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Abstract

We propose a generative dependency pars-
ing model which uses binary latent variables
to induce conditioning features. To define
this model we use a recently proposed class
of Bayesian Networks for structured predic-
tion, Incremental Sigmoid Belief Networks.
We demonstrate that the proposed model
achieves state-of-the-art results on three dif-
ferent languages. We also demonstrate that
the features induced by the ISBN’s latent
variables are crucial to this success, and
show that the proposed model is particularly
good on long dependencies.

1 Introduction

Dependency parsing has been a topic of active re-
search in natural language processing during the last
several years. The CoNLL-X shared task (Buch-
holz and Marsi, 2006) made a wide selection of
standardized treebanks for different languages avail-
able for the research community and allowed for
easy comparison between various statistical meth-
ods on a standardized benchmark. One of the sur-
prising things discovered by this evaluation is that
the best results are achieved by methods which
are quite different from state-of-the-art models for
constituent parsing, e.g. the deterministic parsing
method of (Nivre et al., 2006) and the minimum
spanning tree parser of (McDonald et al., 2006).
All the most accurate dependency parsing models
are fully discriminative, unlike constituent parsing
where all the state of the art methods have a genera-

tive component (Charniak and Johnson, 2005; Hen-
derson, 2004; Collins, 2000). Another surprising
thing is the lack of latent variable models among
the methods used in the shared task. Latent vari-
able models would allow complex features to be in-
duced automatically, which would be highly desir-
able in multilingual parsing, where manual feature
selection might be very difficult and time consum-
ing, especially for languages unknown to the parser
developer.

In this paper we propose a generative latent vari-
able model for dependency parsing. It is based on
Incremental Sigmoid Belief Networks (ISBNs), a
class of directed graphical model for structure pre-
diction problems recently proposed in (Titov and
Henderson, 2007), where they were demonstrated
to achieve competitive results on the constituent
parsing task. As discussed in (Titov and Hender-
son, 2007), computing the conditional probabili-
ties which we need for parsing is in general in-
tractable with ISBNs, but they can be approximated
efficiently in several ways. In particular, the neu-
ral network constituent parsers in (Henderson, 2003)
and (Henderson, 2004) can be regarded as coarse ap-
proximations to their corresponding ISBN model.

ISBNs use history-based probability models. The
most common approach to handling the unbounded
nature of the parse histories in these models is to
choose a pre-defined set of features which can be
unambiguously derived from the history (e.g. (Char-
niak, 2000; Collins, 1999; Nivre et al., 2004)). De-
cision probabilities are then assumed to be indepen-
dent of all information not represented by this finite
set of features. ISBNs instead use a vector of binary
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latent variables to encode the information about the
parser history. This history vector is similar to the
hidden state of a Hidden Markov Model. But un-
like the graphical model for an HMM, which speci-
fies conditional dependency edges only between ad-
jacent states in the sequence, the ISBN graphical
model can specify conditional dependency edges be-
tween states which are arbitrarily far apart in the
parse history. The source state of such an edge is de-
termined by the partial output structure built at the
time of the destination state, thereby allowing the
conditional dependency edges to be appropriate for
the structural nature of the problem being modeled.
This structure sensitivity is possible because ISBNs
are a constrained form of switching model (Mur-
phy, 2002), where each output decision switches the
model structure used for the remaining decisions.

We build an ISBN model of dependency parsing
using the parsing order proposed in (Nivre et al.,
2004). However, instead of performing determin-
istic parsing as in (Nivre et al., 2004), we use this
ordering to define a generative history-based model,
by integrating word prediction operations into the
set of parser actions. Then we propose a simple, lan-
guage independent set of relations which determine
how latent variable vectors are interconnected by
conditional dependency edges in the ISBN model.
ISBNs also condition the latent variable vectors on a
set of explicit features, which we vary in the experi-
ments.

In experiments we evaluate both the performance
of the ISBN dependency parser compared to previ-
ous work, and the ability of the ISBN model to in-
duce complex history features. Our model achieves
state-of-the-art performance on the languages we
test, significantly outperforming the model of (Nivre
et al., 2006) on two languages out of three and
demonstrating about the same results on the third.
In order to test the model’s feature induction abili-
ties, we train models with two different sets of ex-
plicit conditioning features: the feature set individu-
ally tuned by (Nivre et al., 2006) for each considered
language, and a minimal set of local features. These
models achieve comparable accuracy, unlike with
the discriminative SVM-based approach of (Nivre et
al., 2006), where careful feature selection appears to
be crucial. We also conduct a controlled experiment
where we used the tuned features of (Nivre et al.,

2006) but disable the feature induction abilities of
our model by elimination of the edges connecting
latent state vectors. This restricted model achieves
far worse results, showing that it is exactly the ca-
pacity of ISBNs to induce history features which is
the key to its success. It also motivates further re-
search into how feature induction techniques can be
exploited in discriminative parsing methods.

We analyze how the relation accuracy changes
with the length of the head-dependent relation,
demonstrating that our model very significantly out-
performs the state-of-the-art baseline of (Nivre et
al., 2006) on long dependencies. Additional exper-
iments suggest that both feature induction abilities
and use of the beam search contribute to this im-
provement.

The fact that our model defines a probability
model over parse trees, unlike the previous state-of-
the-art methods (Nivre et al., 2006; McDonald et al.,
2006), makes it easier to use this model in appli-
cations which require probability estimates, e.g. in
language processing pipelines. Also, as with any
generative model, it may be easy to improve the
parser’s accuracy by using discriminative retraining
techniques (Henderson, 2004) or data-defined ker-
nels (Henderson and Titov, 2005), with or even with-
out introduction of any additional linguistic features.
In addition, there are some applications, such as lan-
guage modeling, which require generative models.
Another advantage of generative models is that they
do not suffer from the label bias problems (Bot-
tou, 1991), which is a potential problem for con-
ditional or deterministic history-based models, such
as (Nivre et al., 2004).

In the remainder of this paper, we will first review
general ISBNs and how they can be approximated.
Then we will define the generative parsing model,
based on the algorithm of (Nivre et al., 2004), and
propose an ISBN for this model. The empirical part
of the paper then evaluates both the overall accuracy
of this method and the importance of the model’s
capacity to induce features. Additional related work
will be discussed in the last section before conclud-
ing.
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2 The Latent Variable Architecture

In this section we will begin by briefly introduc-
ing the class of graphical models we will be us-
ing, Incremental Sigmoid Belief Networks (Titov
and Henderson, 2007). ISBNs are designed specif-
ically for modeling structured data. They are latent
variable models which are not tractable to compute
exactly, but two approximations exist which have
been shown to be effective for constituent parsing
(Titov and Henderson, 2007). Finally, we present
how these approximations can be trained.

2.1 Incremental Sigmoid Belief Networks

An ISBN is a form of Sigmoid Belief Network
(SBN) (Neal, 1992). SBNs are Bayesian Networks
with binary variables and conditional probability
distributions in the form:

P (Si = 1|Par(Si)) = σ(
∑

Sj∈Par(Si)

JijSj),

where Si are the variables, Par(Si) are the variables
which Si depends on (its parents), σ denotes the lo-
gistic sigmoid function, and Jij is the weight for the
edge from variable Sj to variable Si in the graphi-
cal model. SBNs are similar to feed-forward neural
networks, but unlike neural networks, SBNs have a
precise probabilistic semantics for their hidden vari-
ables. ISBNs are based on a generalized version of
SBNs where variables with any range of discrete val-
ues are allowed. The normalized exponential func-
tion (’soft-max’) is used to define the conditional
probability distributions at these nodes.

To extend SBNs for processing arbitrarily long se-
quences, such as a parser’s sequence of decisions
D1, ..., Dm, SBNs are extended to a form of Dy-
namic Bayesian Network (DBN). In DBNs, a new
set of variables is instantiated for each position in
the sequence, but the edges and weights are the same
for each position in the sequence. The edges which
connect variables instantiated for different positions
must be directed forward in the sequence, thereby
allowing a temporal interpretation of the sequence.

Incremental Sigmoid Belief Networks (Titov and
Henderson, 2007) differ from simple dynamic SBNs
in that they allow the model structure to depend on
the output variable values. Specifically, a decision is
allowed to effect the placement of any edge whose

destination is after the decision. This results in a
form of switching model (Murphy, 2002), where
each decision switches the model structure used for
the remaining decisions. The incoming edges for
a given position are a discrete function of the se-
quence of decisions which precede that position.
This makes the ISBN an “incremental” model, not
just a dynamic model. The structure of the model is
determined incrementally as the decision sequence
proceeds.

ISBNs are designed to allow the model structure
to depend on the output values without overly com-
plicating the inference of the desired conditional
probabilities P (Dt|D1, . . . , Dt−1), the probability
of the next decision given the history of previous de-
cisions. In particular, it is never necessary to sum
over all possible model structures, which in general
would make inference intractable.

2.2 Modeling Structures with ISBNs

ISBNs are designed for modeling structured data
where the output structure is not given as part of
the input. In dependency parsing, this means they
can model the probability of an output dependency
structure when the input only specifies the sequence
of words (i.e. parsing). The difficulty with such
problems is that the statistical dependencies in the
dependency structure are local in the structure, and
not necessarily local in the word sequence. ISBNs
allow us to capture these statistical dependencies in
the model structure by having model edges depend
on the output variables which specify the depen-
dency structure. For example, if an output specifies
that there is a dependency arc from word wi to word
wj , then any future decision involving wj can di-
rectly depend on its head wi. This allows the head
wi to be treated as local to the dependent wj even if
they are far apart in the sentence.

This structurally-defined notion of locality is par-
ticularly important for the model’s latent variables.
When the structurally-defined model edges connect
latent variables, information can be propagated be-
tween latent variables, thereby providing an even
larger structural domain of locality than that pro-
vided by single edges. This provides a poten-
tially powerful form of feature induction, which is
nonetheless biased toward a notion of locality which
is appropriate for the structure of the problem.
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2.3 Approximating ISBNs

(Titov and Henderson, 2007) proposes two approxi-
mations for inference in ISBNs, both based on vari-
ational methods. The main idea of variational meth-
ods (Jordan et al., 1999) is, roughly, to construct a
tractable approximate model with a number of free
parameters. The values of the free parameters are set
so that the resulting approximate model is as close as
possible to the original graphical model for a given
inference problem.

The simplest example of a variation method is the
mean field method, which uses a fully factorized dis-
tribution Q(H|V ) =

∏
i Qi(hi|V ) as the approxi-

mate model, where V are the visible (i.e. known)
variables, H = h1, . . . , hl are the hidden (i.e. la-
tent) variables, and each Qi is the distribution of an
individual latent variable hi. The free parameters of
this approximate model are the means µi of the dis-
tributions Qi.

(Titov and Henderson, 2007) proposes two ap-
proximate models based on the variational approach.
First, they show that the neural network of (Hen-
derson, 2003) can be viewed as a coarse mean field
approximation of ISBNs, which they call the feed-
forward approximation. This approximation im-
poses the constraint that the free parameters µi of
the approximate model are only allowed to depend
on the distributions of their parent variables. This
constraint increases the potential for a large approx-
imation error, but it significantly simplifies the com-
putations by allowing all the free parameters to be
set in a single pass over the model.

The second approximation proposed in (Titov and
Henderson, 2007) takes into consideration the fact
that, after each decision is made, all the preceding
latent variables should have their means µi updated.
This approximation extends the feed-forward ap-
proximation to account for the most important com-
ponents of this update. They call this approxima-
tion the mean field approximation, because a mean
field approximation is applied to handle the statisti-
cal dependencies introduced by the new decisions.
This approximation was shown to be a more accu-
rate approximation of ISBNs than the feed-forward
approximation, but remain tractable. It was also
shown to achieve significantly better accuracy on
constituent parsing.

2.4 Learning

Training these approximations of ISBNs is done to
maximize the fit of the approximate models to the
data. We use gradient descent, and a regularized
maximum likelihood objective function. Gaussian
regularization is applied, which is equivalent to the
weight decay standardly used in neural networks.
Regularization was reduced through the course of
learning.

Gradient descent requires computing the deriva-
tives of the objective function with respect to the
model parameters. In the feed-forward approxima-
tion, this can be done with the standard Backpropa-
gation learning used with neural networks. For the
mean field approximation, propagating the error all
the way back through the structure of the graphical
model requires a more complicated calculation, but
it can still be done efficiently (see (Titov and Hen-
derson, 2007) for details).

3 The Dependency Parsing Algorithm

The sequences of decisions D1, ..., Dm which we
will be modeling with ISBNs are the sequences of
decisions made by a dependency parser. For this we
use the parsing strategy for projective dependency
parsing introduced in (Nivre et al., 2004), which
is similar to a standard shift-reduce algorithm for
context-free grammars (Aho et al., 1986). It can
be viewed as a mixture of bottom-up and top-down
parsing strategies, where left dependencies are con-
structed in a bottom-up fashion and right dependen-
cies are constructed top-down. For details we refer
the reader to (Nivre et al., 2004). In this section we
briefly describe the algorithm and explain how we
use it to define our history-based probability model.

In this paper, as in the CoNLL-X shared task,
we consider labeled dependency parsing. The state
of the parser is defined by the current stack S, the
queue I of remaining input words and the partial la-
beled dependency structure constructed by previous
parser decisions. The parser starts with an empty
stack S and terminates when it reaches a configura-
tion with an empty queue I . The algorithm uses 4
types of decisions:

1. The decision Left-Arcr adds a dependency arc
from the next input word wj to the word wi on
top of the stack and selects the label r for the
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relation between wi and wj . Word wi is then
popped from the stack.

2. The decision Right-Arcr adds an arc from the
word wi on top of the stack to the next input
word wj and selects the label r for the relation
between wi and wj .

3. The decision Reduce pops the word wi from
the stack.

4. The decision Shiftwj
shifts the word wj from

the queue to the stack.

Unlike the original definition in (Nivre et al., 2004)
the Right-Arcr decision does not shift wj to the
stack. However, the only thing the parser can do
after a Right-Arcr decision is to choose the Shiftwj

decision. This subtle modification does not change
the actual parsing order, but it does simplify the def-
inition of our graphical model, as explained in sec-
tion 4.

We use a history-based probability model, which
decomposes the probability of the parse according
to the parser decisions:

P (T ) = P (D1, ..., Dm) =
∏

t

P (Dt|D1, . . . , Dt−1),

where T is the parse tree and D1, . . . , Dm is its
equivalent sequence of parser decisions. Since we
need a generative model, the action Shiftwj

also pre-
dicts the next word in the queue I , wj+1, thus the
P (Shiftwi

|D1, . . . , Dt−1) is a probability both of
the shift operation and the word wj+1 conditioned
on current parsing history.1

Instead of treating each Dt as an atomic decision,
it is convenient to split it into a sequence of elemen-
tary decisions Dt = dt

1, . . . , d
t
n:

P (Dt|D1, . . . , Dt−1) =
∏

k

P (dt
k|h(t, k)),

1In preliminary experiments, we also considered look-
ahead, where the word is predicted earlier than it appears at the
head of the queue I , and “anti-look-ahead”, where the word is
predicted only when it is shifted to the stack S. Early predic-
tion allows conditioning decision probabilities on the words in
the look-ahead and, thus, speeds up the search for an optimal
decision sequence. However, the loss of accuracy with look-
ahead was quite significant. The described method, where a
new word is predicted when it appears at the head of the queue,
led to the most accurate model and quite efficient search. The
anti-look-ahead model was both less accurate and slower.

Figure 1: An ISBN for estimating P (dt
k|h(t, k)).

where h(t, k) denotes the parsing history
D1, . . . , Dt−1, dt

1, . . . , d
t
k−1. We split Left-Arcr

and Right-Arcr each into two elementary decisions:
first, the parser decides to create the corresponding
arc, then, it decides to assign a relation r to the
arc. Similarly, we decompose the decision Shiftwj

into an elementary decision to shift a word and a
prediction of the word wj+1. In our experiments we
use datasets from the CoNLL-X shared task, which
provide additional properties for each word token,
such as its part-of-speech tag and some fine-grain
features. This information implicitly induces word
clustering, which we use in our model: first we
predict a part-of-speech tag for the word, then a set
of word features, treating feature combination as an
atomic value, and only then a particular word form.
This approach allows us to both decrease the effect
of sparsity and to avoid normalization across all the
words in the vocabulary, significantly reducing the
computational expense of word prediction.

4 An ISBN for Dependency Parsing

In this section we define the ISBN model we use for
dependency parsing. An example of this ISBN for
estimating P (dt

k|h(t, k)) is illustrated in figure 1. It
is organized into vectors of variables: latent state
variable vectors St′ = st′

1 , . . . , st′

n , representing an
intermediate state at position t′, and decision vari-
able vectors Dt′ , representing a decision at position
t′, where t′ ≤ t. Variables whose value are given at
the current decision (t, k) are shaded in figure 1, la-
tent and current decision variables are left unshaded.

As illustrated by the edges in figure 1, the prob-
ability of each state variable st′

i (the individual cir-
cles in St′) depends on all the variables in a finite
set of relevant previous state and decision vectors,
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but there are no direct dependencies between the dif-
ferent variables in a single state vector. For each
relevant decision vector, the precise set of decision
variables which are connected in this way can be
adapted to a particular language. As long as these
connected decisions include all the new information
about the parse, the performance of the model is not
very sensitive to this choice. This is because ISBNs
have the ability to induce their own complex features
of the parse history, as demonstrated in the experi-
ments in section 6.

The most important design decision in building
an ISBN model is choosing the finite set of relevant
previous state vectors for the current decision. By
connecting to a previous state, we place that state in
the local context of the current decision. This speci-
fication of the domain of locality determines the in-
ductive bias of learning with ISBNs. When deciding
what information to store in its latent variables, an
ISBN is more likely to choose information which
is immediately local to the current decision. This
stored information then becomes local to any fol-
lowing connected decision, where it again has some
chance of being chosen as relevant to that decision.
In this way, the information available to a given deci-
sion can come from arbitrarily far away in the chain
of interconnected states, but it is much more likely
to come from a state which is relatively local. Thus,
we need to choose the set of local (i.e. connected)
states in accordance with our prior knowledge about
which previous decisions are likely to be particularly
relevant to the current decision.

To choose which previous decisions are particu-
larly relevant to the current decision, we make use
of the partial dependency structure which has been
decided so far in the parse. Specifically, the current
latent state vector is connected to a set of 7 previous
latent state vectors (if they exist) according to the
following relationships:

1. Input Context: the last previous state with the
same queue I .

2. Stack Context: the last previous state with the
same stack S.

3. Right Child of Top of S: the last previous state
where the rightmost right child of the current
stack top was on top of the stack.

4. Left Child of Top of S: the last previous state
where the leftmost left child of the current stack
top was on top of the stack.

5. Left Child of Front of I2 : the last previous
state where the leftmost child of the front ele-
ment of I was on top of the stack.

6. Head of Top: the last previous state where the
head word of the current stack top was on top
of the stack.

7. Top of S at Front of I: the last previous state
where the current stack top was at the front of
the queue.

Each of these 7 relations has its own distinct weight
matrix for the resulting edges in the ISBN, but the
same weight matrix is used at each position where
the relation is relevant.

All these relations but the last one are motivated
by linguistic considerations. The current decision is
primarily about what to do with the current word on
the top of the stack and the current word on the front
of the queue. The Input Context and Stack Context
relationships connect to the most recent states used
for making decisions about each of these words. The
Right Child of Top of S relationship connects to a
state used for making decisions about the most re-
cently attached dependent of the stack top. Simi-
larly, the Left Child of Front of I relationship con-
nects to a state for the most recently attached depen-
dent of the queue front. The Left Child of Top of S

is the first dependent of the stack top, which is a par-
ticularly informative dependent for many languages.
Likewise, the Head of Top can tell us a lot about the
stack top, if it has been chosen already.

A second motivation for including a state in the
local context of a decision is that it might contain in-
formation which has no other route for reaching the
current decision. In particular, it is generally a good
idea to ensure that the immediately preceding state is
always included somewhere in the set of connected
states. This requirement ensures that information, at
least theoretically, can pass between any two states
in the decision sequence, thereby avoiding any hard

2We refer to the head of the queue as the front, to avoid
unnecessary ambiguity of the word head in the context of de-
pendency parsing.
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independence assumptions. The last relation, Top of
S at Front of I , is included mainly to fulfill this re-
quirement. Otherwise, after a Shiftwj

operation, the
preceding state would not be selected by any of the
relationships.

As indicated in figure 1, the probability of each
elementary decision dt′

k depends both on the current
state vector St′ and on the previously chosen ele-
mentary action dt′

k−1 from Dt′ . This probability dis-
tribution has the form of a normalized exponential:

P (dt′

k = d|St′ , dt′

k−1)=
Φh(t′,k) (d) e

∑
j

Wdjst′

j

∑
d′Φh(t′,k) (d′) e

∑
j

Wd′jst′

j

,

where Φh(t′,k) is the indicator function of the set of
elementary decisions that may possibly follow the
last decision in the history h(t′, k), and the Wdj are
the weights. Now it is easy to see why the origi-
nal decision Right-Arcr (Nivre et al., 2004) had to
be decomposed into two distinct decisions: the de-
cision to construct a labeled arc and the decision to
shift the word. Use of this composite Right-Arcr

would have required the introduction of individual
parameters for each pair (w, r), where w is an arbi-
trary word in the lexicon and r - an arbitrary depen-
dency relation.

5 Searching for the Best Tree

ISBNs define a probability model which does not
make any a-priori assumptions of independence be-
tween any decision variables. As we discussed in
section 4 use of relations based on partial output
structure makes it possible to take into account sta-
tistical interdependencies between decisions closely
related in the output structure, but separated by mul-
tiple decisions in the input structure. This property
leads to exponential complexity of complete search.
However, the success of the deterministic parsing
strategy which uses the same parsing order (Nivre et
al., 2006), suggests that it should be relatively easy
to find an accurate approximation to the best parse
with heuristic search methods. Unlike (Nivre et al.,
2006), we can not use a lookahead in our generative
model, as was discussed in section 3, so a greedy
method is unlikely to lead to a good approximation.
Instead we use a pruning strategy similar to that de-
scribed in (Henderson, 2003), where it was applied

to a considerably harder search problem: constituent
parsing with a left-corner parsing order.

We apply fixed beam pruning after each deci-
sion Shiftwj

, because knowledge of the next word
in the queue I helps distinguish unlikely decision
sequences. We could have used best-first search be-
tween Shiftwj

operations, but this still leads to rela-
tively expensive computations, especially when the
set of dependency relations is large. However, most
of the word pairs can possibly participate only in a
very limited number of distinct relations. Thus, we
pursue only a fixed number of relations r after each
Left-Arcr and Right-Arcr operation.

Experiments with a variety of post-shift beam
widths confirmed that very small validation perfor-
mance gains are achieved with widths larger than 30,
and sometimes even a beam of 5 was sufficient. We
found also that allowing 5 different relations after
each dependency prediction operation was enough
that it had virtually no effect on the validation accu-
racy.

6 Empirical Evaluation

In this section we evaluate the ISBN model for
dependency parsing on three treebanks from the
CoNLL-X shared task. We compare our genera-
tive models with the best parsers from the CoNLL-
X task, including the SVM-based parser of (Nivre et
al., 2006) (the MALT parser), which uses the same
parsing algorithm. To test the feature induction abil-
ities of our model we compare results with two fea-
ture sets, the feature set tuned individually for each
language by (Nivre et al., 2006), and another fea-
ture set which includes only obvious local features.
This simple feature set comprises only features of
the word on top of the stack S and the front word
of the queue I . We compare the gain from using
tuned features with the similar gain obtained by the
MALT parser. To obtain these results we train the
MALT parser with the same two feature sets.3

In order to distinguish the contribution of ISBN’s
feature induction abilities from the contribution of

3The tuned feature sets were obtained from
http://w3.msi.vxu.se/˜nivre/research/MaltParser.html. We
removed lookahead features for ISBN experiments but
preserved them for experiments with the MALT parser. Anal-
ogously, we extended simple features with 3 words lookahead
for the MALT parser experiments.

150



our estimation method and search, we perform an-
other experiment. We use the tuned feature set and
disable the feature induction abilities of the model
by removing all the edges between latent variables
vectors. Comparison of this restricted model with
the full ISBN model shows how important the fea-
ture induction is. Also, comparison of this restricted
model with the MALT parser, which uses the same
set of features, indicates whether our generative esti-
mation method and use of beam search is beneficial.

6.1 Experimental Setup

We used the CoNLL-X distributions of Danish
DDT treebank (Kromann, 2003), Dutch Alpino tree-
bank (van der Beek et al., 2002) and Slovene SDT
treebank (Dzeroski et al., 2006). The choice of these
treebanks was motivated by the fact that they all
are freely distributed and have very different sizes
of their training sets: 195,069 tokens for Dutch,
94,386 tokens for Danish and only 28,750 tokens for
Slovene. As it is generally believed that discrimina-
tive models win over generative models with a large
amount of training data, so we expected to see simi-
lar trend in our results. Test sets are about equal and
contain about 5,000 scoring tokens.

We followed the experimental setup of the shared
task and used all the information provided for the
languages: gold standard part-of-speech tags and
coarse part-of-speech tags, word form, word lemma
(lemma information was not available for Danish)
and a set of fine-grain word features. As we ex-
plained in section 3, we treated these sets of fine-
grain features as an atomic value when predicting
a word. However, when conditioning on words, we
treated each component of this composite feature in-
dividually, as it proved to be useful on the develop-
ment set. We used frequency cutoffs: we ignored
any property (e.g., word form, feature or even part-
of-speech tag4) which occurs in the training set less
than 5 times. Following (Nivre et al., 2006), we used
pseudo-projective transformation they proposed to
cast non-projective parsing tasks as projective.

ISBN models were trained using a small devel-
opment set taken out from the training set, which
was used for tuning learning parameters and for

4Part-of-speech tags for multi-word units in the Danish tree-
bank were formed as concatenation of tags of the words, which
led to quite sparse set of part-of-speech tags.

early stopping. The sizes of the development sets
were: 4,988 tokens for larger Dutch corpus, 2,504
tokens for Danish and 2,033 tokens for Slovene.
The MALT parser was trained always using the en-
tire training set. We expect that the mean field ap-
proximation should demonstrate better results than
feed-forward approximation on this task as it is the-
oretically expected and confirmed on the constituent
parsing task (Titov and Henderson, 2007). How-
ever, the sizes of testing sets would not allow us
to perform any conclusive analysis, so we decided
not to perform these comparisons here. Instead we
used the mean field approximation for the smaller
two corpora and used the feed-forward approxima-
tion for the larger one. Training the mean field ap-
proximations on the larger Dutch treebank is feasi-
ble, but would significantly reduce the possibilities
for tuning the learning parameters on the develop-
ment set and, thus, would increase the randomness
of model comparisons.

All model selection was performed on the devel-
opment set and a single model of each type was
applied to the testing set. We used a state vari-
able vector consisting of 80 binary variables, as it
proved sufficient on the preliminary experiments.
For the MALT parser we replicated the parameters
from (Nivre et al., 2006) as described in detail on
their web site.

The labeled attachment scores for the ISBN with
tuned features (TF) and local features (LF) and
ISBN with tuned features and no edges connect-
ing latent variable vectors (TF-NA) are presented
in table 1, along with results for the MALT parser
both with tuned and local feature, the MST parser
(McDonald et al., 2006), and the average score
(Aver) across all systems in the CoNLL-X shared
task. The MST parser is included because it demon-
strated the best overall result in the task, non signif-
icantly outperforming the MALT parser, which, in
turn, achieved the second best overall result. The la-
beled attachment score is computed using the same
method as in the CoNLL-X shared task, i.e. ignor-
ing punctuation. Note, that though we tried to com-
pletely replicate training of the MALT parser with
the tuned features, we obtained slightly different re-
sults. The original published results for the MALT
parser with tuned features were 84.8% for Danish,
78.6% for Dutch and 70.3% for Slovene. The im-
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Danish Dutch Slovene
ISBN TF 85.0 79.6 72.9

LF 84.5 79.5 72.4
TF-NA 83.5 76.4 71.7

MALT TF 85.1 78.2 70.5
LF 79.8 74.5 66.8

MST 84.8 79.2 73.4
Aver 78.3 70.7 65.2

Table 1: Labeled attachment score on the testing sets
of Danish, Dutch and Slovene treebanks.

provement of the ISBN models (TF and LF) over
the MALT parser is statistically significant for Dutch
and Slovene. Differences between their results on
Danish are not statistically significant.

6.2 Discussion of Results

The ISBN with tuned features (TF) achieved signif-
icantly better accuracy than the MALT parser on 2
languages (Dutch and Slovene), and demonstrated
essentially the same accuracy on Danish. The results
of the ISBN are among the two top published results
on all three languages, including the best published
results on Dutch. All three models, MST, MALT and
ISBN, demonstrate much better results than the av-
erage result in the CoNLL-X shared task. These re-
sults suggest that our generative model is quite com-
petitive with respect to the best models, which are
both discriminative.5 We would expect further im-
provement of ISBN results if we applied discrimina-
tive retraining (Henderson, 2004) or reranking with
data-defined kernels (Henderson and Titov, 2005),
even without introduction of any additional features.

We can see that the ISBN parser achieves about
the same results with local features (LF). Local fea-
tures by themselves are definitely not sufficient for
the construction of accurate models, as seen from
the results of the MALT parser with local features
(and look-ahead). This result demonstrates that IS-
BNs are a powerful model for feature induction.

The results of the ISBN without edges connecting
latent state vectors is slightly surprising and suggest
that without feature induction the ISBN is signifi-
cantly worse than the best models. This shows that

5Note that the development set accuracy predicted correctly
the testing set ranking of ISBN TF, LF and TF-NA models on
each of the datasets, so it is fair to compare the best ISBN result
among the three with other parsers.

to root 1 2 3 - 6 > 6
Da ISBN 95.1 95.7 90.1 84.1 74.7

MALT 95.4 96.0 90.8 84.0 71.6
Du ISBN 79.8 92.4 86.2 81.4 71.1

MALT 73.1 91.9 85.0 76.2 64.3
Sl ISBN 76.1 92.5 85.6 79.6 54.3

MALT 59.9 92.1 85.0 78.4 47.1
Av ISBN 83.6 93.5 87.3 81.7 66.7

MALT 76.2 93.3 87.0 79.5 61.0
Improv 7.5 0.2 0.4 2.2 5.7

Table 2: F1 score of labeled attachment as a function
of dependency length on the testing sets of Danish,
Dutch and Slovene.

the improvement is coming mostly from the abil-
ity of the ISBN to induce complex features and not
from either using beam search or from the estima-
tion procedure. It might also suggest that genera-
tive models are probably worse for the dependency
parsing task than discriminative approaches (at least
for larger datasets). This motivates further research
into methods which combine powerful feature in-
duction properties with the advantage of discrimina-
tive training. Although discriminative reranking of
the generative model is likely to help, the derivation
of fully discriminative feature induction methods is
certainly more challenging.

In order to better understand differences in per-
formance between ISBN and MALT, we analyzed
how relation accuracy changes with the length of
the head-dependent relation. The harmonic mean
between precision and recall of labeled attachment,
F1 measure, for the ISBN and MALT parsers with
tuned features is presented in table 2. F1 score is
computed for four different ranges of lengths and
for attachments directly to root. Along with the re-
sults for each of the languages, the table includes
their mean (Av) and the absolute improvement of
the ISBN model over MALT (Improv). It is easy
to see that accuracy of both models is generally sim-
ilar for small distances (1 and 2), but as the distance
grows the ISBN parser starts to significantly outper-
form MALT, achieving 5.7% average improvement
on dependencies longer than 6 word tokens. When
the MALT parser does not manage to recover a long
dependency, the highest scoring action it can choose
is to reduce the dependent from the stack without
specifying its head, thereby attaching the dependent
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to the root by default. This explains the relatively
low F1 scores for attachments to root (evident for
Dutch and Slovene): though recall of attachment to
root is comparable to that of the ISBN parser (82.4%
for MALT against 84.2% for ISBN, on average over
3 languages), precision for the MALT parser is much
worse (71.5% for MALT against 83.1% for ISBN,
on average).

The considerably worse accuracy of the MALT
parser on longer dependencies might be explained
both by use of a non-greedy search method in the
ISBN and the ability of ISBNs to induce history fea-
tures. To capture a long dependency, the MALT
parser should keep a word on the stack during a
long sequence of decision. If at any point during
the intermediate steps this choice seems not to be
locally optimal, then the MALT parser will choose
the alternative and lose the possibility of the long
dependency.6 By using a beam search, the ISBN
parser can maintain the possibility of the long de-
pendency in its beam even when other alternatives
seem locally preferable. Also, long dependences are
often more difficult, and may be systematically dif-
ferent from local dependencies. The designer of a
MALT parser needs to discover predictive features
for long dependencies by hand, whereas the ISBN
model can automatically discover them. Thus we
expect that the feature induction abilities of ISBNs
have a strong effect on the accuracy of long depen-
dences. This prediction is confirmed by the differ-
ences between the results of the normal ISBN (TF)
and the restricted ISBN (TF-NA) model. The TF-
NA model, like the MALT parser, is biased toward
attachment to root; it attaches to root 12.0% more
words on average than the normal ISBN, without
any improvement of recall and with a great loss of
precision. The F1 score on long dependences for the
TF-NA model is also negatively effected in the same
way as for the MALT parser. This confirms that the
ability of the ISBN model to induce features is a ma-
jor factor in improving accuracy of long dependen-
cies.

6The MALT parser is trained to keep the word as long as
possible: if both Shift and Reduce decisions are possible during
training, it always prefers to shift. Though this strategy should
generally reduce the described problem, it is evident from the
low precision score for attachment to root, that it can not com-
pletely eliminate it.

7 Related Work

There has not been much previous work on latent
variable models for dependency parsing. Depen-
dency parsing with Dynamic Bayesian Networks
was considered in (Peshkin and Savova, 2005), with
limited success. Roughly, the model considered
the whole sentence at a time, with the DBN being
used to decide which words correspond to leaves
of the tree. The chosen words are then removed
from the sentence and the model is recursively ap-
plied to the reduced sentence. Recently several la-
tent variable models for constituent parsing have
been proposed (Koo and Collins, 2005; Matsuzaki
et al., 2005; Prescher, 2005; Riezler et al., 2002).
In (Matsuzaki et al., 2005) non-terminals in a stan-
dard PCFG model are augmented with latent vari-
ables. A similar model of (Prescher, 2005) uses a
head-driven PCFG with latent heads, thus restrict-
ing the flexibility of the latent-variable model by us-
ing explicit linguistic constraints. While the model
of (Matsuzaki et al., 2005) significantly outperforms
the constrained model of (Prescher, 2005), they both
are well below the state-of-the-art in constituent
parsing. In (Koo and Collins, 2005), an undirected
graphical model for constituent parse reranking uses
dependency relations to define the edges. Thus, it
should be easy to apply a similar method to rerank-
ing dependency trees.

Undirected graphical models, in particular Condi-
tional Random Fields, are the standard tools for shal-
low parsing (Sha and Pereira, 2003). However, shal-
low parsing is effectively a sequence labeling prob-
lem and therefore differs significantly from full pars-
ing. As discussed in (Titov and Henderson, 2007),
undirected graphical models do not seem to be suit-
able for history-based parsing models.

Sigmoid Belief Networks (SBNs) were used orig-
inally for character recognition tasks, but later a dy-
namic modification of this model was applied to the
reinforcement learning task (Sallans, 2002). How-
ever, their graphical model, approximation method,
and learning method differ significantly from those
of this paper. The extension of dynamic SBNs with
incrementally specified model structure (i.e. Incre-
mental Sigmoid Belief Networks, used in this pa-
per) was proposed and applied to constituent parsing
in (Titov and Henderson, 2007).
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8 Conclusions

We proposed a latent variable dependency parsing
model based on Incremental Sigmoid Belief Net-
works. Unlike state-of-the-art dependency parsers,
it uses a generative history-based model. We demon-
strated that it achieves state-of-the-art results on a
selection of languages from the CoNLL-X shared
task. The parser uses a vector of latent variables
to represent an intermediate state and uses rela-
tions defined on the output structure to construct the
edges between latent state vectors. These proper-
ties make it a powerful feature induction method
for dependency parsing, and it achieves competi-
tive results even with very simple explicit features.
The ISBN model is especially accurate at modeling
long dependences, achieving average improvement
of 5.7% over the state-of-the-art baseline on depen-
dences longer than 6 words. Empirical evaluation
demonstrates that competitive results are achieved
mostly because of the ability of the model to in-
duce complex features and not because of the use of
a generative probability model or a specific search
method. As with other generative models, it can be
further improved by the application of discrimina-
tive reranking techniques. Discriminative methods
are likely to allow it to significantly improve over
the current state-of-the-art in dependency parsing.7

Acknowledgments

This work was funded by Swiss NSF grant 200020-
109685, UK EPSRC grant EP/E019501/1, and EU
FP6 grant 507802 for project TALK. We thank
Joakim Nivre and Sandra Kübler for an excellent
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