yet competitive in terms
of accuracy: in the CoNLL-X shared task, for sev-
eral languages, there was no statistically significant
difference between second-order MST parsers and
shift-reduce parsers.

3 A shift-reduce parser

We build upon DeSR, the shift-reduce parser de-
scribed in (Attardi, 2006). This and Nivre and
Scholz’s (2004) provide among the simplest and
most efficient methods. This parser constructs de-
pendency trees by scanning input sentences in a
single left-to-right pass and performing shift/reduce
parsing actions. The parsing algorithm is fully de-
terministic and has linear complexity. The parser’s
behavior can be described as repeatedly selecting
and applying a parsing rule to transform its state,
while advancing through the sentence. Each to-
ken is analyzed once and a decision is made lo-
cally concerning the action to take, that is, without
considering global properties of the tree being built.
Nivre (2004) investigated the issue of (strict) incre-
mentality for this type of parsers; i.e., if at any point
of the analysis the processed input forms one con-
nected structure. Nivre found that strict incremen-
tality is not guaranteed within this parsing frame-
work, although for correctly parsed trees the prop-
erty holds in almost 90% of the cases.

3.1 Parsing algorithm

The state of the parser is represented by a triple
〈S, I,A〉, where S is the stack, I is the list of input
tokens that remain to be processed and A is the arc

134

Figure 1. A dependency tree from the Penn Treebank, with additional entity annotation from the BBN corpus.

relation for the dependency graph, which consists of
a set of labeled arcs (wi, r, wj), where wi, wj ∈ W
(the set of tokens), d ∈ D (the set of dependencies).
Given an input sentence s, the parser is initialized
to 〈∅, s, ∅〉, and terminates at configuration 〈s, ∅, A〉.
There are three parsing schemata:

Shift 〈S,n|I,A〉
〈n|S,I,A〉(1)

Rightr
〈s|S,n|I,A〉

〈S,n|I,A∪{(s,r,n)}〉(2)

Leftr
〈s|S,n|I,A〉

〈S,s|I,A∪{(n,r,s)}〉(3)

The Shift rule advances on the input; each Leftr and
Rightr rule creates a link r between the next input
token n and the top token on the stack s. For produc-
ing labeled dependencies the rules Leftr and Rightr
are instantiated several times once for each depen-
dency label.

Additional parsing actions (cf. (Attardi, 2006))
have been introduced for handling non-projective
dependency trees: i.e., trees that cannot be drawn
in the plane without crossing edges. However, they
are not needed in the experiments reported here,
because in the Penn Treebank used in our experi-
ments dependencies are extracted without consider-
ing empty nodes and the resulting trees are all pro-
jective2.

The pseudo code in Algorithm 1 reproduces
schematically the parsing process.

The function getContext() extracts a vector of
features x relative to the structure built up to that
point from the context of the current token, i.e., from
a subset of I , S and A. The step estimateAction()
predicts a parsing action y, given a trained model α

2Instead, the version of the Penn Treebank used for the
CoNLL 2007 shared task includes also non-projective represen-
tations.

Algorithm 1: DeSR: Dependency Shift Reduce
parser.

input: s = w1, w2, ..., wn

begin
S ← 〈〉
I ← 〈w1, w2, ..., wn〉
A← 〈〉
while I 6= 〈〉 do

x← getContext(S, I,A)
y ← estimateAction(x, α)
performAction(y, S, I, A)

end

and x. The final step performAction() updates the
state according to the predicted parsing rule.

3.2 Features

The set of features used in this paper were chosen
with a few simple experiments on the development
data as a variant of a generic model. The only fea-
tures of the tokens used are “Lemma”, “Pos” and
“Dep”: “Lemma” refers to the morphologically sim-
plified form of the token, “Pos” is the Part-of-Speech
and “Dep” is the label on a dependency. “Child”
refers to the child of a node (right or left): up to
two furthest children of a node are considered. Ta-
ble 1 lists which feature is extracted for which to-
ken: negative numbers refer to tokens on the stack,
positive numbers refer to input tokens. As an exam-
ple, POS(-1) is the Part-of-Speech of the token on
the top of the stack, while Lemma(0) is the lemma
of the next token in the input, PosLeftChild(-1) ex-
tracts the Part-of-Speech of the leftmost child of the
token on the top of the stack, etc.

135

TOKEN
FEATURES Stack Input
Lemma -2 -1 0 1 2 3
Pos -2 -1 0 1 2 3
LemmaLeftChild -1 0
PosLeftChild -1 0
DepLeftChild -1 0
LemmaRightChild -1 0
PosRightChild -1 0
DepRightChild -1
LemmaPrev 0
PosSucc -1

Table 1. Configuration of the feature parameters used in
the experiments.

3.3 Learning a parsing model with the
perceptron

The problem of learning a parsing model can be
framed as a classification task where each class
yi ∈ Y represents one of k possible parsing actions.
Each of such actions is associated with a weight vec-
tor αk ∈ IRd. Given a datapoint x ∈ X , a d-
dimensional vector of binary features in the input
space X , a parsing action is chosen with a winner-
take-all discriminant function:

estimateAction(x, α) = arg max
k

f(x, αk) (4)

when using a linear classifier, such as the perceptron
or SVM, f(u,v) = 〈u,v〉 is the inner product be-
tween vectors u and v.

We learn the parameters α from the training data
with the perceptron (Rosemblatt, 1958), in the on-
line multiclass formulation of the algorithm (Cram-
mer & Singer, 2003) with uniform negative updates.
The perceptron has been used in previous work on
dependency parsing by Carreras et al. (2006), with
a parser based on Eisner’s algorithm (Eisner, 2000),
and also on incremental constituent parsing (Collins
& Roark, 2006). Also the MST parser of McDonald
uses a variant of the perceptron algorithm (McDon-
ald, 2006). The choice is motivated by the simplicity
and performance of perceptrons, which have proved
competitive on a number of tasks; e.g., in shallow
parsing, where perceptron’s performance is com-
parable to that of Conditional Random Field mod-
els (Sha & Pereira, 2003).

The only adjustable parameter of the model is the
number of instances T to use for training. We fixed
T using the development portion of the data. In

our experiments, the best value is between 20 and
30 times the size of the training data. To regularize
the model we take as the final model the average of
all weight vectors posited during training (Collins,
2002). Algorithm 2 illustrates the perceptron learn-
ing procedure. The final average model can be com-
puted efficiently during training without storing the
individual α vectors (e.g., see (Ciaramita & Johnson,
2003)).

Algorithm 2: Average multiclass perceptron

input : S = (xi, yi)N ;α0
k = ~0, ∀k ∈ Y

for t = 1 to T do
choose j
Et = {r ∈ Y : 〈xj , α

t
r〉 ≥ 〈xj , α

t
yj
〉}

if |Et| > 0 then
αt+1

r = αt
r −

xj

|Et| , ∀r ∈ Et

αt+1
yj

= αt
yj

+ xj

output: αk = 1
T

∑
t αt

k, ∀k ∈ Y

3.4 Higher-order feature spaces

Yamada and Matsumoto (2003) and McDonald and
Pereira (2006) have shown that higher-order fea-
ture representations and modeling can improve pars-
ing accuracy, although at significant computational
costs. To make SVM training feasible in the dual
model with polynomial kernels, Yamada and Mat-
sumoto split the training data into several sets, based
on POS tags, and train a parsing model for each
set. McDonald and Pereira’s second-order MST
parser has O(n3) complexity, while for handling
non-projective trees, otherwise an NP-hard problem,
the parser resorts to an approximate algorithm. Here
we discuss how the feature representation can be
enriched to improve parsing while maintaining the
simplicity of the shift-reduce architecture, and per-
forming discriminative learning without partitioning
the training data.

The linear classifier (see Equation 4) learned with
the perceptron is inherently limited in the types of
solutions it can learn. As originally pointed out by
Minsky and Papert (1969), there are problems which
require non-linear solutions that cannot be learned
by such models. A simple workaround this limi-
tation relies on feature maps Φ : IRd → IRh that

136

map the input vectors x ∈ X into some higher h-
dimensional representation Φ(X) ⊂ IRh, the fea-
ture space. The feature space can represent, for ex-
ample, all combinations of individual features in the
input space. We define a feature map which ex-
tracts all second order features of the form xixj ;
i.e., Φ(x) = (xi, xj |i = 1, ..., d, j = i, ..., d). The
linear perceptron working in Φ(X) effectively im-
plements a non-linear classifier in the original in-
put space X . One shortcoming of this approach is
that it inflates considerably the feature representa-
tion and might not scale. In general, the number of
features of degree g over an input space of dimen-
sion d is

(
d+g−1

g

)
. In practice, a second-order fea-

ture map can be handled with reasonable efficiency
by the perceptron. We call this the 2nd-order model,
which uses a modified scoring function:

g(x, αk) = f(Φ(x), αk) (5)

where also αk is h-dimensional. The proposed fea-
ture map is equivalent to a polynomial kernel func-
tion of degree two. Yamada and Matsumoto (2003)
have shown that the degree two polynomial ker-
nel has superior accuracy than the linear model and
polynomial kernels of higher degrees. However, us-
ing the dual model is not always practical for depen-
dency parsing. The discriminant function of the dual
model is defined as:

f ′(x, α) = arg max
k

N∑
i=1

αk,i〈x,xi〉g (6)

where the weights α are associated with class-
instance pairs rather than class-feature pairs. With
respect to the discriminant function of equation (4)
there is an additional summation. In principle, the
inner products can be cached in a Kernel matrix to
speed up training.

There are two shortcomings to using such a model
in dependency parsing. First, if the amount of train-
ing data is large it might not be feasible to store the
Kernel matrix; which for a dataset of size N requires
O(N3) computations and O(N2) space. As an ex-
ample, the number of training instances N in the
Penn Treebank is over 1.8 million, caching the Ker-
nel matrix would require several Terabytes of space.
The second shortcoming is independent of training.
In predicting a tree for unseen sentences the model

will have to recompute the inner products between
the observation and all the support vectors; i.e., all
class-instance pairs with αk,i > 0. The second-order
feature map with the perceptron is more efficient and
allows faster training and prediction. Training a sin-
gle parsing model avoids a potential loss of accuracy
that occurs when using the technique of partitioning
the training data according to the POS. Inaccurate
predictions of the POS can affect significantly the
accuracy of the actions predicted, while the single
model is more robust, since the POS is just one of
the many features used in prediction.

4 Semantic features

Semantic information is used implicitly in parsing.
For example, conditioning on lexical heads pro-
vides a source of semantic information. There have
been a few attempts at using semantic information
more explicitly. Charniak’s 1997 parser (1997), de-
fined probability estimates backed off to word clus-
ters. Collins and Koo (Collins & Koo, 2005) in-
troduced an improved reranking model for parsing
which includes a hidden layer of semantic features.
Yi and Palmer (2005) retrained a constituent parser
in which phrases were annotated with argument in-
formation to improve SRL, however this didn’t im-
prove over the output of the basic parser.

In recent years there has been a significant
amount of work on semantic annotation tasks such
as named-entity recognition, semantic role labeling
and relation extraction. There is evidence that de-
pendency and constituent parsing can be helpful in
these and other tasks; e.g., by means of tree ker-
nels in question classification and semantic role la-
beling (Zhang & Lee, 2003; Moschitti, 2006).

It is natural to ask if also the opposite holds:
whether semantic annotations can be used to im-
prove parsing. In particular, it would be interesting
to know if entity-like tags can be used for this pur-
pose. One reason for this is that entity tagging is ef-
ficient and does not seem to need parsing for achiev-
ing top performance. Beyond improving traditional
parsing, independently learned semantic tags might
be helpful in adapting a parser to a new domain. To
the best of our knowledge, no evidence has been pro-
duced yet that annotated semantic information can
improve parsing. In the following we investigate

137

adding entity tags as features of our parser.

4.1 BBN Entity corpus

The BBN corpus (BBN, 2005) supplements the Wall
Street Journal Penn Treebank with annotation of a
large set of entity types. The corpus includes an-
notation of 12 named entity types (Person, Facility,
Organization, GPE, Location, Nationality, Product,
Event, Work of Art, Law, Language, and Contact-
Info), nine nominal entity types (Person, Facility,
Organization, GPE, Product, Plant, Animal, Sub-
stance, Disease and Game), and seven numeric types
(Date, Time, Percent, Money, Quantity, Ordinal and
Cardinal). Several of these types are further divided
into subtypes3. This corpus provides adequate sup-
port for experimenting semantic features for parsing.

Figure 1 illustrates the annotation layer provided
by the BBN corpus4. It is interesting to notice one
apparent property of the combination of semantic
tags and dependencies. When we consider segments
composed of several words there is exactly one de-
pendency connecting a token outside the segment
with a token inside the segment; e.g., “CBS Inc.” is
connected outside only through the token “Inc.”, the
subject of the main verb. With respect to the rest of
the tree, segments tend to form units, with their own
internal structure. Intuitively, this information seems
relevant for parsing. This locally-structured patterns
could help particularly simple algorithms like ours,
which have limited knowledge of the global struc-
ture being built.

Table 2 lists the 40 most frequent categories in
sections 2 to 21 of the BBN corpus, and the per-
centage of all entities they represent – together more
than 97%. Sections 2-21 are comprised of 949,853
tokens, 23.5% of the tokens have a non-null BBN
entity tag, on average there is one tagged token every
four. The total number of entities is 139,029, 70.5%
of which are named entities and nominal concepts,
17% are numerical types and the remaining 12.5%
describe time entities.

We designed three new features which extract
simple properties of entities from the semantic an-
notation information:

3BBN Corpus documentation.
4The full label for “ORG” is “ORG:Corporation”, and

“WOA” stands for “WorkOfArt:Other”.

TOKEN
FEATURES Stack Input
AS-0 = EOS+BIO+TAG 0
AS-1 = EOS+BIO+TAG -1 0 1
AS-2 = EOS+BIO+TAG -2 -1 0 1 2
EOS -2 -1 0 1 2
BIO -2 -1 0 1 2
TAG -2 -1 0 1 2

Table 3. Additional configurations for the models with
BBN entity features.

• EOS: Distance to the end of the segment; e.g.,
EOS(“Last”) = 1, EOS(“canceled”) = 0;

• BIO: The first character of the BBN label
for a token; e.g., BIO(“CBS”) = “B”, and
BIO(“canceled”) = 0;

• TAG: Full BBN tag for the token; e.g.,
TAG(“CBS”) = “B-ORG:Corporation”,
TAG(“week”) = “I-DATE”.

The feature EOS provides information about the rel-
ative position of the token within a segment with re-
spect to the end of the segment. The feature BIO dis-
criminates tokens with no semantic annotation as-
sociated, from tokens within a segment and token
which start a segment. Finally the feature TAG iden-
tifies the full semantic tag associated with the token.
With respect to the former two features this bears
the most fine-grained semantics. Table 3 summa-
rizes six additional models we implemented. The
first three use all additional features together, ap-
plied to different sets of tokens, while the last three
apply only one feature, on top of the base model,
relative to the next token in the input, the following
two tokens in the input, and the previous two tokens
on the stack.

4.2 Corpus pre-processing

The original BBN corpus has its own tokeniza-
tion which often does not reflect the Penn Tree-
bank tokenization; e.g., when an entity intersects
an hyphenated compound, thus “third-highest” be-
comes “thirdORDINAL - highest”. This is problem-
atic for combining entity annotation and dependency
trees. Since our main focus is parsing we re-aligned
the BBN Corpus with the Treebank tokenization.
Thus, for example, when an entity splits a Tree-
bank token we extend the entity boundary to contain

138

WSJ-BBN Corpus Categories
Tag % Tag % Tag % Tag %
PER DESC 15.5 ORG:CORP 13.7 DATE:DATE 9.2 ORG DESC:CORP 8.9
PERSON 8.13 MONEY 6.5 CARDINAL 6.0 PERCENT 3.5
GPE:CITY 3.12 GPE:COUNTRY 2.9 ORG:GOV 2.6 NORP:NATION-TY 1.9
DATE:DURATION 1.8 GPE:PROVINCE 1.5 ORG DESC:GOV 1.4 FAC DESC:BLDG 1.1
ORG:OTHER 0.7 PROD DESC:VEHICLE 0.7 ORG DESC:OTHER 0.6 ORDINAL 0.6
TIME 0.5 GPE DESC:COUNTRY 0.5 SUBST:OTHER 0.5 SUBST:FOOD 0.5
DATE:OTHER 0.4 NORP:POLITICAL 0.4 DATE:AGE 0.4 LOC:REGION 0.3
SUBST:CHEM 0.3 WOA:OTHER 0.3 FAC DESC:OTHER 0.3 SUBST:DRUG 0.3
ANIMAL 0.3 GPE DESC:PROVINCE 0.2 PROD:VEHICLE 0.2 GPE DESC:CITY 0.2
PRODUCT:OTHER 0.2 LAW 0.2 ORG:POLITICAL 0.2 ORG:EDU 0.2

Table 2. The 40 most frequent labels in sections 2 to 21 of the Wall Street Journal BBN Corpus and the percentage of
tags occurrences.

the whole original Treebank token, thus obtaining
“third-highestORDINAL” in the example above.

4.3 Semantic tagger

We treated semantic tags as POS tags. A tagger
was trained on the BBN gold standard annotation
and used it to annotate development and evaluation
data. We briefly describe the tagger (see (Ciaramita
& Altun, 2006) for more details), a Hidden Markov
Model trained with the perceptron algorithm intro-
duced in (Collins, 2002). The tagger uses Viterbi
decoding. Label to label dependencies are limited to
the previous tag (first order HMM). A generic fea-
ture set for NER based on words, lemmas, POS tags,
and word shape features was used.

The tagger is trained on sections 2-21 of the BBN
corpus. As before, section 22 of the BBN corpus
is used for choosing the perceptron’s parameter T .
The tagger’s model is regularized as described for
Algorithm 2. The full BBN tagset is comprised
of 105 classes organized hierarchically, we ignored
the hierarchical organization and treated each tag as
an independent class in the standard BIO encoding.
The tagger evaluated on section 23 achieves an F-
score of 86.8%. The part of speech for the evalua-
tion/development sections was produced with Tree-
Tagger. As a final remark we notice that the tagger’s
complexity, linear in the length of the sentence, pre-
serves the parser’s complexity.

5 Parsing experiments

5.1 Data and setup

We used the standard partitions of the Wall Street
Journal Penn Treebank (Marcus et al., 1993); i.e.,
sections 2-21 for training, section 22 for develop-

ment and section 23 for evaluation. The constituent
trees were transformed into dependency trees by
means of a program created by Joakim Nivre that
implements the rules proposed by Yamada and Mat-
sumoto, which in turn are based on the head rules
of Collins’ parser (Collins, 1999)5. The lemma for
each token was produced using the “morph” func-
tion of the WordNet (Fellbaum, 1998) library6. The
data in the WSJ sections 22 and 23, both for the
parser and for the semantic tagger, was POS-tagged
using TreeTagger7, which has an accuracy of 97.0%
on section 23.

Training a parsing model on the Wall Street Jour-
nal requires a set of 22 classes: 10 of the 11 labels
in the dependency corpus generated from the Penn
Treebank (e.g., subj, obj, sbar, vmod, nmod, root,
etc.) are paired with both a Left and Right actions.
In addition, there is in one rule for the “root” label
and one for the Shift action. The total number of
features found in training ranges from two hundred
thousand for the 1st-order model to approximately
20 million of the 2nd-order models.

We evaluated several models, each trained with
1st-order and 2nd-order features. The base model
(BASE) only uses the traditional set of features (cf.
Table 1). Models EOS, BIO and TAG each use only
one type of semantic feature with the configuration
described in Table 3. Models AS-0, AS-1, and AS-2
use all three semantic features for the token on the
stack in AS-0, plus the previous token on the stack
and the new token in the input in AS-1, plus an addi-

5The script is available from
http://w3.msi.vxu.se/%7enivre/research/Penn2Malt.html

6http://wordnet.princeton.edu
7TreeTagger is available from http://www.ims.uni-

stuttgart.de/projekte/corplex/TreeTagger/

139

1st-order scores 2nd-order scores
DeSR MODEL LAS UAS Imp LAC LAS UAS Imp LAC
BASE 84.01 85.56 - 88.24 89.20 90.55 - 92.22
EOS 84.89 86.37 +5.6 88.94 89.36 90.64 +1.0 92.37
BIO 84.95 86.37 +6.6 89.06 89.63 90.89 +3.6 92.55
TAG 84.76 86.26 +4.8 88.80 89.54 90.81 +2.8 92.55
AS-0 84.40 85.95 +2.7 88.38 89.41 90.72 +1.8 92.38
AS-1 85.13 86.52 +6.6 89.11 89.57 90.77 +2.3 92.49
AS-2 85.32 86.71 +8.0 89.25 89.87 91.10 +5.8 92.68

Table 4. Results of the different models on WSJ section 23 using the CoNLL scores Labeled attachment score (LAS),
Unlabeled attachment score (UAS), and Label accuracy score (LAC). The column labeled “Imp” reports the improve-
ment in terms of relative error reduction with respect to the BASE model for the UAS score. In bold the best results.

tional token from the stack and an additional token
from the input for AS-2 (cf. Table 3).

5.2 Results of 2nd-order models

Table 4 summarizes the results of all experiments.
We report the following scores, obtained with the
CoNLL-X scoring script: labeled attachment score
(LAS), unlabeled attachment score (UAS) and label
accuracy score (LAC). For the UAS score, the most
frequently reported, we include the improvement in
relative error reduction.

The 2nd-order base model improves on all mea-
sures over the 1st-order model by approximately
5%. The UAS score is 90.55%, with an improve-
ment of 4.9%. The magnitude of the improve-
ment is remarkable and reflects the 4.6% improve-
ment that Yamada and Matsumoto (Yamada & Mat-
sumoto, 2003) report going from the linear SVM to
the polynomial of degree two. Our base model’s ac-
curacy (90.55% UAS) compares well with the ac-
curacy of the parsers based on the polynomial ker-
nel trained with SVM of Yamada and Matsumoto
(UAS 90.3%), and Hall et al. (2006) (UAS 89.4%).
We notice in particular that, given the lack of non-
projective cases/rules, the parser of Hall et al. (2006)
is almost identical to our parser, hence the differ-
ence in accuracy (+1.1%) might effectively be due
to a better classifier. Yamada & Matsumoto’s parser
is slightly more complex than our parser, and has
quadratic worst-case complexity. Overall, the accu-
racy of the 2nd-order parser is comparable to that of
the 1st-order MST parser (90.7%).

There is no direct evidence that our perceptron
produces better classifiers than SVM. Rather, the

pattern of results produced by the perceptron seems
comparable to that of SVM (Yamada & Matsumoto,
2003). This is a useful finding in itself, given that
the former is more efficient: perceptron’s update is
linear while SVM solves a quadratic problem at each
update. However, one major difference between the
two approaches lies in the fact that learning with the
primal model does not require splitting the model
by Part-of-Speech, or other means. As a conse-
quence, beyond the greater simplicity, our method
might benefit from not depending so strongly on the
quality of POS tagging. POS information is encoded
as a feature and contributes its weight to the selec-
tion of the parsing action, together with all addi-
tionally available information. In the SVM-trained
methods the model that makes the prediction for the
parsing rule is essentially chosen by an oracle, the
prediction of the POS tagger. Furthermore, it might
be argued that learning a single model makes a bet-
ter use of the training data by exploiting the cor-
relations between all datapoints, while in the dual
split-training case the interaction is limited to dat-
apoints in the same partition. In any case, second-
order feature maps could be used also with SVM or
other classifiers. The advantage of using the per-
ceptron lies in the unchallenged accuracy/efficiency
trade-off. Finally, we recall that training in the pri-
mal model can be performed fully on-line without
affecting the resulting model nor the complexity of
the algorithm.

5.3 Results of models with semantic features

All models based on semantic features improve over
the base model on all measures. The best configura-

140

Parser UAS
Hall et al. ’06 89.4
Yamada & Matsumoto ’03 90.3
DeSR 90.55
McDonald & Pereira 1st-order MST 90.7
DeSR AS-2 91.1
McDonald & Pereira 2nd-order MST 91.5
Sagae & Lavie ’06 92.7

Table 5. Comparison of main results on the Penn Tree-
bank dataset.

tion is that of model AS-2 which extracts all seman-
tic features from the widest context. In the 1st-order
AS-2 model the improvement, 86.71% UAS (+8%
relative error reduction) is more marked than in the
2nd-order AS-2 model, 91.1% UAS (+5.8% error
reduction). A possible simple exaplanation is that
some information captured by the semantic features
is correlated with other higher-order features which
do not occur in the 1st-order encoding. Overall the
accuracy of the DeSR parser with semantic informa-
tion is slightly inferior to that of the second-order
MST parser (McDonald & Pereira, 2006) (91.5%
UAS). The best result on this dataset to date (92.7%
UAS) is that of Sagae and Lavie (Sagae & Lavie,
2006) who use a parser which combines the predic-
tions of several pre-existing parsers, including Mc-
Donald’s and Nivre’s parsers. Table 5 lists the main
results to date on the version of the Penn Treebank
for dependency parsing task used in this paper.

In Table 4 we also evaluate the gain obtained by
adding one semantic feature type at a time (cf. rows
EOS/BIO/TAG). These results show that all seman-
tic features provide some improvement (with the du-
bious case of EOS in the 2nd-order model). The
BIO encoding seems to produce the most accurate
features. This could be promising because it sug-
gests that the benefit does not depend only on the
specific tags, but that the segmentation in itself is
important. Hence tagging could improve the adapta-
tion of parsers to new domains even if only generic
tagging methods are available.

5.4 Remarks on efficiency

All experiments were performed on a 2.4GHz AMD
Opteron CPU machine with 32GB RAM. The 2nd-
order parser uses almost 3GB of memory. While

Parsing time/sec
Parser English Chinese
MST 2n-order 97.52 59.05
MST 1st-order 76.62 49.13
DeSR 36.90 21.22

Table 6. Parsing times for the CoNNL 2007 English and
Chinese datasets for MST and DeSR.

it is several times slower and larger than the 1st-
order model8 the 2nd-order model performance is
still competitive. It takes 3 minutes (user time) to
parse section 23, POS tagging included. In train-
ing, the model takes about 1 hour to process the full
dataset once. As a comparison, Hall et al. (2006)
reports 1.5 hours for training the partitioned SVM
model and 10 minutes for parsing the evaluation set
on the same Penn Treebank data. We also compared
directly the parsing time of our parser with that of
the MST parser using the version 0.4.3 of MST-
Parser9. For these experiments we used two datasets
from the CoNLL 2007 shared task for English and
Chinese. Table 6 reports the times, in seconds, to
parse the test sets for these languages on a 3.3GHz
Xeon machine with 4 GB Ram, of the MST 1st and
2nd-order parser and DeSR parser (without semantic
features).

The architecture of the model presented here of-
fers several options for optimization. For exam-
ple, implementing the α models with full vectors
rather than hash tables speeds up parsing by a factor
of three, at the expense of memory. Alternatively,
memory load in training can be reduced, at the ex-
pense of time, by using on-line training. However,
the most valuable option for space need reduction
might be to filter out low-frequency second-order
features. Since the frequency of such features seems
to follow a power law distribution, this reduces sig-
nificantly the feature space size even for low thresh-
olds at small accuracy expense. In this paper how-
ever we focused on the full model, no approxima-
tions were required to run the experiments.

8The 1st-order parser takes 7 seconds (user time) to process
Section 23.

9Available from sourceforge.net.

141

6 Conclusion

We explored the design space of a dependency
parser by modeling and extending the feature repre-
sentation, while adopting one of the simplest parsing
architecture: a single-pass deterministic shift-reduce
algorithm trained with a regularized multiclass per-
ceptron. We showed that with the perceptron it is
possible to adopt higher-order feature maps equiva-
lent to polynomial kernels without need of approx-
imating the model (although this remains an option
for optimization). The resulting models achieve ac-
curacies comparable (or better) to more complex ar-
chitectures based on dual SVM training, and faster
parsing on unseen data. With respect to learning, it is
possible that more sophisticated formulations of the
perceptron (e.g. MIRA (Crammer & Singer, 2003))
could provide further gains in accuracy, as shown
with the MST parser (McDonald et al., 2005).

We also experimented with novel types of se-
mantic features, extracted from the annotations pro-
duced by an entity tagger trained on the BBN cor-
pus. This model further improves over the standard
model yielding an additional 5.8% relative error re-
duction. Although the magnitude of the improve-
ment is not striking, to the best of our knowledge
this is the first encouraging evidence that annotated
semantic information can improve parsing and sug-
gests several options for further research. For exam-
ple, this finding might indicate that this type of ap-
proach, which combines semantic tagging and pars-
ing, is viable for the adaptation of parsing to new
domains for which semantic taggers exist. Seman-
tic features could be also easily included in other
types of dependency parsing algorithms, e.g., MST,
and in current methods for constituent parse rerank-
ing (Collins, 2000; Charniak & Johnson, 2005).

For future research several issues concerning the
semantic features could be tackled. We notice that
more complex semantic features can be designed
and evaluated. For example, it might be useful to
guess the “head” of segments with simple heuris-
tics, i.e., the guess the node which is more likely to
connect the segment with the rest of the tree, which
all internal components of the entity depend upon.
It would be also interesting to extract semantic fea-
tures from taggers trained on different datasets and
based on different tagsets.

Acknowledgments

The first author would like to thank Thomas Hof-
mann for useful inputs concerning the presentation
of the issue of higher-order feature representations
of Section 3.4. We would also like to thank Brian
Roark and the anonymous reviewers for useful com-
ments and pointers to related work.

References
G. Attardi. 2006. Experiments with a Multilanguage

Non-Projective Dependency Parser. In Proceedings of
CoNNL-X 2006.

BBN. 2005. BBN Pronoun Coreference and Entity Type
Corpus. Linguistic Data Consortium (LDC) catalog
number LDC2005T33.

S. Buchholz and E. Marsi. 2006. Introduction to
CoNNL-X Shared Task on Multilingual Dependency
Parsing. In Proceedings of CoNNL-X 2006.

X. Carreras and L. Màrquez. 2005. Introduction to the
CoNLL-2005 Shared Task: Semantic Role Labeling.
In Proceedings of CoNLL 2005.

X. Carreras, M. Surdeanu, and L. Màrquez. 2006 Pro-
jective Dependency Parsing with Perceptron. In Pro-
ceedings of CoNLL-X.

E. Charniak. 1997. Statistical Parsing with a Context-
Free Grammar and Word Statistics. In Proceedings of
the Fourteenth National Conference on Artificial Intel-
ligence AAAI.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine n-
Best Parsing and MaxEnt Discriminative Reranking.
In Proceedings of ACL 2005.

M. Ciaramita and Y. Altun. 2006. Broad-Coverage Sense
Disambiguation and Information Extraction with a Su-
persense Sequence Tagger. In Proceedings of EMNLP
2006.

M. Ciaramita and M. Johnson. 2003. Supersense Tag-
ging of Unknown Nouns in WordNet. In Proceedings
of EMNLP 2003.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. Thesis, University
of Pennsylvania.

M. Collins. 2000. Discriminative Reranking for Natural
Language Parsing. In Proceedings of ICML 2000.

M. Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
EMNLP 2002.

142

M. Collins and T. Koo. 2005. Hidden-Variable Mod-
els for Discriminative Reranking. In Proceedings of
EMNLP 2005.

M. Collins and B. Roark. 2004. Incremental Parsing
with the Perceptron Algorithm. In Proceedings of ACL
2004.

K. Crammer and Y. Singer. 2003. Ultraconservative On-
line Algorithms for Multiclass Problems. Journal of
Machine Learning Research 3: pp.951-991.

A. Culotta and J. Sorensen. 2004. Dependency Tree Ker-
nels for Relation Extraction. In Proceedings of ACL
2004.

Y. Ding and M. Palmer. 2005. Machine Translation us-
ing Probabilistic Synchronous Dependency Insertion
Grammars. In Proceedings of ACL 2005.

J. Eisner. 2000. Bilexical Grammars and their Cubic-
Time Parsing Algorithms. In H.C. Bunt and A. Ni-
jholt, eds. New Developments in Natural Language
Parsing, pp. 29-62. Kluwer Academic Publishers.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database MIT Press, Cambridge, MA. 1969.

J. Hall, J. Nivre and J. Nilsson. 2006. Discriminative
Classifiers for Deterministic Dependency Parsing. In
Proceedings of the COLING/ACL 2006.

T. Kalt. 2004. Induction of Greedy Controllers for Deter-
ministic Treebank Parsers. In Proceedings of EMNLP
2004.

M. Marcus, B. Santorini and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2): pp.
313-330.

R. McDonald. 2006. Discriminative Training and Span-
ning Tree Algorithms for Dependency Parsing. Ph.D.
Thesis, University of Pennsylvania.

R. McDonald, F. Pereira, K. Ribarov and J. Hajic̆. 2005.
Non-projective Dependency Parsing using Spanning
Tree Algorithms. In Proceedings of HLT-EMNLP
2005.

R. McDonald and F. Pereira. 2006. Online Learning
of Approximate Dependency Parsing Algorithms. In
Proceedings of EACL 2006.

M.L. Minsky and S.A. Papert. 1969. Perceptrons: An
Introduction to Computational Geometry. MIT Press,
Cambridge, MA. 1969.

A. Moschitti. 2006. Efficient Convolution Kernels for
Dependency and Constituent Syntactic Trees. In Pro-
ceedings of ECML 2006.

J. Nivre. 2004. Incrementality in Deterministic Depen-
dency Parsing. In Incremental Parsing: Bringing En-
gineering and Cognition Together. Workshop at ACL-
2004.Spain, 50-57.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel and D. Yuret. 2007. The CoNLL 2007
Shared Task on Dependency Parsing, In Proceedings
of EMNLP-CoNLL 2007.

J. Nivre and M. Scholz. 2004. Deterministic Depen-
dency Parsing of English Text. In Proceedings of
COLING 2004.

V. Punyakanok, D. Roth, and W. Yih. 2005. The Neces-
sity of Syntactic Parsing for Semantic Role Labeling.
In Proceedings of IJCAI 2005.

F. Rosemblatt. 1958. The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain. Psych. Rev., 68: pp. 386-407.

K. Sagae and A. Lavie. 2005. Parser Combination by
Reparsing. In Proceedings of HLT-NAACL 2006.

F. Sha and F. Pereira. 2003. Shallow Parsing with Condi-
tional Random Fields. In Proceedings of HLT-NAACL
2003.

H. Yamada and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines. In
Proceedings of the Eighth International Workshop on
Parsing Technologies. Nancy, France.

S. Yi and M. Palmer. 2005. The Integration of Syntactic
Parsing and Semantic Role Labeling. In Proceedings
of CoNLL 2005.

A. Wong and D. Wu. 1999. Learning a Lightweight De-
terministic Parser. In Proceedings of EUROSPEECH
1999.

D. Zhang and W.S. Less. 2003. Question Classification
using Support Vector Machines. In Proceedings of SI-
GIR 2003.

143

