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Abstract
The CoNLL-2010 Shared Task was dedi-
cated to the detection of uncertainty cues
and their linguistic scope in natural lan-
guage texts. The motivation behind this
task was that distinguishing factual and
uncertain information in texts is of essen-
tial importance in information extraction.
This paper provides a general overview
of the shared task, including the annota-
tion protocols of the training and evalua-
tion datasets, the exact task definitions, the
evaluation metrics employed and the over-
all results. The paper concludes with an
analysis of the prominent approaches and
an overview of the systems submitted to
the shared task.

1 Introduction

Every year since 1999, the Conference on Com-
putational Natural Language Learning (CoNLL)
provides a competitive shared task for the Com-
putational Linguistics community. After a five-
year period of multi-language semantic role label-
ing and syntactic dependency parsing tasks, a new
task was introduced in 2010, namely the detection
of uncertainty and its linguistic scope in natural
language sentences.

In natural language processing (NLP) – and in
particular, in information extraction (IE) – many
applications seek to extract factual information
from text. In order to distinguish facts from unre-
liable or uncertain information, linguistic devices
such as hedges (indicating that authors do not
or cannot back up their opinions/statements with
facts) have to be identified. Applications should
handle detected speculative parts in a different
manner. A typical example is protein-protein in-
teraction extraction from biological texts, where
the aim is to mine text evidence for biological enti-
ties that are in a particular relation with each other.

Here, while an uncertain relation might be of some
interest for an end-user as well, such information
must not be confused with factual textual evidence
(reliable information).

Uncertainty detection has two levels. Auto-
matic hedge detectors might attempt to identify
sentences which contain uncertain information
and handle whole sentences in a different man-
ner or they might attempt to recognize in-sentence
spans which are speculative. In-sentence uncer-
tainty detection is a more complicated task com-
pared to the sentence-level one, but it has bene-
fits for NLP applications as there may be spans
containing useful factual information in a sentence
that otherwise contains uncertain parts. For ex-
ample, in the following sentence the subordinated
clause starting with although contains factual in-
formation while uncertain information is included
in the main clause and the embedded question.

Although IL-1 has been reported to con-
tribute to Th17 differentiation in mouse
and man, it remains to be determined
{whether therapeutic targeting of IL-1
will substantially affect IL-17 in RA}.

Both tasks were addressed in the CoNLL-2010
Shared Task, in order to provide uniform manu-
ally annotated benchmark datasets for both and to
compare their difficulties and state-of-the-art so-
lutions for them. The uncertainty detection prob-
lem consists of two stages. First, keywords/cues
indicating uncertainty should be recognized then
either a sentence-level decision is made or the lin-
guistic scope of the cue words has to be identified.
The latter task falls within the scope of semantic
analysis of sentences exploiting syntactic patterns,
as hedge spans can usually be determined on the
basis of syntactic patterns dependent on the key-
word.
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2 Related Work

The term hedging was originally introduced by
Lakoff (1972). However, hedge detection has re-
ceived considerable interest just recently in the
NLP community. Light et al. (2004) used a hand-
crafted list of hedge cues to identify specula-
tive sentences in MEDLINE abstracts and several
biomedical NLP applications incorporate rules for
identifying the certainty of extracted information
(Friedman et al., 1994; Chapman et al., 2007; Ara-
maki et al., 2009; Conway et al., 2009).

The most recent approaches to uncertainty de-
tection exploit machine learning models that uti-
lize manually labeled corpora. Medlock and
Briscoe (2007) used single words as input features
in order to classify sentences from biological ar-
ticles (FlyBase) as speculative or non-speculative
based on semi-automatically collected training ex-
amples. Szarvas (2008) extended the methodology
of Medlock and Briscoe (2007) to use n-gram fea-
tures and a semi-supervised selection of the key-
word features. Kilicoglu and Bergler (2008) pro-
posed a linguistically motivated approach based
on syntactic information to semi-automatically re-
fine a list of hedge cues. Ganter and Strube (2009)
proposed an approach for the automatic detec-
tion of sentences containing uncertainty based on
Wikipedia weasel tags and syntactic patterns.

The BioScope corpus (Vincze et al., 2008) is
manually annotated with negation and specula-
tion cues and their linguistic scope. It consists
of clinical free-texts, biological texts from full pa-
pers and scientific abstracts. Using BioScope for
training and evaluation, Morante and Daelemans
(2009) developed a scope detector following a su-
pervised sequence labeling approach while Özgür
and Radev (2009) developed a rule-based system
that exploits syntactic patterns.

Several related works have also been published
within the framework of The BioNLP’09 Shared
Task on Event Extraction (Kim et al., 2009), where
a separate subtask was dedicated to predicting
whether the recognized biological events are un-
der negation or speculation, based on the GENIA
event corpus annotations (Kilicoglu and Bergler,
2009; Van Landeghem et al., 2009).

3 Uncertainty Annotation Guidelines

The shared task addressed the detection of uncer-
tainty in two domains. As uncertainty detection
is extremely important for biomedical information

extraction and most existing approaches have tar-
geted such applications, participants were asked
to develop systems for hedge detection in bio-
logical scientific articles. Uncertainty detection
is also important, e.g. in encyclopedias, where
the goal is to collect reliable world knowledge
about real-world concepts and topics. For exam-
ple, Wikipedia explicitly declares that statements
reflecting author opinions or those not backed up
by facts (e.g. references) should be avoided (see
3.2 for details). Thus, the community-edited en-
cyclopedia, Wikipedia became one of the subjects
of the shared task as well.

3.1 Hedges in Biological Scientific Articles
In the biomedical domain, sentences were manu-
ally annotated for both hedge cues and their lin-
guistic scope. Hedging is typically expressed by
using specific linguistic devices (which we refer to
as cues in this article) that modify the meaning or
reflect the author’s attitude towards the content of
the text. Typical hedge cues fall into the following
categories:

• auxiliaries: may, might, can, would, should,
could, etc.

• verbs of hedging or verbs with speculative
content: suggest, question, presume, suspect,
indicate, suppose, seem, appear, favor, etc.

• adjectives or adverbs: probable, likely, possi-
ble, unsure, etc.

• conjunctions: or, and/or, either . . . or, etc.

However, there are some cases where a hedge is
expressed via a phrase rather than a single word.
Complex keywords are phrases that express un-
certainty together, but not on their own (either the
semantic interpretation or the hedging strength of
its subcomponents are significantly different from
those of the whole phrase). An instance of a com-
plex keyword can be seen in the following sen-
tence:

Mild bladder wall thickening {raises
the question of cystitis}.

The expression raises the question of may be sub-
stituted by suggests and neither the verb raises nor
the noun question convey speculative meaning on
their own. However, the whole phrase is specula-
tive therefore it is marked as a hedge cue.
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During the annotation process, a min-max strat-
egy for the marking of keywords (min) and their
scope (max) was followed. On the one hand, when
marking the keywords, the minimal unit that ex-
presses hedging and determines the actual strength
of hedging was marked as a keyword. On the other
hand, when marking the scopes of speculative key-
words, the scope was extended to the largest syn-
tactic unit possible. That is, all constituents that
fell within the uncertain interpretation were in-
cluded in the scope. Our motivation here was that
in this way, if we simply disregard the marked text
span, the rest of the sentence can usually be used
for extracting factual information (if there is any).
For instance, in the example above, we can be sure
that the symptom mild bladder wall thickening is
exhibited by the patient but a diagnosis of cystitis
would be questionable.

The scope of a speculative element can be de-
termined on the basis of syntax. The scopes of
the BioScope corpus are regarded as consecutive
text spans and their annotation was based on con-
stituency grammar. The scope of verbs, auxil-
iaries, adjectives and adverbs usually starts right
with the keyword. In the case of verbal elements,
i.e. verbs and auxiliaries, it ends at the end of the
clause or sentence, thus all complements and ad-
juncts are included. The scope of attributive ad-
jectives generally extends to the following noun
phrase, whereas the scope of predicative adjec-
tives includes the whole sentence. Sentential ad-
verbs have a scope over the entire sentence, while
the scope of other adverbs usually ends at the end
of the clause or sentence. Conjunctions generally
have a scope over the syntactic unit whose mem-
bers they coordinate. Some linguistic phenomena
(e.g. passive voice or raising) can change scope
boundaries in the sentence, thus they were given
special attention during the annotation phase.

3.2 Wikipedia Weasels

The chief editors of Wikipedia have drawn the at-
tention of the public to uncertainty issues they call
weasel1. A word is considered to be a weasel
word if it creates an impression that something im-
portant has been said, but what is really commu-
nicated is vague, misleading, evasive or ambigu-
ous. Weasel words do not give a neutral account
of facts, rather, they offer an opinion without any

1http://en.wikipedia.org/wiki/Weasel_
word

backup or source. The following sentence does
not specify the source of information, it is just the
vague term some people that refers to the holder of
this opinion:

Some people claim that this results in a
better taste than that of other diet colas
(most of which are sweetened with as-
partame alone).

Statements with weasel words usually evoke ques-
tions such as Who says that?, Whose opinion is
this? and How many people think so?.

Typical instances of weasels can be grouped in
the following way (we offer some examples as
well):

• Adjectives and adverbs

– elements referring to uncertainty: prob-
able, likely, possible, unsure, often, pos-
sibly, allegedly, apparently, perhaps,
etc.

– elements denoting generalization:
widely, traditionally, generally, broadly-
accepted, widespread, etc.

– qualifiers and superlatives: global, su-
perior, excellent, immensely, legendary,
best, (one of the) largest, most promi-
nent, etc.

– elements expressing obviousness:
clearly, obviously, arguably, etc.

• Auxiliaries

– may, might, would, should, etc.

• Verbs

– verbs with speculative content and their
passive forms: suggest, question, pre-
sume, suspect, indicate, suppose, seem,
appear, favor, etc.

– passive forms with dummy subjects: It
is claimed that . . . It has been men-
tioned . . . It is known . . .

– there is / there are constructions: There
is evidence/concern/indication that. . .

• Numerically vague expressions / quantifiers

– certain, numerous, many, most, some,
much, everyone, few, various, one group
of, etc. Experts say . . . Some people
think . . . More than 60% percent . . .

3



• Nouns

– speculation, proposal, consideration,
etc. Rumour has it that . . . Common
sense insists that . . .

However, the use of the above words or grammat-
ical devices does not necessarily entail their being
a weasel cue since their use may be justifiable in
their contexts.

As the main application goal of weasel detec-
tion is to highlight articles which should be im-
proved (by reformulating or adding factual is-
sues), we decided to annotate only weasel cues
in Wikipedia articles, but we did not mark their
scopes.

During the manual annotation process, the fol-
lowing cue marking principles were employed.
Complex verb phrases were annotated as weasel
cues since in some cases, both the passive con-
struction and the verb itself are responsible for the
weasel. In passive forms with dummy subjects and
there is / there are constructions, the weasel cue
included the grammatical subject (i.e. it and there)
as well. As for numerically vague expressions, the
noun phrase containing a quantifier was marked
as a weasel cue. If there was no quantifier (in the
case of a bare plural), the noun was annotated as
a weasel cue. Comparatives and superlatives were
annotated together with their article. Anaphoric
pronouns referring to a weasel word were also an-
notated as weasel cues.

4 Task Definitions

Two uncertainty detection tasks (sentence clas-
sification and in-sentence hedge scope detec-
tion) in two domains (biological publications and
Wikipedia articles) with three types of submis-
sions (closed, cross and open) were given to the
participants of the CoNLL-2010 Shared Task.

4.1 Detection of Uncertain Sentences
The aim of Task1 was to develop automatic proce-
dures for identifying sentences in texts which con-
tain unreliable or uncertain information. In par-
ticular, this task is a binary classification problem,
i.e. factual and uncertain sentences have to be dis-
tinguished.

As training and evaluation data

• Task1B: biological abstracts and full articles
(evaluation data contained only full articles)
from the BioScope corpus and

• Task1W: paragraphs from Wikipedia possi-
bly containing weasel information

were provided. The annotation of weasel/hedge
cues was carried out on the phrase level, and sen-
tences containing at least one cue were considered
as uncertain, while sentences with no cues were
considered as factual. The participating systems
had to submit a binary classification (certain vs.
uncertain) of the test sentences while marking cues
in the submissions was voluntary (but participants
were encouraged to do this).

4.2 In-sentence Hedge Scope Resolution

For Task2, in-sentence scope resolvers had to be
developed. The training and evaluation data con-
sisted of biological scientific texts, in which in-
stances of speculative spans – that is, keywords
and their linguistic scope – were annotated manu-
ally. Submissions to Task2 were expected to auto-
matically annotate the cue phrases and the left and
right boundaries of their scopes (exactly one scope
must be assigned to a cue phrase).

4.3 Evaluation Metrics

The evaluation for Task1 was carried out at the
sentence level, i.e. the cue annotations in the sen-
tence were not taken into account. The Fβ=1 mea-
sure (the harmonic mean of precision and recall)
of the uncertain class was employed as the chief
evaluation metric.

The Task2 systems were expected to mark cue-
and corresponding scope begin/end tags linked to-
gether by using some unique IDs. A scope-level
Fβ=1 measure was used as the chief evaluation
metric where true positives were scopes which ex-
actly matched the gold standard cue phrases and
gold standard scope boundaries assigned to the cue
word. That is, correct scope boundaries with in-
correct cue annotation and correct cue words with
bad scope boundaries were both treated as errors.

This scope-level metric is very strict. For in-
stance, the requirement of the precise match of the
cue phrase is questionable as – from an application
point of view – the goal is to find uncertain text
spans and the evidence for this is not so impor-
tant. However, the annotation of cues in datasets
is essential for training scope detectors since lo-
cating the cues usually precedes the identification
of their scope. Hence we decided to incorporate
cue matches into the evaluation metric.
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Another questionable issue is the strict bound-
ary matching requirement. For example, includ-
ing or excluding punctuations, citations or some
bracketed expressions, like (see Figure 1) from
a scope is not crucial for an otherwise accurate
scope detector. On the other hand, the list of
such ignorable phenomena is arguable, especially
across domains. Thus, we considered the strict
boundary matching to be a straightforward and un-
ambiguous evaluation criterion. Minor issues like
those mentioned above could be handled by sim-
ple post-processing rules. In conclusion we think
that the uncertainty detection community may find
more flexible evaluation criteria in the future but
the strict scope-level metric is definitely a good
starting point for evaluation.

4.4 Closed and Open Challenges

Participants were invited to submit results in dif-
ferent configurations, where systems were allowed
to exploit different kinds of annotated resources.
The three possible submission categories were:

• Closed, where only the labeled and unla-
beled data provided for the shared task were
allowed, separately for each domain (i.e.
biomedical train data for biomedical test set
and Wikipedia train data for Wikipedia test
set). No further manually crafted resources
of uncertainty information (i.e. lists, anno-
tated data, etc.) could be used in any domain.
On the other hand, tools exploiting the man-
ual annotation of linguistic phenomena not
related to uncertainty (such as POS taggers
and parsers trained on labeled corpora) were
allowed.

• Cross-domain was the same as the closed one
but all data provided for the shared task were
allowed for both domains (i.e. Wikipedia
train data for the biomedical test set, the
biomedical train data for Wikipedia test set
or a union of Wikipedia and biomedical train
data for both test sets).

• Open, where any data and/or any additional
manually created information and resource
(which may be related to uncertainty) were
allowed for both domains.

The motivation behind the cross-domain and the
open challenges was that in this way, we could

assess whether adding extra (i.e. not domain-
specific) information to the systems can contribute
to the overall performance.

5 Datasets

Training and evaluation corpora were annotated
manually for hedge/weasel cues and their scope
by two independent linguist annotators. Any dif-
ferences between the two annotations were later
resolved by the chief annotator, who was also re-
sponsible for creating the annotation guidelines
and training the two annotators. The datasets
are freely available2 for further benchmark experi-
ments at http://www.inf.u-szeged.hu/
rgai/conll2010st.

Since uncertainty cues play an important role
in detecting sentences containing uncertainty, they
are tagged in the Task1 datasets as well to enhance
training and evaluation of systems.

5.1 Biological Publications

The biological training dataset consisted of the bi-
ological part of the BioScope corpus (Vincze et al.,
2008), hence it included abstracts from the GE-
NIA corpus, 5 full articles from the functional ge-
nomics literature (related to the fruit fly) and 4 ar-
ticles from the open access BMC Bioinformatics
website. The automatic segmentation of the doc-
uments was corrected manually and the sentences
(14541 in number) were annotated manually for
hedge cues and their scopes.

The evaluation dataset was based on 15 biomed-
ical articles downloaded from the publicly avail-
able PubMedCentral database, including 5 ran-
dom articles taken from the BMC Bioinformat-
ics journal in October 2009, 5 random articles to
which the drosophila MeSH term was assigned
and 5 random articles having the MeSH terms
human, blood cells and transcription factor (the
same terms which were used to create the Genia
corpus). These latter ten articles were also pub-
lished in 2009. The aim of this article selection
procedure was to have a theme that was close to
the training corpus. The evaluation set contained
5003 sentences, out of which 790 were uncertain.
These texts were manually annotated for hedge
cues and their scope. To annotate the training and
the evaluation datasets, the same annotation prin-
ciples were applied.

2under the Creative Commons Attribute Share Alike li-
cense
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For both Task1 and Task2, the same dataset was
provided, the difference being that for Task1, only
hedge cues and sentence-level uncertainty were
given, however, for Task2, hedge cues and their
scope were marked in the text.

5.2 Wikipedia Datasets
2186 paragraphs collected from Wikipedia
archives were also offered as Task1 training
data (11111 sentences containing 2484 uncertain
ones). The evaluation dataset contained 2346
Wikipedia paragraphs with 9634 sentences, out of
which 2234 were uncertain.

For the selection of the Wikipedia paragraphs
used to construct the training and evaluation
datasets, we exploited the weasel tags added by
the editors of the encyclopedia (marking unsup-
ported opinions or expressions of a non-neutral
point of view). Each paragraph containing weasel
tags (5874 different ones) was extracted from the
history dump of English Wikipedia. First, 438 ran-
domly selected paragraphs were manually anno-
tated from this pool then the most frequent cue
phrases were collected. Later on, two other sets
of Wikipedia paragraphs were gathered on the ba-
sis of whether they contained such cue phrases or
not. The aim of this sampling procedure was to
provide large enough training and evaluation sam-
ples containing weasel words and also occurrences
of typical weasel words in non-weasel contexts.

Each sentence was annotated manually for
weasel cues. Sentences were treated as uncer-
tain if they contained at least one weasel cue, i.e.
the scope of weasel words was the entire sentence
(which is supposed to be rewritten by Wikipedia
editors).

5.3 Unlabeled Data
Unannotated but pre-processed full biological arti-
cles (150 articles from the publicly available Pub-
MedCentral database) and 1 million paragraphs
from Wikipedia were offered to the participants as
well. These datasets did not contain any manual
annotation for uncertainty, but their usage permit-
ted data sampling from a large pool of in-domain
texts without time-wasting pre-processing tasks
(cleaning and sentence splitting).

5.4 Data Format
Both training and evaluation data were released
in a custom XML format. For each task, a sep-
arate XML file was made available containing the

whole document set for the given task. Evaluation
datasets were available in the same format as train-
ing data without any sentence-level certainty, cue
or scope annotations.

The XML format enabled us to provide more
detailed information about the documents such as
segment boundaries and types (e.g. section titles,
figure captions) and it is the straightforward for-
mat to represent nested scopes. Nested scopes
have overlapping text spans which may contain
cues for multiple scopes (there were 1058 occur-
rences in the training and evaluation datasets to-
gether). The XML format utilizes id-references
to determine the scope of a given cue. Nested
constructions are rather complicated to represent
in the standard IOB format, moreover, we did not
want to enforce a uniform tokenization.

To support the processing of the data files,
reader and writer software modules were devel-
oped and offered to the participants for the uCom-
pare (Kano et al., 2009) framework. uCompare
provides a universal interface (UIMA) and several
text mining and natural language processing tools
(tokenizers, POS taggers, syntactic parsers, etc.)
for general and biological domains. In this way
participants could configure and execute a flexible
chain of analyzing tools even with a graphical UI.

6 Submissions and Results

Participants uploaded their results through the
shared task website, and the official evaluation was
performed centrally. After the evaluation period,
the results were published for the participants on
the Web. A total of 23 teams participated in the
shared task. 22, 16 and 13 teams submitted output
for Task1B, Task1W and Task2, respectively.

6.1 Results

Tables 1, 2 and 3 contain the results of the submit-
ted systems for Task1 and Task2. The last name
of the first author of the system description pa-
per (published in these proceedings) is used here
as a system name3. The last column contains the
type of submission. The system of Kilicoglu and
Bergler (2010) is the only open submission. They
adapted their system introduced in Kilicoglu and
Bergler (2008) to the datasets of the shared task.

Regarding cross submissions, Zhao et al. (2010)
and Ji et al. (2010) managed to achieve a no-
ticeable improvement by exploiting cross-domain

3Özgür did not publish a description of her system.
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Name P / R / F type
Georgescul 72.0 / 51.7 / 60.2 C
Ji 62.7 / 55.3 / 58.7 X
Chen 68.0 / 49.7 / 57.4 C
Morante 80.6 / 44.5 / 57.3 C
Zhang 76.6 / 44.4 / 56.2 C
Zheng 76.3 / 43.6 / 55.5 C
Täckström 78.3 / 42.8 / 55.4 C
Mamani Sánchez 68.3 / 46.2 / 55.1 C
Tang 82.3 / 41.4 / 55.0 C
Kilicoglu 67.9 / 46.0 / 54.9 O
Tjong Kim Sang 74.0 / 43.0 / 54.4 C
Clausen 75.1 / 42.0 / 53.9 C
Özgür 59.4 / 47.9 / 53.1 C
Zhou 85.3 / 36.5 / 51.1 C
Li 88.4 / 31.9 / 46.9 C
Prabhakaran 88.0 / 28.4 / 43.0 C
Ji 94.2 / 6.6 / 12.3 C

Table 1: Task1 Wikipedia results (type ∈
{Closed(C), Cross(X), Open(O)}).

data. Zhao et al. (2010) extended the biological
cue word dictionary of their system – using it as
a feature for classification – by the frequent cues
of the Wikipedia dataset, while Ji et al. (2010)
used the union of the two datasets for training
(they have reported an improvement from 47.0 to
58.7 on the Wikipedia evaluation set after a post-
challenge bugfix).

Name P / R / F type
Morante 59.6 / 55.2 / 57.3 C
Rei 56.7 / 54.6 / 55.6 C
Velldal 56.7 / 54.0 / 55.3 C
Kilicoglu 62.5 / 49.5 / 55.2 O
Li 57.4 / 47.9 / 52.2 C
Zhou 45.6 / 43.9 / 44.7 O
Zhou 45.3 / 43.6 / 44.4 C
Zhang 46.0 / 42.9 / 44.4 C
Fernandes 46.0 / 38.0 / 41.6 C
Vlachos 41.2 / 35.9 / 38.4 C
Zhao 34.8 / 41.0 / 37.7 C
Tang 34.5 / 31.8 / 33.1 C
Ji 21.9 / 17.2 / 19.3 C
Täckström 2.3 / 2.0 / 2.1 C

Table 2: Task2 results (type ∈ {Closed(C),
Open(O)}).

Each Task2 and Task1W system achieved a

Name P / R / F type
Tang 85.0 / 87.7 / 86.4 C
Zhou 86.5 / 85.1 / 85.8 C
Li 90.4 / 81.0 / 85.4 C
Velldal 85.5 / 84.9 / 85.2 C
Vlachos 85.5 / 84.9 / 85.2 C
Täckström 87.1 / 83.4 / 85.2 C
Shimizu 88.1 / 82.3 / 85.1 C
Zhao 83.4 / 84.8 / 84.1 X
Özgür 77.8 / 91.3 / 84.0 C
Rei 83.8 / 84.2 / 84.0 C
Zhang 82.6 / 84.7 / 83.6 C
Kilicoglu 92.1 / 74.9 / 82.6 O
Morante 80.5 / 83.3 / 81.9 X
Morante 81.1 / 82.3 / 81.7 C
Zheng 73.3 / 90.8 / 81.1 C
Tjong Kim Sang 74.3 / 87.1 / 80.2 C
Clausen 79.3 / 80.6 / 80.0 C
Szidarovszky 70.3 / 91.0 / 79.3 C
Georgescul 69.1 / 91.0 / 78.5 C
Zhao 71.0 / 86.6 / 78.0 C
Ji 79.4 / 76.3 / 77.9 C
Chen 74.9 / 79.1 / 76.9 C
Fernandes 70.1 / 71.1 / 70.6 C
Prabhakaran 67.5 / 19.5 / 30.3 X

Table 3: Task1 biological results (type ∈
{Closed(C), Cross(X), Open(O)}).

higher precision than recall. There may be two
reasons for this. The systems may have applied
only reliable patterns, or patterns occurring in the
evaluation set may be imperfectly covered by the
training datasets. The most intense participation
was on Task1B. Here, participants applied vari-
ous precision/recall trade-off strategies. For in-
stance, Tang et al. (2010) achieved a balanced pre-
cision/recall configuration, while Li et al. (2010)
achieved third place thanks to their superior preci-
sion.

Tables 4 and 5 show the cue-level performances,
i.e. the F-measure of cue phrase matching where
true positives were strict matches. Note that it was
optional to submit cue annotations for Task1 (if
participants submitted systems for both Task2 and
Task1B with cue tagging, only the better score of
the two was considered).

It is interesting to see that Morante et al. (2010)
who obtained the best results on Task2 achieved
a medium-ranked F-measure on the cue-level (e.g.
their result on the cue-level is lower by 4% com-
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pared to Zhou et al. (2010), while on the scope-
level the difference is 13% in the reverse direc-
tion), which indicates that the real strength of the
system of Morante et al. (2010) is the accurate de-
tection of scope boundaries.

Name P / R / F
Tang 63.0 / 25.7 / 36.5
Li 76.1 / 21.6 / 33.7
Özgür 28.9 / 14.7 / 19.5
Morante 24.6 / 7.3 / 11.3

Table 4: Wikipedia cue-level results.

Name P / R / F type
Tang 81.7 / 81.0 / 81.3 C
Zhou 83.1 / 78.8 / 80.9 C
Li 87.4 / 73.4 / 79.8 C
Rei 81.4 / 77.4 / 79.3 C
Velldal 81.2 / 76.3 / 78.7 C
Zhang 82.1 / 75.3 / 78.5 C
Ji 78.7 / 76.2 / 77.4 C
Morante 78.8 / 74.7 / 76.7 C
Kilicoglu 86.5 / 67.7 / 76.0 O
Vlachos 82.0 / 70.6 / 75.9 C
Zhao 76.7 / 73.9 / 75.3 X
Fernandes 79.2 / 64.7 / 71.2 C
Zhao 63.7 / 74.1 / 68.5 C
Täckström 66.9 / 58.6 / 62.5 C
Özgür 49.1 / 57.8 / 53.1 C

Table 5: Biological cue-level results (type ∈
{Closed(C), Cross(X), Open(O)}).

6.2 Approaches
The approaches to Task1 fall into two major cat-
egories. There were six systems which handled
the task as a classical sentence classification prob-
lem and employed essentially a bag-of-words fea-
ture representation (they are marked as BoW in
Table 6). The remaining teams focused on the
cue phrases and sought to classify every token if
it was a part of a cue phrase, then a sentence was
predicted as uncertain if it contained at least one
recognized cue phrase. Five systems followed a
pure token classification approach (TC) for cue de-
tection while others used sequential labeling tech-
niques (usually Conditional Random Fields) to
identify cue phrases in sentences (SL).

The feature set employed in Task1 systems typ-
ically consisted of the wordform, its lemma or

stem, POS and chunk codes and about the half of
the participants constructed features from the de-
pendency and/or constituent parse tree of the sen-
tences as well (see Table 6 for details).

It is interesting to see that the top ranked sys-
tems of Task1B followed a sequence labeling ap-
proach, while the best systems on Task1W applied
a bag-of-words sentence classification. This may
be due to the fact that biological sentences have
relatively simple patterns. Thus the context of the
cue words (token classification-based approaches
used features derived from a window of the token
in question, thus, they exploited the relationship
among the tokens and their contexts) can be uti-
lized while Wikipedia weasels have a diverse na-
ture. Another observation is that the top systems
in both Task1B and Task1W are the ones which
did not derive features from syntactic parsing.

Each Task2 system was built upon a Task1 sys-
tem, i.e. they attempted to recognize the scopes
for the predicted cue phrases (however, Zhang et
al. (2010) have argued that the objective functions
of Task1 and Task2 cue detection problems are
different because of sentences containing multiple
hedge spans).

Most systems regarded multiple cues in a sen-
tence to be independent from each other and
formed different classification instances from
them. There were three systems which incor-
porated information about other hedge cues (e.g.
their distance) of the sentence into the feature
space and Zhang et al. (2010) constructed a cas-
cade system which utilized directly the predicted
scopes (it processes cue phrases from left to right)
during predicting other scopes in the same sen-
tence.

The identification of the scope for a certain cue
was typically carried out by classifying each to-
ken in the sentence. Task2 systems differ in the
number of class labels used as target and in the
machine learning approaches applied. Most sys-
tems – following Morante and Daelemans (2009)
– used three class labels (F)IRST, (L)AST and
NONE. Two participants used four classes by
adding (I)NSIDE, while three systems followed
a binary classification approach (SCOPE versus
NONSCOPE). The systems typically included a
post-processing procedure to force scopes to be
continuous and to include the cue phrase in ques-
tion. The machine learning methods applied can
be again categorized into sequence labeling (SL)
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NAME approach scope ML postproc tree dep multihedge
Fernandes TC FL ETL
Ji TC I AP +
Kilicoglu HC manual + + +
Li SL FL CRF, SVMHMM + + +
Morante TC FL KNN + +
Rei SL FIL manual+CRF + +
Täckström TC FI SVM +
Tang SL FL CRF + + +
Velldal HC manual +
Vlachos TC I Bayesian MaxEnt + +
Zhang SL FIL CRF + +
Zhao SL FL CRF +
Zhou SL FL CRF + +

Table 7: System architectures overview for Task2. Approaches: sequence labeling (SL), token clas-
sification (TC), hand-crafted rules (HC); Machine learners: Entropy Guided Transformation Learning
(ETL), Averaged Perceptron (AP), k-nearest neighbour (KNN); The way of identifying scopes: predict-
ing first/last tokens (FL), first/inside/last tokens (FIL), just inside tokens (I); Multiple Hedges: the system
applied a mechanism for handling multiple hedges inside a sentence

and token classification (TC) approaches (see Ta-
ble 7). The feature sets used here are the same
as for Task1, extended by several features describ-
ing the relationship between the cue phrase and the
token in question mostly by describing the depen-
dency path between them.

7 Conclusions

The CoNLL-2010 Shared Task introduced the
novel task of uncertainty detection. The challenge
consisted of a sentence identification task on un-
certainty (Task1) and an in-sentence hedge scope
detection task (Task2). In the latter task the goal
of automatic systems was to recognize speculative
text spans inside sentences.

The relatively high number of participants in-
dicates that the problem is rather interesting for
the Natural Language Processing community. We
think that this is due to the practical importance
of the task for (principally biomedical) applica-
tions and because it addresses several open re-
search questions. Although several approaches
were introduced by the participants of the shared
task and we believe that the ideas described in
this proceedings can serve as an excellent starting
point for the development of an uncertainty de-
tector, there is a lot of room for improving such
systems. The manually annotated datasets and
software tools developed for the shared task may
act as benchmarks for these future experiments

(they are freely available at http://www.inf.
u-szeged.hu/rgai/conll2010st).

Acknowledgements

The authors would like to thank Joakim Nivre
and Lluı́s Márquez for their useful suggestions,
comments and help during the organisation of the
shared task.

This work was supported in part by the
National Office for Research and Technol-
ogy (NKTH, http://www.nkth.gov.hu/)
of the Hungarian government within the frame-
work of the projects TEXTREND, BELAMI and
MASZEKER.

References
Eiji Aramaki, Yasuhide Miura, Masatsugu Tonoike,

Tomoko Ohkuma, Hiroshi Mashuichi, and Kazuhiko
Ohe. 2009. TEXT2TABLE: Medical Text Summa-
rization System Based on Named Entity Recogni-
tion and Modality Identification. In Proceedings of
the BioNLP 2009 Workshop, pages 185–192, Boul-
der, Colorado, June. Association for Computational
Linguistics.

Wendy W. Chapman, David Chu, and John N. Dowl-
ing. 2007. ConText: An Algorithm for Identifying
Contextual Features from Clinical Text. In Proceed-
ings of the ACL Workshop on BioNLP 2007, pages
81–88.

Mike Conway, Son Doan, and Nigel Collier. 2009. Us-
ing Hedges to Enhance a Disease Outbreak Report

10



Text Mining System. In Proceedings of the BioNLP
2009 Workshop, pages 142–143, Boulder, Colorado,
June. Association for Computational Linguistics.

Carol Friedman, Philip O. Alderson, John H. M.
Austin, James J. Cimino, and Stephen B. Johnson.
1994. A General Natural-language Text Processor
for Clinical Radiology. Journal of the American
Medical Informatics Association, 1(2):161–174.

Viola Ganter and Michael Strube. 2009. Finding
Hedges by Chasing Weasels: Hedge Detection Us-
ing Wikipedia Tags and Shallow Linguistic Features.
In Proceedings of the ACL-IJCNLP 2009 Confer-
ence Short Papers, pages 173–176, Suntec, Singa-
pore, August. Association for Computational Lin-
guistics.

Feng Ji, Xipeng Qiu, and Xuanjing Huang. 2010. De-
tecting Hedge Cues and their Scopes with Average
Perceptron. In Proceedings of the Fourteenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL-2010): Shared Task, pages 139–146,
Uppsala, Sweden, July. Association for Computa-
tional Linguistics.

Yoshinobu Kano, William A. Baumgartner, Luke
McCrohon, Sophia Ananiadou, Kevin B. Cohen,
Lawrence Hunter, and Jun’ichi Tsujii. 2009. U-
Compare: Share and Compare Text Mining Tools
with UIMA. Bioinformatics, 25(15):1997–1998,
August.

Halil Kilicoglu and Sabine Bergler. 2008. Recogniz-
ing Speculative Language in Biomedical Research
Articles: A Linguistically Motivated Perspective.
In Proceedings of the Workshop on Current Trends
in Biomedical Natural Language Processing, pages
46–53, Columbus, Ohio, June. Association for Com-
putational Linguistics.

Halil Kilicoglu and Sabine Bergler. 2009. Syn-
tactic Dependency Based Heuristics for Biological
Event Extraction. In Proceedings of the BioNLP
2009 Workshop Companion Volume for Shared Task,
pages 119–127, Boulder, Colorado, June. Associa-
tion for Computational Linguistics.

Halil Kilicoglu and Sabine Bergler. 2010. A High-
Precision Approach to Detecting Hedges and Their
Scopes. In Proceedings of the Fourteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2010): Shared Task, pages 103–110, Upp-
sala, Sweden, July. Association for Computational
Linguistics.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP’09 Shared Task on Event Extraction. In
Proceedings of the BioNLP 2009 Workshop Com-
panion Volume for Shared Task, pages 1–9, Boulder,
Colorado, June. Association for Computational Lin-
guistics.

George Lakoff. 1972. Linguistics and natural logic.
In The Semantics of Natural Language, pages 545–
665, Dordrecht. Reidel.

Xinxin Li, Jianping Shen, Xiang Gao, and Xuan
Wang. 2010. Exploiting Rich Features for Detect-
ing Hedges and Their Scope. In Proceedings of the
Fourteenth Conference on Computational Natural
Language Learning (CoNLL-2010): Shared Task,
pages 36–41, Uppsala, Sweden, July. Association
for Computational Linguistics.

Marc Light, Xin Ying Qiu, and Padmini Srinivasan.
2004. The Language of Bioscience: Facts, Spec-
ulations, and Statements in Between. In Proceed-
ings of the HLT-NAACL 2004 Workshop: Biolink
2004, Linking Biological Literature, Ontologies and
Databases, pages 17–24.

Ben Medlock and Ted Briscoe. 2007. Weakly Super-
vised Learning for Hedge Classification in Scientific
Literature. In Proceedings of the ACL, pages 992–
999, Prague, Czech Republic, June.

Roser Morante and Walter Daelemans. 2009. Learning
the Scope of Hedge Cues in Biomedical Texts. In
Proceedings of the BioNLP 2009 Workshop, pages
28–36, Boulder, Colorado, June. Association for
Computational Linguistics.

Roser Morante, Vincent Van Asch, and Walter Daele-
mans. 2010. Memory-based Resolution of In-
sentence Scopes of Hedge Cues. In Proceedings of
the Fourteenth Conference on Computational Nat-
ural Language Learning (CoNLL-2010): Shared
Task, pages 48–55, Uppsala, Sweden, July. Associa-
tion for Computational Linguistics.
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