
Proceedings of the Fourteenth Conference on Computational Natural Language Learning: Shared Task, pages 26–31,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

 
 

A Hedgehop over a Max-Margin Framework Using Hedge Cues 

 

 Maria Georgescul 
ISSCO, ETI, University of Geneva 

40 bd. du Pont-d'Arve 
 CH-1211 Geneva 4  

maria.georgescul@unige.ch 

 

 
  

 

Abstract 

In this paper, we describe the experimental 
settings we adopted in the context of the 2010 
CoNLL shared task for detecting sentences 
containing uncertainty. The classification results 
reported on are obtained using discriminative 
learning with features essentially incorporating 
lexical information. Hyper-parameters are tuned 
for each domain: using BioScope training data 
for the biomedical domain and Wikipedia 
training data for the Wikipedia test set. By 
allowing an efficient handling of combinations of 
large-scale input features, the discriminative 
approach we adopted showed highly competitive 
empirical results for hedge detection on the 
Wikipedia dataset: our system is ranked as the 
first with an F-score of 60.17%. 

1 Introduction and related work  

One of the first attempts in exploiting a Support 
Vector Machine (SVM) classifier to select 
speculative sentences is described in Light et al. 
(2004). They adopted a bag-of-words 
representation of text sentences occurring in 
MEDLINE abstracts and reported on preliminary 
results obtained. As a baseline they used an 
algorithm based on finding speculative sentences 
by simply checking whether any cue (from a 
given list of 14 cues) occurs in the sentence to be 
classified. 

Medlock and Briscoe (2007) also used single 
words as input features in order to classify 
sentences from scientific articles in biomedical 
domain as speculative or non-speculative. In a 
first step they employed a weakly supervised 
Bayesian learning model in order to derive the 
probability of each word to represent a hedge 
cue. In the next step, they perform feature 
selection based on these probabilities. In the last 
step a classifier trained on a given number of 

selected features was applied. Medlock and 
Briscoe (2007) use a similar baseline as the one 
adopted by Light et al. (2004), i.e. a naïve 
algorithm based on substring matching, but with 
a different list of terms to match against. Their 
baseline has a recall/precision break-even point 
of 0.60, while their system improves the 
accuracy to a recall/precision break-even point of 
0.76. However Medlock and Briscoe (2007) note 
that their model is unsuccessful in identifying 
assertive statements of knowledge paucity which 
are generally marked rather syntactically than 
lexically. 

Kilicoglu and Bergler (2008) proposed a semi-
automatic approach incorporating syntactic and 
some semantic information in order to enrich or 
refine a list of lexical hedging cues that are used 
as input features for automatic detection of 
uncertain sentences in the biomedical domain. 
They also used lexical cues and syntactic 
patterns that strongly suggest non-speculative 
contexts (“unhedges”). Then they manually 
expanded and refined the set of lexical hedging 
and “unhedging” cues using conceptual semantic 
and lexical relations extracted from WordNet 
(Fellbaum, 1998) and the UMLS SPECIALIST 
Lexicon (McCray et al. 1994). Kilicoglu and 
Bergler (2008) did experiments on the same 
dataset as Medlock and Briscoe (2007) and their 
experimental results proved that the 
classification accuracy can be improved by 
approximately 9% (from an F-score of 76% to an 
F-score of 85%) if syntactic and semantic 
information are incorporated. 

The experiments run by Medlock (2008) on 
the same dataset as Medlock and Briscoe (2007) 
show that adding features based on part-of-
speech tags to a bag-of-words input 
representation can slightly improve the accuracy, 
but the “improvements are marginal and not 
statistically significant”. Their experimental 
results also show that stemming can slightly 
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Dataset 

#sente
nces 

%uncertain 
sentences 

#distinct 
cues 

#ambiguous 
cues 

 
P 

 
R 

 
F 

Wikipedia training 11111 22% 1912 0.32 0.96 0.48 
Wikipedia test 9634 23% - 

188 
0.45 0.86 0.59 

BioScope training  14541 18% 168 0.46 0.99 0.63 
BioScope test  5003 16% - 

96 
0.42 0.98 0.59 

 
Table 1: The percentage of “uncertain” sentences (% uncertain sentences) given the total number of 
available sentences (#sentences) together with the number of distinct cues in the training corpus and 

the performance of the baseline algorithm based on the list of cues extracted from the training corpus. 
 
improve the classification accuracy, while using 
bigrams brings a statistically significant 
improvement over a simple bag-of-words 
representation. However, Medlock (2008) 
illustrates that “whether a particular term acts as 
a hedge cue is quite often a rather subtle function 
of its sense usage, in which case the distinctions 
may well not be captured by part-of-speech 
tagging”. 

Móra et al. (2009) also used a machine 
learning framework based on lexical input 
features and part-of-speech tags. Other recent 
work on hedge detection (Ganter and Strube, 
2009; Marco and Mercer, 2004; Mercer et al., 
2004; Morante and Daelemans, 2009a; Szarvas, 
2008) relied primarily on word frequencies as 
primary features including various shallow 
syntactic or semantic information. 

The corpora made available in the CoNLL 
shared task (Farkas et al., 2010; Vincze et al., 
2008) contains multi-word expressions that have 
been annotated by linguists as cue words tending 
to express hedging. In this paper, we test whether 
it might suffice to rely on this list of cues alone 
for automatic hedge detection. The classification 
results reported on are obtained using support 
vector machines trained with features essentially 
incorporating lexical information, i.e. features 
extracted from the list of hedge cues provided 
with the training corpus. 

In the following, we will first describe some 
preliminary considerations regarding the results 
that can be achieved using a naïve baseline 
algorithm (Section 2). Section 3 summarizes the 
experimental settings and the input features 
adopted, as well as the experimental results we 
obtained on the CoNLL test data. We also report 
on the intermediate results we obtained when 
only the CoNLL training dataset was available. 
In Section 4, we conclude with a brief 
description of the theoretical and practical 
advantages of our system. Future research 
directions are mentioned in Section 5. 

2 Preliminary Considerations  

2.1 Benchmarking 

As a baseline for our experiments, we consider a 
naive algorithm that classifies as “uncertain” any 
sentence that contains a hedge cue, i.e. any of the 
multi-word expressions labeled as hedge cues in 
the training corpus. 

Table 1 shows the results obtained when using 
the baseline naïve algorithm on the CoNLL 
datasets provided for training and test purposes1. 
The performance of the baseline algorithm is 
denoted by Precision (P), Recall (R) and F-score 
(F) measures. The first three columns of the table 
show the total number of available sentences 
together with the percentage of “uncertain” 
sentences occurring in the dataset. The fourth 
column of the table shows the total number of 
distinct hedge cues extracted from the training 
corpus. Those hedge cues occurring in “certain” 
sentences are denoted as “ambiguous cues”. The 
fifth column of the table shows the number of 
distinct ambiguous cues. 

As we observe from Table 1, the baseline 
algorithm has very high values for the recall 
score on the BioScope corpus (both training and 
test data). The small percentage of false 
negatives on the BioScope test data reflects the 
fact that only a small percentage of “uncertain” 
sentences in the reference test dataset do not 
contain a hedge cue that occurs in the training 
dataset. 

The precision of the baseline algorithm has 
values under 0.5 on all four datasets (i.e. on both 
BioScope and Wikipedia data). This illustrates 
that ambiguous hedge cues are frequently used in 
“certain” sentences. That is, the baseline 
algorithm has less true positives than false 
                                                 
1 In Section 3.2, we provide the performance of the baseline 
algorithm obtained when only the CoNLL training dataset 
was available. When we tuned our system, we obviously 
had available only the results provided in Table 2 (Section 
3.2). 
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positives, i.e. more than 50% of the sentences 
containing a hedge cue are labeled as “certain” in 
the reference datasets. 

2.2 Beyond bag-of-words 

In order to verify whether simply the frequencies 
of all words (except stop-words) occurring in a 
sentence might suffice to discriminate between 
“certain” and “uncertain” sentences, we 
performed preliminary experiments with a SVM 
bag-of-words model. The accuracy of this system 
is lower than the baseline accuracy on both 
datasets (BioScope and Wikipedia). For instance, 
the classifier based on a bag-of-words 
representation obtains an F-score of 
approximately 42% on Wikipedia data, while the 
baseline has an F-score of 49% on the same 
dataset. Another disadvantage of using a bag-of-
words input representation is obviously the large 
dimension of the system’s input matrix. For 
instance, the input matrix representation of the 
Wikipedia training dataset would have 
approximately 11111 rows and over 150000 
columns which would require over 6GB of RAM 
for a non-sparse matrix representation. 

3 System Description 

3.1 Experimental Settings  

In our work for the CoNLL shared task, we used 
Support Vector Machine classification (Fan et 
al., 2005; Vapnik, 1998) based on the Gaussian 
Radial Basis kernel function (RBF). We tuned 
the width of the RBF kernel (denoted by gamma) 
and the regularization parameter (denoted by C) 
via grid search over the following range of 
values: {2-8, 2-7, 2-6, …24} for gamma and {1, 
10..200 step 10, 200..500 step 100} for C. 
During parameter tuning, we performed 10-fold 
cross validation for each possible value of these 
parameters. Since the training data are 
unbalanced (e.g. 18% of the total number of 
sentences in the BioScope training data are 
labeled as “uncertain”), for SVM training we 
used the following class weights: 

• 0.1801 for the “certain” class and 0.8198 
for the “uncertain” class on the BioScope 
dataset;  

• 0.2235 for the “certain” class and 0.7764 
for the “uncertain” class on the 
Wikipedia dataset. 

The system was trained on the training set 
provided by the CoNLL shared task organizers 
and tested on the test set provided. As input 
features in our max-margin framework, we 

simply used the frequency of each hedge cue 
provided with the training corpus in each 
sentence. We also used as input features during 
the tuning phase of our system 2-grams and 3-
grams extracted from the list of hedge cues 
provided with the training corpus. 

3.2 Classification results 

 
 
Figure 1: Contour plot of the classification error 

landscape resulting from a grid search over a 
range of values of {2-8, 2-7, 2-6, 2-5, 2-4} for the 

gamma parameter and a range of values of {10, 
20, …, 110} for the C parameter on Wikipedia 

data. 
 

 
 

Figure 2: Contour plot of the classification error 
landscape resulting from a grid search over a 
range of values of {2-8, 2-7, 2-6, …2-2} for the 

gamma parameter and a range of values of {1, 
10, 20, 30, …110} for the C parameter on 

BioScope data. 
 

Figure 1 shows the variability of hedge 
detection results on Wikipedia training data 
when changing the RBF-specific kernel 
parameter and the regularization parameter C. 
The contour plot shows that there are three 
regions (represented in the figure by the darkest 
landscape color) for parameter values where the 
cross validation error is lower than 18.2%. One 
of these optimal settings for parameter values 
was used for the results submitted to the CoNLL 
shared task and we obtained an F-score of 
60.17%. When the CoNLL test data containing  
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Table 2: The performance of our system corresponding to the best parameter values. The performance 
is denoted in terms of true positives (TP), false positives (FP), false negatives (FN), precision (P), 

recall (R) and F-score (F)
.

the reference labels were made available, we also 
did tests with our system 
using the other two optimal settings for 
parameter values. 

The optimal classification results on the 
Wikipedia dataset were obtained for a gamma 
value equal to 0.0625 and for a C value equal to 
10, corresponding to a cross validation 
classification error of 17.94%. The model 
performances corresponding to these best 
parameter values are provided in Table 2. The P, 
R, F-score values provided in Table 2 are 
directly comparable to P, R, F-score values given 
in Table 1 since exactly the same datasets were 
used during the evaluation. 

The SVM approach we adopted shows highly 
competitive empirical results for weasel 
detection on the Wikipedia test dataset in the 
sense that our system was ranked as the first in 
the CoNLL shared task. However, the baseline 
algorithm described in Section 2 proves to be 
rather difficult to beat given its F-score 
performance of 59% on the Wikipedia test data. 
This provides motivation to consider other 
refinements of our system. In particular, we 
believe that it might be possible to improve the 
recall of our system by enriching the list of input 
features using a lexical ontology in order to 
extract synonyms for verbs, adjectives and 
adverbs occurring in the current hedge cue list. 

Figure 2 exemplifies the SVM classification 
results obtained during parameter tuning on 
BioScope training data. The optimal 
classification results on the BioScope dataset 
were obtained for gamma equal to 0.0625 and C 
equal to 110, corresponding to a cross validation 
classification error of 3.73%. The model 
performance corresponding to the best parameter 
settings is provided in Table 2. Our system 
obtained an F-score of 0.78 on the BioScope test 
dataset while the best ranked system in the 
CoNLL shared task obtained an F-score of 0.86. 
In order to identify the weaknesses of our system 
in this domain, in Subsection 3.2 we will furnish 
the intermediate results we obtained on the 
CoNLL training set. 

The system is platform independent. We ran 
the experiments under Windows on a Pentium 4, 
3.2GHz with 3GB RAM. The run times 
necessary for training/testing on the whole 
training/test dataset are provided in Table 2.  

Table 3 shows the approximate intervals of 
time required for running SVM parameter tuning 
via grid search on the entire CoNLL training 
datasets. 

 
Dataset Range of values Run 

time  
Wikipedia 
training data 

{2 -8,2-7, …2-1} for 
gamma;  
{10, 20, …110} for 
C 

13 hours  

BioScope 
training data 

{2 -8,2-7, …2-2} for 
gamma;  
{10, 20, …110} for 
C 

4 hours 

 
Table 3 : Approximate run times for parameter 

tuning via 10-fold cross validation 
 

3.3 Intermediate results 

In the following we discuss the results obtained 
when the system was trained on approximately 
80% of the CoNLL training corpus and the 
remaining 20% was used for testing. The 80% of 
the training corpus was also used to extract the 
list of hedge cues that were considered as input 
features for the SVM machine learning system. 

The BioScope training corpus provided in 
CoNLL shared task framework contains 11871 
sentences from scientific abstracts and 2670 
sentences from scientific full articles. 

In a first experiment, we only used sentences 
from scientific abstracts for training and testing: 
we randomly selected 9871 sentences for training 
and the remaining 2000 sentences were used for 
testing. The results thus obtained are shown in 
Table 4 on the second line of the table. 

Dataset TP FP FN P R F Run Time 
Wikipedia training 1899 1586 585 0.5449 0.7644 0.6362 49.1 seconds 

Wikipedia test 1213 471 1021 0.7203 0.5429 0.6191 21.5 seconds 
BioScope training 2508 515 112 0.8296 0.9572 0.8888 19.5 seconds 

BioScope test 719 322 71 0.6907 0.9101 0.7854 2.6 seconds 
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Table 4: Performances when considering separately the dataset containing abstracts only and the 

dataset containing articles from BioScope corpus. The SVM classifier was trained with gamma = 1 
and c=10. Approximately 80% of the CoNLL train corpus was used for training and 20% of the train 

corpus was held out for testing. 
 

Second, we used only the available 2670 
sentences from scientific full articles. We 
randomly split this small dataset into a training 
set of 2170 sentences and test set of 500 
sentences. 

Third, we used the entire set of 14541 
sentences (composing scientific abstracts and full 
articles) for training and testing: we randomly 
selected 11541 sentences for training and the 
remaining 3000 sentences were used for testing. 
The results obtained in this experiment are 
shown in Table 4 on the fourth line. 

We observe from Table 3 a difference of 10% 
between the F-score obtained on the dataset 
containing abstracts and the F-score obtained on 
the dataset containing full articles. This 
difference in accuracy might simply be due to the 
fact that the available abstracts training dataset is 
approximately 5 times larger than the full articles 
training dataset. In order to check whether this 
difference in accuracy is only attributable to the 
small size of the full articles dataset, we further 
analyze the learning curve of SVM on the 
abstracts dataset. 

To measure the learning curve, we randomly 
selected from the abstracts dataset 2000 
sentences for testing. We divided the remaining 
sentences into 10 parts, we used two parts for 
training, then we increased the size of the 
training dataset by one part incrementally. We 
show the results obtained in Figure 3. The x-axis 
shows the number of sentences used for training 
divided by 1000. We observe that the F-score on 
the test dataset changed only slightly when more 
than 4/10 of the training data (i.e. more than 
4800 sentences) were used for training. We also 
observe that using 2 folds for training (i.e. 
approximately 2000 sentences) gives an F-score 
of around 87% on the held-out test data. 
Therefore, using a similar amount of training 
data for BioScope abstracts as used for BioScope 
full articles, we still have a difference of 8% 

between the F-score values obtained. That is, our 
system is more efficient on abstracts than on full 
articles. 
 

 
 

Figure 3: The performance of our system when 
we used for training various percentages of the 

BioScope training dataset composed of abstracts 
only. 

4 Conclusions 

Our empirical results show that our approach 
captures informative patterns for hedge detection 
through the intermedium of a simple low-level 
feature set. 

Our approach has several attractive theoretical 
and practical properties. Given that the system 
formulation is based on the max-margin 
framework underlying SVMs, we can easily 
incorporate other kernels that induce a feature 
space that might better separate the data. 
Furthermore, SVM parameter tuning and the 
process of building the feature vector matrix, 
which are the most time and resource consuming, 
can be easily integrated in a distributed 
environment considering either cluster-based 
computing or a GRID technology (Wegener et 
al., 2007).  

From a practical point of view, the key aspects 
of our proposed system are its simplicity and 
flexibility. Additional syntactic and semantic 

SVM Baseline Dataset content #sentences 
used for 
training 

#sentences 
used for 

test 
P R F P R F 

Abstracts only 9871 2000 0.85 0.94 0.90 0.49 0.97 0.65 
Full articles only 2170 500 0.72 0.87 0.79 0.46 0.91 0.61 

Abstracts and  
full articles 

11541 3000 0.81 0.92 0.86 0.47 0.98 0.64 
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based features can easily be added to the SVM 
input. Also, the simple architecture facilitates the 
system’s integration in an information retrieval 
system. 

5 Future work 

The probabilistic discriminative model we have 
explored appeared to be well suited to tackle the 
problem of weasel detection. This provides 
motivation to consider other refinements of our 
system, by incorporating syntactic or semantic 
information. In particular, we believe that the 
recall score of our system can be improved by 
identifying a list of new potential hedge cues 
using a lexical ontology. 
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