
Proceedings of EACL 2009 Workshop on Semantic Representation of Spoken Language - SRSL 2009, pages 19–25,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Identifying Segment Topics in Medical Dictations

Johannes Matiasek, Jeremy Jancsary
Alexandra Klein

Austrian Research Institute for
Artificial Intelligence

Freyung 6, Wien, Austria
firstname.lastname@ofai.at

Harald Trost
Department of Medical Cybernetics

and Artificial Intelligence
of the Center for Brain Research,

Medical University Vienna, Austria
harald.trost@meduniwien.ac.at

Abstract
In this paper, we describe the use of lexi-
cal and semantic features for topic classi-
fication in dictated medical reports. First,
we employ SVM classification to assign
whole reports to coarse work-type cate-
gories. Afterwards, text segments and
their topic are identified in the output
of automatic speech recognition. This
is done by assigning work-type-specific
topic labels to each word based on fea-
tures extracted from a sliding context win-
dow, again using SVM classification uti-
lizing semantic features. Classifier stack-
ing is then used for a posteriori error cor-
rection, yielding a further improvement in
classification accuracy.

1 Introduction

The use of automatic speech recognition (ASR) is
quite common in the medical domain, where for
every consultation or medical treatment a written
report has to be produced. Usually, these reports
are dictated and transcribed afterwards. The use of
ASR can, thereby, significantly reduce the typing
efforts, but, as can be seen in figure 1, quite some
work is left.

complaint dehydration weakness and diarrhea full
stop Mr. Will Shawn is a 81-year-old cold Asian
gentleman who came in with fever and Persian
diaper was sent to the emergency department by his
primary care physician due him being dehydrated
period . . . neck physical exam general alert and
oriented times three known acute distress vital
signs are stable . . . diagnosis is one chronic
diarrhea with hydration he also has hypokalemia
neck number thromboctopenia probably duty liver
cirrhosis . . . a plan was discussed with patient in
detail will transfer him to a nurse and facility
for further care . . . end of dictation

Figure 1: Raw output of speech recognition

When properly edited and formatted, the same
dictation appears significantly more comprehensi-
ble, as can be seen in figure 2.

CHIEF COMPLAINT
Dehydration, weakness and diarrhea.

HISTORY OF PRESENT ILLNESS
Mr. Wilson is a 81-year-old Caucasian gentleman
who came in here with fever and persistent
diarrhea. He was sent to the emergency department
by his primary care physician due to him being
dehydrated.
. . .

PHYSICAL EXAMINATION
GENERAL: He is alert and oriented times three,

not in acute distress.

VITAL SIGNS: Stable.
. . .

DIAGNOSIS
1. Chronic diarrhea with dehydration. He also

has hypokalemia.
2. Thromboctopenia, probably due to liver

cirrhosis.
. . .

PLAN AND DISCUSSION
The plan was discussed with the patient in detail.
Will transfer him to a nursing facility for
further care.
. . .

Figure 2: A typical medical report

Besides the usual problem with recognition er-
rors, section headers are often not dictated or hard
to recognize as such. One task that has to be per-
formed in order to arrive at the structured report
shown in figure 2 is therefore to identify topical
sections in the text and to classify them accord-
ingly.

In the following, we first describe the problem
setup, the steps needed for data preparation, and
the division of the classification task into subprob-
lems. We then describe the experiments performed
and their results.

In the outlook we hint at ways to integrate this
approach with another, multilevel, segmentation
framework.

2 Data Description and Problem Setup

Available corpus data consists of raw recognition
results and manually formatted and corrected re-
ports of medical dictations. 11462 reports were
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available in both forms, 51382 reports only as cor-
rected transcripts. When analysing the data, it
became clear that the structure of segment topics
varied strongly across different work-types. Thus
we decided to pursue a two-step approach: firstly
classify reports according to their work-type and,
secondly, train and apply work-type specific clas-
sification models for segment topic classification.

2.1 Classification framework

For all classification tasks discussed here, we em-
ployed support-vector machines (SVM, Vapnik
(1995)) as the statistical framework, though in dif-
ferent incarnations and setups. SVMs have proven
to be an effective means for text categorization
(Joachims, 1998) as they are capable to robustly
deal with high-dimensional, sparse feature spaces.
Depending on the task, we experimented with dif-
ferent feature weighting schemes and SVM kernel
functions as will be described in section 3.

2.2 Features used for classification

The usual approach in text categorization is to use
bag-of-word features, i.e. the words occuring in a
document are collected disregarding the order of
their appearance. In the domain of medical dic-
tation, however, often abbreviations or different
medical terms may be used to refer to the same se-
mantic concept. In addition, medical terms often
are multi-word expressions, e.g., “coronary heart
disease”. Therefore, a better approach for feature
mapping is needed to arrive at features at an ap-
propriate generalization level:

• Tokenization is performed using a large
finite-state lexicon including multi-word
medical concepts extracted from the UMLS
medical metathesaurus (Lindberg et al.,
1993). Thus, multi-word terms remain intact.
In addition, numeric quantities in special
(spoken or written) formats or together with a
dimension are mapped to semantic types (e.g.
“blood pressure” or “physical quantity”), also
using a finite-state transducer.

• The tokens are lemmatized and, if possi-
ble, replaced by the UMLS semantic con-
cept identifier(s) they map to. Thus,
“CHD”, “coronary disease” and “coronary
heart disease” all map to the same concept
“C0010068”.

• In addition, also the UMLS semantic type, if
available, is used as a feature, so, in the ex-
ample above, “B2.2.1.2.1” (Disease or Syn-
drome) is added.

• Since topics in a medical report roughly fol-
low an order, for the segment topic identifica-
tion task also the relative position of a word
in the report (ranging from -1 to +1) is used.

We also explored different weighting schemes:

• binary: only the presence of a feature is in-
dicated.

• term frequency: the number of occurences
of a feature in the segment to be classified is
used as weight.

• TFIDF: a measure popular from information
retrieval, where tfidfi,j of term ti in docu-
ment dj ∈ D is usually defined as

cti,j∑
i cti,j

. log
|D|

|{dj : ti ∈ dj}|

An example of how this feature extraction pro-
cess works is given below:

token(s) feature(s) comment
...
an stop word
78 year old QH OLD pattern-based type
female C0085287 UMLS concept

A2.9.2 UMLS semtype
intubated intubate lemmatized (no concept)
with stop word
lung cancer C0242379 UMLS concept

C0684249 UMLS concept
B2.2.1.2.1.2 UMLS semtype

...

2.3 Data Annotation
For the first classification task, i.e. work-type clas-
sification, no further annotation is necessary, ev-
ery report in our data corpus had a label indicating
the work-type. For the segment topic classification
task, however, every token of the report had to be
assigned a topic label.

2.3.1 Analysis of Corrected Transcripts
For the experiments described here, we con-
centrated on the “Consultations” work-type, for
which clear structuring recommendations, such
as E2184-02 (ASTM International, 2002), exist.
However, in practice the structure of medical re-
ports shows high variation and deviations from
the guidelines, making it harder to come up with
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an appropriate set of class labels. Therefore, us-
ing the aforementioned standard, we assigned the
headings that actually appeared in the data to the
closest type, introducing new types only when ab-
solutely necessary. Thus we arrived at 23 heading
classes. Every (possibly multi-word) token was
then labeled with the heading class of the last sec-
tion heading occurring before it in the text using a
simple parser.

2.3.2 Aligment and Label Transfer
When inspecting manually corrected reports (cf.
fig. 2), one can easily identify a heading and clas-
sify the topic of the text below it accordingly.
However, our goal is to develop a model for iden-
tifying and classifying segments in the dictation,
thus we have to map the annotation of corrected
reports onto the corresponding ASR output. The
basic idea here is to align the tokens of the cor-
rected report with the tokens in ASR output and to
copy the annotations (cf. figure 3). There are some
problems we have to take care of during align-
ment:

1. non-dictated items in the corrected test (e.g.
punctuation, headings)

2. dictated words that do not occur in the cor-
rected text (meta instructions, repetitions)

3. non-identical but corresponding items
(recognition errors, reformulations)

For this alignment task, a standard string-edit
distance based method is not sufficient. There-
fore, we augment it with a more sophisticated cost
function. It assigns tokens that are similar (ei-
ther from a semantic or from a phonetic point of
view) a low cost for substitution, whereas dissimi-
lar tokens receive a prohibitively expensive score.
Costs for deletion and insertion are assigned in-
versely. Semantic similarity is computed using
Wordnet (Fellbaum, 1998) and UMLS. For pho-
netic matching, the Metaphone algorithm (Philips,
1990) was used (for details see Huber et al. (2006)
and Jancsary et al. (2007)).

3 Experiments

3.1 Work-Type Categorization
In total we had 62844 written medical reports
with assigned work-type information from differ-
ent hospitals, 7 work-types are distinguished. We
randomly selected approximately a quarter of the

corrected report OP ASR output
. . . . . . . . . . . . . . .
ChiefCompl CHIEF del
ChiefCompl COMPLAINT sub complaint ChiefCompl
ChiefCompl Dehydration sub dehydration ChiefCompl
ChiefCompl , del
ChiefCompl weakness sub weakness ChiefCompl
ChiefCompl and sub and ChiefCompl
ChiefCompl diarrhea sub diarrhea ChiefCompl
ChiefCompl . sub fullstop ChiefCompl
HistoryOfP Mr. sub Mr. HistoryOfP
HistoryOfP Wilson sub Will HistoryOfP

ins Shawn HistoryOfP
HistoryOfP is sub is HistoryOfP
HistoryOfP a sub a HistoryOfP
HistoryOfP 81-year-old sub 81-year-old HistoryOfP
HistoryOfP Caucasian sub cold HistoryOfP
HistoryOfP ins Asian HistoryOfP
HistoryOfP gentleman sub gentleman HistoryOfP
HistoryOfP who sub who HistoryOfP
HistoryOfP came sub came HistoryOfP
HistoryOfP in del
HistoryOfP here sub here HistoryOfP
HistoryOfP with sub with HistoryOfP
HistoryOfP fever sub fever HistoryOfP
HistoryOfP and sub and HistoryOfP
HistoryOfP persistent sub Persian HistoryOfP
HistoryOfP diarrhea sub diaper HistoryOfP
HistoryOfP . del
. . . . . . . . . . . . . . .

Figure 3: Mapping labels via alignment

reports as the training set, the rest was used for
testing. The distribution of the data can be seen in
table 1.

Trainingset Testset Work-Type
649 4.1 1966 4.2 CA Cardiology

7965 51.0 24151 51.1 CL ClinicalReports
1867 11.9 5590 11.8 CN Consultations
1120 7.2 3319 7.0 DS DischargeSummaries

335 2.1 878 1.8 ER EmergencyMedicine
2185 14.0 6789 14.4 HP HistoryAndPhysicals
1496 9.6 4534 9.6 OR OperativeReports

15617 47227 Total

Table 1: Distribution of Work-types

As features for categorization, we used a bag-
of-words approach, but instead of the surface form
of every token of a report, we used its semantic
features as described in section 2.2. As a catego-
rization engine, we used LIBSVM (Chang&Lin,
2001) with an RBF kernel. The features where
weighted with TFIDF. In order to compensate for
different document length, each feature vector was
normalized to unit length. After some param-
eter tuning iterations, the SVM model performs
really well with a microaveraged F11 value of
0.9437. This indicates high overall accuracy, and
the macroaveraged F1 value of 0.9341 shows, that
also lower frequency categories are predicted quite
reliably. The detailed results are shown in table 2.

Thus the first step in the cascaded model, i.e.
the selection of the work-type specific segment

1F1 = 2×precision×recall
precision+recall
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predicted rec. prec. F1
true CA CL CN DS ER HP OR
CA 1966 1882 53 5 6 0 9 11 0.9573 0.9787 0.9679
CL 24151 25 23675 217 13 18 155 48 0.9803 0.9529 0.9664
CN 5590 1 447 4695 7 17 413 10 0.8399 0.8814 0.8601
DS 3319 1 37 8 3241 2 27 3 0.9765 0.9818 0.9792
ER 878 0 90 7 10 754 13 4 0.8588 0.9425 0.8987
HP 6789 4 512 393 22 7 5838 13 0.8599 0.9040 0.8814
OR 4534 10 31 2 2 2 3 4484 0.9890 0.9805 0.9847

microaveraged 0.9437
macroaveraged 0.9341

Table 2: Work-Type categorization results

topic model, yields reliable performance.

3.2 Segment Topic Classification

In contrast to work-type categorization, where
whole reports need to be categorized, the identifi-
cation of segment topics requires a different setup.
Since not only the topic labels are to be deter-
mined, but also segment boundaries are unknown
in the classification task, each token constitutes
an example under this setting. Segments are then
contiguous text regions with the same topic label.
It is clearly not enough to consider only features
of the token to be classified, thus we include also
contextual and positional features.

3.2.1 Feature and Kernel Selection
In particular, we employ a sliding window ap-
proach, i.e. for each data set not only the token to
be classified, but also the 10 preceding and the 10
following tokens are considered (at the beginning
or towards the end of a report, context is reduced
appropriately). This window defines the text frag-
ment to be used for classifying the center token,
and features are collected from this window again
as described in section 2.2. Additionaly, the rela-
tive position (ranging from -1 to +1) of the center
token is used as a feature.

The rationale behind this setup is that

1. usually topics in medical reports follow an or-
dering, thus relative position may help.

2. holding features also from adjacent segments
might also be helpful since topic succession
also follows typical patterns.

3. a sufficiently sized context might also smooth
label assignment and prevent label oscilla-

tion, since the classification features for ad-
jacent words overlap to a great deal.

A second choice to be made was the selection
of the kernel best suited for this particular classifi-
cation problem. In order to get an impression, we
made a preliminary mini-experiment with just 5
reports each for training (4341 datasets) and test-
ing (3382 datasets), the results of which are re-
ported in table 3.

Accuracy
Feature Weight linear RBF
TFIDF 0.4977 0.3131
TFIDF normalized 0.5544 0.6199
Binary 0.6417 0.6562

Table 3: Preliminary Kernel Comparison

While these results are of course not significant,
two things could be learned from the preliminary
experiment:

1. linear kernels may have similar or even better
performance,

2. training times with LIBSVM with a large
number of examples may soon get infeasible
(we were not able to repeat this experiment
with 50 reports due to excessive runtime).

Since LibSVM solves linear and nonlinear
SVMs in the same way, LibSVM is not particu-
larly efficient for linear SVMs. Therefore we de-
cided to switch to Liblinear (Fan et al., 2008), a
linear classifier optimized for handling data with
millions of instances and features2.

2Indeed, training a model from 669 reports (463994 ex-
amples) could be done in less then 5 minutes!
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predicted class label (#)
# True Label Total F1 . . . 3 4 . . . 14 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Diagnosis 40871 0.603 . . . 24391 2864 . . . 8691 . . .
4 DiagAndPlan 21762 0.365 . . . 5479 6477 . . . 7950 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
14 Plan 31729 0.598 . . . 5714 3419 . . . 21034 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4: Confusion matrix (part of)

3.2.2 Segment Topic Classification Results
Experiments were performed on a randomly se-
lected subset of reports from the “Consultations”
work-type (1338) that were available both in cor-
rected form and in raw ASR output form. An-
notations were constructed for the corrected tran-
scripts, as described in section 2.3, transfer of la-
bels to the ASR output was performed as shown in
section 2.3.2.

Both data sets were split into training and test
sets of equal size (669 reports each), experiments
with different feature weighting schemes have
been performed on both corrected data and ASR
output. The overall results are shown in table 5.

corrected reports ASR output
micro- macro- micro- macro-

Feature weights avg.F1 avg.F1 avg.F1 avg.F1
TFIDF 0.7553 0.5178 0.7136 0.4440
TFIDF norm. 0.7632 0.3470 0.7268 0.3131
Binary 0.7693 0.4636 0.7413 0.3953

Table 5: Segment topic classification results

Consistently, macroaveraged F1 values are
much lower than their microaveraged counterparts
indicating that low-frequency topic labels are pre-
dicted with less accuracy.

Also, segment classification works better with
corrected reports than with raw ASR output. The
reason for that behaviour is

1. ASR data are more noisy due to recognition
errors, and

2. while in corrected reports appropriate section
headers are available (not as header, but the
words) this is not necessarily the case in ASR
output (also the wording of dictated headers
and written headers may be different).

A general note on the used topic labels must
also be made: Due to the nature of our data it
was inevitable to use topic labels that overlap in

some cases. The most prominent example here is
“Diagnosis”, “Plan”, and “Diagnosis and Plan”.
The third label clearly subsumes the other two, but
in the data available the physicians often decided
to dictate diagnoses and the respective treatment
in an alternating way, associating each diagnosis
with the appropriate plan. This made it necessary
to include all three labels, with obvious effects that
could easily seen when inspecting the confusion
matrix, a part of which is shown in table 4.

When looking at the misclassifications in these
3 categories it can easily be seen, that they are pre-
dominantly due to overlapping categories.

Another source of problems in the data is the
skewed distribution of segment types in the re-
ports. Sections labelled with one of the four la-
bel categories that weren’t predicted at all (Chief-
Complaints, Course, Procedure, and Time, cf. ta-
ble 6) occur in less than 2% of the reports or are
infrequent and extremely short. This fact had, of
course, undesirable effects on the macroavered F1
scores. Additional difficulties that are similar to
the overlap problem discussed above are strong
thematic similarities between some section types
(e.g., Findings and Diagnosis, or ReasonForEn-
counter and HistoryOfPresentIllness) that result in
a very similar vocabulary used.

Given these difficulties due to the data, the re-
sults are encouraging. There is, however, still
plenty of room left for improvement.

3.3 Improving Topic Classification

Liblinear does not only provide class label pre-
dictions, it is also possible to obtain class proba-
bilities. The usual way then to predict the label
is to choose the one with the highest probability.
When analysing the errors made by the segment
topic classification task described above, it turned
out that often the correct label was ranked second
or third (cf. table 6). Thus, the idea of just taking
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correct prediction in
Label count best best 2 best 3
Allergies 3456 29.72 71.64 85.21
ChiefComplai 697
Course 30
Diagnosis 43565 64.69 83.29 91.37
DiagAndPlan 19409 35.24 70.45 86.81
DiagnosticSt 35554 82.47 91.34 93.05
Findings 791 0.38 1.26
Habits 2735 7.31 32.69 41.76
HistoryOfPre 122735 92.26 97.55 98.20
Medication 14553 85.87 93.38 95.22
Neurologic 5226 54.08 86.93 89.19
PastHistory 43775 71.13 86.26 88.82
PastSurgical 5752 49.32 78.88 84.47
PhysicalExam 86031 93.56 97.01 97.57
Plan 36476 62.57 84.63 94.65
Practitioner 1262 55.07 76.78 82.73
Procedures 109
ReasonForEnc 15819 25.42 42.35 43.47
ReviewOfSyst 29316 79.81 89.90 91.87
Time 58
Total 467349 76.93 88.65 92.00

Table 6: Ranked predictions

the highest ranked class label could be possibly
improved by a more informed choice.

While the segment topic classifier already takes
contextual features into account, it has still no in-
formation on the classification results of the neigh-
boring text segments. However, there are con-
straints on the length of text segments, thus, e.g.
a text segment of length 1 with a different topic la-
bel than the surrounding text is highly implausible.
Furthermore, there are also regularities in the suc-
cession of topic labels, which can be captured by
the monostratal local classification only indirectly
– if at all.

A look at figure 4 exemplifies how a bet-
ter informed choice of the label could result in
higher prediction accuracy. The segment labelled
“PastHistory” correctly ends 4 tokens earlier than
predicted, and, additionally, this label erroneously
is predicted again for the phrase “progressive
weight loss”. The correct label, however, has still
a rather high probability in the predicted label
distribution. By means of stacking an additional
classier onto the first one we hope to be able to
correct some of the locally made errors a posteri-
ori.

The setup for the error correction classifier
we experimented with was as follows (it was
performed only for the segment topic classi-
fier trained on ASR output with binary feature
weights):

1. The training set of the classifier was clas-

Label probabilities (%)
True Label Predicted ... 10 11 12 ... 17 18
. . .

= PastHistory [11] age PastHistory 0 95 0 0 0
= PastHistory [11] 63 PastHistory 0 95 0 0 0
= PastHistory [11] and PastHistory 0 95 0 0 1
= PastHistory [11] his PastHistory 0 95 0 0 1
= PastHistory [11] father PastHistory 0 88 0 0 9
= PastHistory [11] died PastHistory 0 90 0 0 8
= PastHistory [11] from PastHistory 0 84 0 0 14
= PastHistory [11] myocardial infa PastHistory 0 81 0 0 17
= PastHistory [11] at PastHistory 0 77 0 0 20
= PastHistory [11] age PastHistory 0 78 0 1 19
= PastHistory [11] 57 PastHistory 0 78 0 1 19
= PastHistory [11] period PastHistory 0 78 0 1 19
- ReviewOfSyst[18] review PastHistory 0 76 0 1 20
- ReviewOfSyst[18] of PastHistory 0 76 0 1 21
- ReviewOfSyst[18] systems PastHistory 0 78 0 0 19
- ReviewOfSyst[18] he PastHistory 1 57 0 1 37
= ReviewOfSyst[18] has ReviewOfSyst 1 32 0 1 58
= ReviewOfSyst[18] had ReviewOfSyst 1 32 0 1 58
- ReviewOfSyst[18] progressive PastHistory 1 49 0 1 42
- ReviewOfSyst[18] weight loss PastHistory 1 60 0 1 32
= ReviewOfSyst[18] period ReviewOfSyst 1 31 0 0 62
= ReviewOfSyst[18] his ReviewOfSyst 1 13 0 1 81
= ReviewOfSyst[18] appetite ReviewOfSyst 1 13 0 1 81

. . .

Figure 4: predicted label probabilites

sified, and the predicted label probabilities
were collected as features.

2. Again, a sliding window (with different
sizes) was used for feature construction. Fea-
tures were set up for each label at each win-
dow position and the respective predicted la-
bel probability was used as its value.

3. A linear classifier was trained on these fea-
tures of the training set

4. This classifier was applied to the results of
classifying the test set with the original seg-
ment topic classifier.

Three different window sizes were used on the
corrected reports, only one window was applied
on ASR output (cf. table 7). As can be seen, each

corrected reports ASR output
micro- macro- micro- macro-

context window avg.F1 avg.F1 avg.F1 avg.F1
No correction 0.7693 0.4636 0.7413 0.3953
[−3, +3] 0.7782 0.4773 - -
[−6, +0] 0.7798 0.4754 - -
[−3, +4] 0.7788 0.4769 0.7520 0.4055

Table 7: A posteriori correction results

context variant improved on both microaveraged
and macroaveraged F1 in a range of 0,9 to 1.4 per-
cent points. Thus, stacked error correction indeed
is possible and able to improve classification re-
sults.
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4 Conclusion and Outlook

We have presented a 3 step approach to seg-
ment topic identification in dictations of medi-
cal reports. In the first step, a categorization of
work-type is performed on the whole report us-
ing SVM classification employing semantic fea-
tures. The categorization model yields good per-
formance (over 94% accuracy) and is a prerequi-
site for subsequent application of work-type spe-
cific segment classification models.

For segment topic detection, every word was as-
signed a class label based on contextual features
in a sliding window approach. Here also semantic
features were used as a means for feature gener-
alisation. In various experiments, linear models
using binary feature weights had the best perfor-
mance. A posteriori error correction via classifier
stacking additionally improved the results.

When comparing our results to the results of
Jancsary et al. (2008), who pursue a multi-level
segmentation aproach using conditional random
fields optimizing over the whole report, the locally
obtained SVM results cannot compete fully. On
label chain 2, which is equivalent to segment top-
ics as investigated here, Jancsary et al. (2008) re-
port an estimated accuracy of 81.45 ± 2.14 % on
ASR output (after some postprocessing), whereas
our results, even with a posteriori error correction,
are at least 4 percent points behind. This is prob-
ably due to the fact that the multi-level annotation
employed in Jancsary et al. (2008) contains addi-
tional information useful for the learning task, and
constraints between the levels improve segmenta-
tion behavior at the segment boundaries. Never-
theless, our approach has the merit of employing a
framework that can be trained in a fraction of the
time needed for CRF training, and classification
works locally.

An investigation on how to combine these two
complementary approaches is planned for the fu-
ture. The idea here is to use the probability distri-
butions on labels returned by our approach as (ad-
ditional) features in the CRF model. It might be
possible to leave out some other features currently
employed in return, thereby reducing model com-
plexity. The benefit we hope to get by doing so are
shorter training time for CRF training, and, since,
contrary to CRFs, SVMs are a large margin classi-
fication method, hopefully the CRF model can be
improved by the present approach.
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