
Proceedings of the Workshop on BioNLP: Shared Task, pages 59–67,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

A memory–based learning approach to event extraction in biomedical texts

Roser Morante, Vincent Van Asch, Walter Daelemans
CNTS - Language Technology Group

University of Antwerp
Prinsstraat 13

B-2000 Antwerpen, Belgium
{Roser.Morante,Walter.Daelemans,Vincent.VanAsch}@ua.ac.be

Abstract

In this paper we describe the memory-based ma-
chine learning system that we submitted to the
BioNLP Shared Task on Event Extraction. We mod-
eled the event extraction task using an approach that
has been previously applied to other natural lan-
guage processing tasks like semantic role labeling
or negation scope finding. The results obtained by
our system (30.58 F-score in Task 1 and 29.27 in
Task 2) suggest that the approach and the system
need further adaptation to the complexity involved
in extracting biomedical events.

1 Introduction

In this paper we describe the memory-based ma-
chine learning system that we submitted to the
BioNLP shared task on event extraction1. The sys-
tem operates in three phases. In the first phase, event
triggers and entities other than proteins are detected.
In the second phase, event participants and argu-
ments are identified. In the third phase, postprocess-
ing heuristics select the best frame for each event.

Memory-based language processing (Daelemans
and van den Bosch, 2005) is based on the idea that
NLP problems can be solved by reuse of solved ex-
amples of the problem stored in memory. Given
a new problem, the most similar examples are re-
trieved, and a solution is extrapolated from them.
As language processing tasks typically involve many

1Web page: http://www-tsujii.is.s.u-tokyo.
ac.jp/GENIA/SharedTask/index.html

subregularities and (pockets of) exceptions, it has
been argued that memory-based learning is at an
advantage in solving these highly disjunctive learn-
ing problems compared to more eager learning that
abstract from the examples, as the latter eliminates
not only noise but also potentially useful exceptions
(Daelemans et al., 1999).

The BioNLP Shared Task 2009 takes a
linguistically-motivated approach, which is re-
flected in the properties of the shared task definition:
rich semantics, a text-bound approach, and decom-
position of linguistic phenomena. Memory-based
algorithms have been successfully applied in lan-
guage processing to a wide range of linguistic tasks,
from phonology to semantic analysis. Our goal was
to investigate the performance of a memory–based
approach to the event extraction task, using only
the information available in the training corpus and
modelling the task applying an approach similar to
the one that has been applied to tasks like semantic
role labeling (Morante et al., 2008) or negation
scope detection (Morante and Daelemans, 2009).

In Section 2 we briefly describe the task. Section
3 reviews some related work. Section 4 presents the
system, and Section 5 the results. Finally, some con-
clusions are put forward in Section 6.

2 Task description

The BioNLP Shared Task 2009 on event extrac-
tion consists of recognising bio-molecular events in
biomedical texts, focusing on molecular events in-
volving proteins and genes. An event is defined as a
relation that holds between multiple entities that ful-
fil different roles. Events can participate in one type
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of events: regulation events.
The task is divided into the three subtasks listed

below. We participated in subtasks 1 and 2.

• Task 1: event detection and characterization. This
task involves event trigger detection, event typing,
and event participant recognition.

• Task 2: event argument recognition. Recognition
of entities other than proteins and the assignment of
these entities as event arguments.

• Task 3: recognition of negations and speculations.

The task did not include a named entity recogni-
tion subtask. A gold standard set of named entity
annotations for proteins was provided by the organ-
isation. A dataset based on the publicly available
portion of the GENIA (Collier et al., 1999) corpus
annotated with events (Kim et al., 2008) and of the
BioInfer (Pyysalo et al., 2007) corpus was provided
for training, and held-out parts of the same corpora
were provided for development and testing.

The inter-annotator agreement reported for the
Genia Event corpus is 56% strict match2, which
means that the event type is the same, the clue ex-
pressions are overlapping and the themes are the
same. This low inter-annotator agreement is an in-
dicator of the complexity of the task. Similar low
inter-annotator agreement rates (49.00 %) in identi-
fication of events have been reported by Sasaki et al.
(2008).

3 Related work

In recent years, research on text mining in the
biomedical domain has experienced substantial
progress, as shown in reviews of work done in this
field (Krallinger and Valencia, 2005; Ananiadou and
McNaught, 2006; Krallinger et al., 2008b). Some
corpora have been annotated with event level infor-
mation of different types: PropBank-style frames
(Wattarujeekrit et al., 2004; Chou et al., 2006),
frame independent roles (Kim et al., 2008), and
specific roles for certain event types (Sasaki et al.,
2008). The focus on extraction of event frames us-
ing machine learning techniques is relatively new
because there were no corpora available.

2We did not find inter-annotator agreement measures in
the paper that describes the corpus (Kim et al., 2008), but in
www-tsujii.is.s.u-tokyo.ac.jp/T-FaNT/T-FaNT
.files/Slides/Kim.pdf.

Most work focuses on extracting biological rela-
tions from corpora, which consists of finding asso-
ciations between entities within a text phrase. For
example, Bundschus et al. (2008) develop a Condi-
tional Random Fields (CRF) system to identify re-
lations between genes and diseases from a set of
GeneRIF (Gene Reference Into Function) phrases.
A shared task was organised in the framework of
the Language Learning in Logic Workshop 2005 de-
voted to the extraction of relations from biomedical
texts (Nédellec, 2005). Extracting protein-protein
interactions has also produced a lot of research, and
has been the focus of the BioCreative II competi-
tion (Krallinger et al., 2008a).

As for event extraction, Yakushiji et al. (2001)
present work on event extraction based on full-
parsing and a large-scale, general-purpose grammar.
They implement an Argument Structure Extractor.
The parser is used to convert sentences that describe
the same event into an argument structure for this
event. The argument structure contains arguments
such as semantic subject and object. Information
extraction itself is performed using pattern matching
on the argument structure. The system extracts 23 %
of the argument structures uniquely, and 24% with
ambiguity. Sasaki et al. (2008) present a supervised
machine learning system that extracts event frames
from a corpus in which the biological process E. coli
gene regulation was linguistically annotated by do-
main experts. The frames being extracted specify
all potential arguments of gene regulation events.
Arguments are assigned domain-independent roles
(Agent, Theme, Location) and domain-dependent
roles (Condition, Manner). Their system works in
three steps: (i) CRF-based named entity recogni-
tion to assign named entities to word sequences; (ii)
CRF-based semantic role labeling to assign seman-
tic roles to word sequences with named entity labels;
(iii) Comparison of word sequences with event pat-
terns derived from the corpus. The system achieves
50% recall and 20% precision.

We are not aware of work that has been carried
out on the data set of the BioNLP Shared Task 2009
before the task took place.
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4 System description

We developed a supervised machine learning sys-
tem. The system operates in three phases. In the first
phase, event triggers and entities other than proteins
are detected. In the second phase, event participants
and arguments are identified. In the third phase,
postprocessing heuristics select the best frame for
each event. Parameterisation of the classifiers used
in Phases 1 and 2 was performed by experiment-
ing with sets of parameters on the development set.
We experimented with manually selected parame-
ters and with parameters selected by a genetic algo-
rithm, but the parameters found by the genetic algo-
rithm did not yield better results than the manually
selected parameters

As a first step, we preprocess the corpora with the
GDep dependency parser (Sagae and Tsujii, 2007)
so that we can use part-of-speech tags and syntac-
tic information as features for the machine learner.
GDep is a a dependency parser for biomedical text
trained on the Tsujii Lab’s GENIA treebank. The
dependency parser predicts for every word the part-
of-speech tag, the lemma, the syntactic head, and
the dependency relation. In addition to these regular
dependency tags it also provides information about
the IOB-style chunks and named entities. The clas-
sifiers use the output of GDep in addition to some
frequency measures as features.

We represent the data into a columns format, fol-
lowing the standard format of the CoNLL Shared
Task 2006 (Buchholz and Marsi, 2006), in which
sentences are separated by a blank line and fields
are separated by a single tab character. A sentence
consists of tokens, each one starting on a new line.

4.1 Phase 1: Entity Detection
In the first phase, a memory based classifier pre-
dicts for every word in the corpus whether it is an
entity or not and the type of entity. In this set-
ting, entity refers to what in the shared task def-
inition are events and entities other than proteins.
Classes are defined in the IOB-style3 in order to
find entities that span over multiple words. Figure
1 shows a simplified version of a sentence in which
high level is a Positive Regulation event that spans
over multiple tokens and proenkephalin is a Pro-

3I stands for ‘inside’, B for ‘beginning’, and O for ‘outside’.

tein. The Protein class does not need to be predicted
by the classifier because this information is pro-
vided by the Task organisers. The classes predicted
are: O, {B,I}-Entity, {B,I}-Binding, {B,I}-Gene Ex-
pression, {B,I}-Localization, {B,I}-Negative Regula-
tion, {B,I}-Positive Regulation, {B,I}-Phosphorylation,
{B,I}-Protein Catabolism, {B,I}-Transcription.

Token Class Token Class
Upon O which O
activation O correlate O
, O with O
T O high B-Positive regulation
lymphocyte O level I-Positive regulation
accumulate O of O
high O proenkephalin B-Protein
level O mRNA O
of O in O
the O the O
neuropeptide O cell O
enkephalin O . O

Figure 1: Instance representation for the entity de-
tection classifier.

We use the IB1 memory–based classifier as im-
plemented in TiMBL (version 6.1.2) (Daelemans
et al., 2007), a supervised inductive algorithm for
learning classification tasks based on the k-nearest
neighbor classification rule (Cover and Hart, 1967).
The memory-based learning algorithm was param-
eterised in this case by using modified value differ-
ence as the similarity metric, gain ratio for feature
weighting, using 7 k-nearest neighbors, and weight-
ing the class vote of neighbors as a function of their
inverse linear distance. For training we did not use
the entire set of instances from the training data. We
downsampled the instances keeping 5 negative in-
stances (class label O) for every positive instance.
Instances to be kept were randomly selected. The
features used by this classifier are the following:

• About the token in focus: word, chunk tag, named
entity tag as provided by the dependency parser,
and, for every entity type, a number indicating how
many times the focus word triggered this type of en-
tity in the training corpus.

• About the context of the token in focus: lemmas
ranging from the lemma at position -4 until the
lemma at position +3 (relative to the focus word);
part-of-speech ranging from position -1 until posi-
tion +1; chunk ranging from position -1 until posi-
tion +1 relative to the focus word; the chunk be-
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fore the chunk to which the focus word belongs;
a boolean indicating if a word is a protein or not
for the words ranging from position -2 until posi-
tion +3.

Class label Precision Recall F-score
B-Gene expression 59.32 60.23 59.77
B-Regulation 30.41 33.58 31.91
B-Entity 40.21 41.49 40.84
B-Positive regulation 41.16 46.25 43.56
B-Binding 57.76 53.14 55.36
B-Negative regulation 42.94 48.67 45.63
I-Negative regulation 7.69 3.33 4.65
I-Positive regulation 14.29 13.24 13.74
B-Phosphorylation 75.68 71.80 73.68
I-Regulation 14.29 10.00 11.77
B-Transcription 48.78 59.70 53.69
I-Entity 20.00 16.13 17.86
B-Localization 75.00 60.00 66.67
B-Protein catabolism 73.08 100.00 84.44
O 97.66 97.62 97.64

Table 1: Results of the entity detection classifier.
Entities that are not in the table have a precision and
recall of 0.

Table 1 shows the results4 of this first step. All
class labels with a precision and recall of 0 are left
out. The overall accuracy is 95.4%. This high ac-
curacy is caused by the skewness of the data in the
training corpus, which contains a higher proportion
of instances with class label O. Instances with this
class are correctly classified in the development test.
B-Protein catabolism and B-Phosphorylation get the
highest scores. The reason why these classes get
higher scores can be that the words that trigger these
events are less diverse.

4.2 Phase 2: predicting the arguments and
participants of events

In the second phase, another memory-based clas-
sifier predicts the participants and arguments of an
event. Participants have the main role in the event
and arguments are entities that further specify the
event. In (1), for the event phosphorylation the sys-
tem has to find that STAT1, STAT3, STAT4, STAT5a,
and STAT5b are participants with the role Theme and
that tyrosine is an argument with the role Site.

4In this section we provide results on development data be-
cause the gold test data have not been made available.

(1) IFN-alpha enhanced tyrosine phosphorylation
of STAT1, STAT3, STAT4, STAT5a, and
STAT5b.

We use the IB1 algorithm as implemented in
TiMBL (version 6.1.2) (Daelemans et al., 2007).
The classifier was parameterised by using gain ratio
for feature weighting, overlap as distance metrics,
11 nearest neighbors for extrapolation, and normal
majority voting for class voting weights.

For this classifier, instances represent combina-
tions of an event with all the entities in a sentence,
for as many events as there are in a sentence. Entities
include entities and events. We use as input the out-
put of the classifier in Phase 1, so only events and
entities classified as such in Phase 1, and the gold
proteins will be combined. Events can have partici-
pants and arguments in a sentence different that their
sentence. We calculated that in the training corpus
these cases account for 5.54% of the relations, and
decided to restrict the combinations at the sentence
level. For the sentence in (1) above, where tyrosine,
phosphorylation, STAT1, STAT3, STAT4, STAT5a,
and STAT5b are entities and of those only phospho-
rylation is an event, the instances would be produced
by combining phosphorylation with the seven enti-
ties.

The features used by this classifier are the follow-
ing:

• Of the event and of the combined entity: first word,
last word, type, named entity provided by GDep,
chain of lemmas, chain of part-of-speech (POS)
tags, chain of chunk tags, dependency label of the
first word, dependency label of the last word.

• Of the event context and of the combined entity con-
text: word, lemma, POS, chunk, and GDep named
entity of the five previous and next words.

• Of the context between event and combined entity:
the chain of chunks in between, number of tokens in
between, a binary feature indicating whether event
is located before or after entity.

• Others: four features indicating the parental rela-
tion between the first and last words of the event
and the first and last words of the entity. The values
for this feature are: event father, event ancestor, en-
tity father, entity ancestor, none. Five binary fea-
tures indicating if the event accepts certain roles
(Theme, Site, ToLoc, AtLoc, Cause).
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Table 2 shows the results of this classifier per type
of participant (Cause, Site, Theme) and type of ar-
gument (AtLoc, ToLoc). Arguments are very infre-
quent, and the participants are skewed towards the
class Theme. Classes Site and Theme score high F1,
and in both cases recall is higher than precision. The
fact that the classifier overpredicts Sites and Themes
will have a negative influence in the final scores of
the full system. Further research will focus on im-
proving precision.

Part/Arg Total Precision Recall F1
Cause 61 28.88 21.31 24.52
Site 20 54.83 85.00 66.66
Theme 683 55.50 72.32 62.80
AtLoc 1 25.00 100.00 40.00
ToLoc 4 75.00 75.00 75.00

Table 2: Results of finding the event participants and
arguments.

Table 3 shows the results of finding the event par-
ticipants and arguments per event type, expressed in
terms of accuracy on the development corpus. Cause
is easier to predict for Positive Regulation events,
Site is the easiest class to predict, taking into ac-
count that AtLoc and ToLoc occur only 5 times in
total, and Theme can be predicted successfully for
Transcription and Gene Expression events, whereas
it gets lower scores for Regulation, Binding, and
Positive Regulation events.

Event Arguments/Participants
Type Cause Site Theme AtLoc ToLoc

Binding - 100.00 56.00 - -
Gene Expr. - - 89.95 - -
Localization - - 73.07 100.00 75.00
- Regulation 11.11 0.00 75.00 - -
Phosphorylation 0.00 100.00 70.83 - -
+ Regulation 27.77 90.90 56.77 - -
Protein Catab. - - 60.00 - -
Regulation 13.33 0.00 46.87 - -
Transcription - - 94.44 - -

Table 3: Results of finding the event participants and
arguments per event type (accuracy).

Table 4 shows the results of finding the event par-
ticipants that are Entity and Protein per type of event
for events that are not regulations. Entity scores high
in all cases, whereas Protein scores high for Tran-
scription and Gene Expression events and low for
Binding events.

Event Arg./Part. Type
Type Entity Protein

Binding 100.00 56.00
Gene Expr. - 89.90
Localization 80.00 73.07
Phosphorylation 100.00 68.00
Protein Catab. - 60.00
Transcription - 94.44

Table 4: Results of finding the event participants and
arguments that are Entity and Protein per event type
(accuracy).

Table 5 shows the results of finding the partic-
ipants and arguments of regulation events. In the
case of regulation events, Entity is easier to classify
with Positive Regulation events, and Protein with
Negative Regulation events. In the cases in which
events are participants of regulation events, Bind-
ing, Gene Expression and Phosphorylation are easier
to classify with Positive Regulation events, Local-
ization with Regulation events, Protein Catabolism
with Negative Regulation events, and Transcription
is easy to classify in all cases.

Arg./Part. Event Type
Type Regulation + Regulation -Regulation

Entity 0.00 90.90 0.00
Protein 17.85 38.88 45.45
Binding - 75.00 66.66
Gene Expr. 66.66 90.47 75.00
Localization 100.00 80.00 75.00
Phosphorylation 0.00 44.44 0.00
Protein Catab. 0.00 40.00 100.00
Transcription 100.00 92.85 100.00

Table 5: Results of finding event arguments and par-
ticipants for regulation events (accuracy).

From the results of the system in this phase we can
extract some conclusions: data are skewed towards
the Theme class; Themes are not equally predictable
for the different types of events, they are better
predictable for Gene Expression and Transcription;
Proteins are more difficult to classify when they are
Themes of regulation events; and Transcription and
Localization events are easier to predict as Themes
of regulation events, compared to the other types of
events that are Themes of regulation events. This
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suggests that it could be worth experimenting with
a classifier per entity type and with a classifier per
role, instead of using the same classifier for all types
of entities.

4.3 Phase 3: heuristics to select the best frame
per event

Phases 1 and 2 aimed at identifying events and can-
didates to event participants. However, the purpose
of the task is to extract full frames of events. For a
sentence like the one in (1) above, the system has to
extract the event frames in (2).

(2) 1. Phosphorylation (phosphorylation): Theme
(STAT1) Site (tyrosine)

2. Phosphorylation (phosphorylation): Theme
(STAT3) Site (tyrosine)

3. Phosphorylation (phosphorylation): Theme
(STAT5a) Site (tyrosine)

4. Phosphorylation (phosphorylation): Theme
(STAT4) Site (tyrosine)

5. Phosphorylation (phosphorylation): Theme
(STAT5b) Site (tyrosine)

It is necessary to apply heuristics in order to build
the event frames from the output of the second clas-
sifier, which for the sentence in (1) above should
contain the predictions in (3).

(3) 1. phosphorylation STAT1 : Theme
2. phosphorylation STAT3 : Theme
3. phosphorylation STAT5a : Theme
4. phosphorylation STAT4 : Theme
5. phosphorylation STAT5b : Theme
6. phosphorylation tyrosine : Site

Thus, in the third phase, postprocessing heuristics
determine which is the frame of each event.

4.3.1 Specific heuristics for each type of event
The system contains different rules for each of the

5 types of participants (Cause, Site, Theme, AtLoc,
ToLoc). The text entities are the entities defined dur-
ing Phase 2. An event is created for every text entity
for which the system predicted at least one partic-
ipant or argument. To illustrate this we can take a
look at the predictions for the Gene Expression event
in (4) where the identifiers starting by T refer to en-
tities in the text. The prediction would results in the
events listed in (5).

(4) Gene expression=
Theme:T11=Theme:T12=Theme:T13

(5) E1 Gene expression:T23 Theme:T11
E2 Gene expression:T23 Theme:T12
E3 Gene expression:T23 Theme:T13

Gene expression, Transcription, and Protein
catabolism. These type of events have only a
Theme. Therefore, an event frame is created for ev-
ery Theme predicted for events that belong to these
types.

Localization. A Localization event can have one
Theme and 2 arguments: AtLoc and ToLoc. A
Localization event with more than one predicted
Theme will result in as many frames as predicted
Themes. The arguments are passed on to every
frame.

Binding. A Binding event can have multiple
Themes and multiple Site arguments. If the system
predicts more than one Theme for a Binding event,
the heuristics first check if these Themes are in a co-
ordination structure. Coordination checking consists
of checking whether the word ‘and’ can be found
between the Themes. Coordinated Themes will give
rise to separate frames. Every participant and loose
Theme is added to all created event lines. This case
applies to the sentence in (6)

(6) When we analyzed the nature of STAT
proteins capable of binding to IL-2Ralpha,
pim-1, and IRF-1 GAS elements after cytokine
stimulation, we observed IFN-alpha-induced
binding of STAT1, STAT3, and STAT4, but not
STAT5 to all of these elements.

The frames that should be created for this sen-
tence listed in (7).

(7) 1. Binding (binding): Theme(STAT4)
Theme2(IRF-1) Site2(GAS elements)

2. Binding (binding): Theme(STAT3)
Theme2:(IL-2Ralpha) Site2(GAS elements)

3. Binding (binding): Theme(STAT3)
Theme2(IRF-1) Site2(GAS elements)

4. Binding (binding): Theme(STAT4)
Theme2(pim-1) Site2(GAS elements)

5. Binding (binding): Theme(STAT1)
Theme2(IL-2Ralpha) Site2(GAS elements)
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6. Binding (binding): Theme(STAT4)
Theme2(IL-2Ralpha) Site2(GAS elements)

7. Binding (binding): Theme(IL-2Ralpha)
Site(GAS elements)

8. Binding (binding): Theme(pim-1) Site(GAS
elements)

9. Binding (binding): Theme(STAT1)
Theme2(IRF-1) Site2(GAS elements)

10. Binding (binding): Theme(STAT3)
Theme2(pim-1) Site2(GAS elements)

11. Binding (binding): Theme(IRF-1) Site(GAS
elements)

12. Binding (binding): Theme(STAT1)
Theme2(pim-1) Site2(GAS elements)

Phosphorylation. A Phosphorylation event can
have one Theme and one Site. Multiple Themes for
the same event will result in multiple frames. The
Site argument will be added to every frame.

Regulation, Positive regulation, and Negative
regulation. A Regulation event can have a Theme,
a Cause, a Site, and a CSite. For Regulation events
the system uses a different approach when creating
new frames. It first checks which of the participants
and arguments occurs the most frequent in a predic-
tion and it creates as many separate frames as are
needed to give every participant/argument its own
frame. The remaining participants/arguments are
added to the nearest frame. For this type of event
a new frame can be created not only for multiple
Themes but also for e.g. multiple Sites. The purpose
of this strategy is to increase the recall of Regulation
events.

4.3.2 Postprocessing
After translating predictions into frames some

corrections are made.
1. Every Theme and Cause that is not a Protein is

thrown away.
2. Every frame that has no Theme is provided

with a default Theme. If no Protein is found
before the focus word, the closest Protein after
the word is taken as the default Theme.

3. Duplicates are removed.

5 Results

The official results of our system for Task 1 are pre-
sented in Table 6. The best F1 score are for Gene Ex-
pression and Protein Catabolism events. The lowest

results are for all the types of regulation events and
for Binding events. Binding events are more diffi-
cult to predict correctly because they can have more
than one Theme.

Total Precision Recall F1
Binding 347 12.97 31.03 18.29
Gene Expr. 722 51.39 68.96 58.89
Localization 174 20.69 78.26 32.73
Phosphorylation 135 28.15 67.86 39.79
Protein Catab. 14 64.29 42.86 51.43
Transcription 137 24.82 41.46 31.05
Regulation 291 8.93 23.64 12.97
+Regulation 983 11.70 31.68 17.09
-Regulation 379 11.08 29.85 16.15
TOTAL 3182 22.50 47.70 30.58

Table 6: Official results of Task 1. Approximate
Span Matching/Approximate Recursive Matching.

The official results of our system for Task 2 are
presented in Table 7. Results are similar to the re-
sults of Task 1 because there are not many more ar-
guments than participants. Recognising arguments
was the additional goal of Task 2 in relation to
Task 1.

Total Precision Recall F1
Binding 349 11.75 28.28 16.60
Gene Expr. 722 51.39 68.96 58.89
Localization 174 17.82 67.39 28.18
Phosphorylation 139 15.83 39.29 22.56
Protein Catab. 14 64.29 42.86 51.43
Transcription 137 24.82 41.46 31.05
Regulation 292 8.56 22.73 12.44
+Regulation 987 11.35 30.85 16.59
-Regulation 379 11.08 29.20 15.76
TOTAL 3193 21.52 45.77 29.27

Table 7: Official results of Task 2. Approximate
Span Matching/Approximate Recursive Matching.

Results obtained on the development set are a lit-
tle bit higher. For Task1 an overall F1 of 34.78 and
for Task 2 33.54.

For most event types precision and recall are un-
balanced, the system scores higher in recall. Fur-
ther research should focus on increasing precision
because the system is predicting false positives. It
would be possible to add a step in order to fil-
ter out the false positives by comparing word se-
quences with event patterns derived from the cor-
pus, which is an approach taken in the system by
Sasaki et al. (2008) .
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In the case of Binding events, both precision and
recall are low. There are two explanations for this.
In the first place, the first classifier misses almost
half of the binding events. As an example, for
the sentence in (8.1), the gold standard identifies as
binding event the multiwords binds as a homodimer
and form heterodimers, whereas the system identi-
fies two binding events for the same sentence, binds
and homodimer, none of which is correct because
the correct one is the multiword unit. For the sen-
tence in (8.2), the gold standard identifies as binding
events bind, form homo-, and heterodimers, whereas
the system identifies only binds.
(8) 1. The KBF1/p50 factor binds as a homodimer but can

also form heterodimers with the products of other
members of the same family, like the c-rel and v-rel
(proto)oncogenes.
2. A mutant of KBF1/p50 (delta SP), unable to bind to
DNA but able to form homo- or heterodimers, has been
constructed.

From the sentence in (8.1) above the eight frames
in (9) should be extracted, whereas the system ex-
tracts only the frames in (10), which are incorrect
because the events have not been correctly identi-
fied.
(9) 1. Binding(binds as a homodimer) : Theme(KBF1)

2. Binding(binds as a homodimer) : Theme(p50)
3. Binding(form heterodimers) : Theme(KBF1)

Theme2(c-rel)
4. Binding(form heterodimers) : Theme(p50)

Theme2(v-rel)
5. Binding(form heterodimers) : Theme(p50)

Theme2(c-rel)
6. Binding(form heterodimers) : Theme(KBF1)

Theme2(v-rel)
7. Binding(bind) : Theme(p50)
8. Binding(bind) : Theme(KBF1)

(10) 1. Binding(binds) : Theme(v-rel)
2. Binding(homodimer) : Theme(c-rel)

The complexity of frame extraction of Binding
events contrasts with the less complex extraction of
frames for Gene Expression events, like the one in
sentence (11), where expression has been identified
correctly by the system as an event and the frame in
(12) has been correctly extracted.
(11) Thus, c-Fos/c-Jun heterodimers might contribute to the

repression of DRA gene expression.

(12) Gene Expression(expression) : Theme(DRA)

6 Conclusions

In this paper we presented a supervised machine
learning system that extracts event frames from
biomedical texts in three phases. The system partic-
ipated in the BioNLP Shared Task 2009, achieving
an F-score of 30.58 in Task 1, and 29.27 in Task 2.
The frame extraction task was modeled applying the
same approach that has been applied to tasks like se-
mantic role labeling or negation scope detection, in
order to check whether such an approach would be
suitable for a frame extraction task. The results ob-
tained for the present task do not compare to results
obtained in the mentioned tasks, where state of the
art F-scores are above 80.

Extracting biomedical event frames is more com-
plex than labeling semantic roles because of several
reasons. Semantic roles are mostly assigned to syn-
tactic constituents, predicates have only one frame
and all the arguments belong to the same frame. In
contrast, in the biomedical domain one event can
have several frames, each frame having different
participants, the boundaries of which do not coin-
cide with syntactic constituents.

The system presented here can be improved in
several directions. Future research will concentrate
on increasing precision in general, and precision and
recall of binding events in particular. Analysing in
depth the errors made by the system at each phase
will allow us to find the weaker aspects of the sys-
tem. From the results of the system in the second
phase we could draw some conclusions: data are
skewed towards the Theme class; Themes are not
equally predictable for the different types of events;
Proteins are more difficult to classify when they are
Themes of regulation events; and Transcription and
Localization events are easier to predict as Themes
of regulation events, compared to the other types of
events that are Themes of regulation events. We plan
to experiment with a classifier per entity type and
with a classifier per role, instead of using the same
classifier for all types of entities. Additionally, the
effects of the postprocessing rules in Phase 3 will be
evaluated.
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