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Abstract

In this paper we present an SMT-based ap-
proach to Question Answering (QA). QA
is the task of extracting exact answers in
response to natural language questions. In
our approach, the answer is a translation of
the question obtained with an SMT system.
We use the n-best translations of a given
question to find similar sentences in the
document collection that contain the real
answer. Although it is not the first time that
SMT inspires a QA system, it is the first
approach that uses a full Machine Transla-
tion system for generating answers. Our ap-
proach is validated with the datasets of the
TREC QA evaluation.

1 Introduction

Question Answering (QA) is the task of extract-
ing short, relevant textual answers from a given
document collection in response to natural lan-
guage questions. QA extends IR techniques be-
cause it outputs concrete answers to a question
instead of references to full documents which are
relevant to a query. QA has attracted the attention
of researchers for some years, and several pub-
lic evaluations have been recently carried in the
TREC, CLEF, and NTCIR conferences (Dang et
al., 2007; Peñas et al., 2011; Sakai et al., 2008).
All the example questions of this paper are ex-
tracted from the TREC evaluations.

QA systems are usually classified according to
what kind of questions they can answer; factoid,
definitional, how to or why questions are treated in
a distinct way. This work focuses on factoid ques-
tions, that is, those questions whose answers are
semantic entities (e.g., organisation names, per-

son names, numbers, dates, objects, etc.). For ex-
ample, the question Q1545: What is a female rab-
bit called? is factoid and its answer, “doe”, is a
semantic entity (although not a named entity).

Factoid questions written in natural language
contain implicit information about the relations
between the concepts expressed and the expected
outcomes of the search, and QA explicitly ex-
ploits this information. Using an IR engine to
look up a boolean query would not consider the
relations therefore losing important information.
Consider the question Q0677: What was the name
of the television show, starring Karl Malden, that
had San Francisco in the title? and the candi-
date answer A. In this question, two types of
constraints are expressed over the candidate an-
swers. One is that the expected type of A is a
kind of “television show.” The rest of the ques-
tion indicates that “Karl Malden” is related to A
as being “starred” by, and that “San Francisco”
is a substring of A. Many factoid questions ex-
plicitly express an hyponymy relation about the
answer type, and also several other relations de-
scribing its context (i.e. spatial, temporal, etc.).

The QA problem can be approached from sev-
eral points of view, ranging from simple surface
pattern matching (Ravichandran and Hovy, 2002),
to automated reasoning (Moldovan et al., 2007)
or supercomputing (Ferrucci et al., 2010). In
this work, we propose to use Statistical Machine
Translation (SMT) for the task of factoid QA. Un-
der this perspective, the answer is a translation of
the question. It is not the first time that SMT is
used for QA tasks, several works have been us-
ing translation models to determine the answers
(Berger et al., 2000; Cui et al., 2005; Surdeanu
et al., 2011). But to our knowledge this is the first
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approach that uses a full Machine Translation sys-
tem for generating answers.

The paper is organised as follows: Section 2
reviews the previous usages of SMT in QA, Sec-
tion 3 reports our theoretical approach to the task,
Section 4 describes our QA system, Section 5
presents the experimental setting, Section 6 anal-
yses the results and Section 7 draws conclusions.

2 Translation Models in QA

The use of machine translation in IR is not new.
Berger and Lafferty (1999) firstly propose a prob-
abilistic approach to IR based on methods of
SMT. Under their perspective, the human user has
an information need that is satisfied by an “ideal”
theoretical document d from which the user draws
important query words q. This process can be
mirrored by a translation model: given the query
q, they find the documents in the collection with
words a most likely to translate to q. The key
ingredient is the set of translation probabilities
p(q|a) from IBM model 1 (Brown et al., 1993).

In a posterior work, Berger et al. also intro-
duce the formulation of the QA problem in terms
of SMT (Berger et al., 2000). They estimate the
likelihood that a given answer containing a word
ai corresponds to a question containing word
qj . This estimation relies on an IBM model 1.
The method is tested with a collection of closed-
domain Usenet and call-center questions, where
each question must be paired with one of the
recorded answers. Soricut and Brill (2004) im-
plement a similar strategy but with a richer for-
mulation and targeted to open-domain QA. Given
a question Q, a web-search engine is used to
retrieve 3-sentence-long answer texts from FAQ
pages. These texts are later ranked with the like-
lihood of containing the answer to Q, and this
likelihood is estimated via a noisy-channel archi-
tecture. The work of Murdock and Croft (2005)
applies the same strategy to TREC data. They
evaluate the TREC 2003 passage retrieval task.
In this task, the system must output a single sen-
tence containing the answer to a factoid ques-
tion. Murdock and Croft tackle the length dis-
parity in question-answer pairs and show that this
MT-based approach outperforms traditional query
likelihood techniques.

Riezler et al. (2007) define the problem of an-
swer retrieval from FAQ and social Q/A websites
as a query expansion problem. SMT is used to

translate the original query terms to the language
of the answers, thus obtaining an expanded list of
terms usable in standard IR techniques. They also
use SMT to perform question paraphrasing. In the
same context, Lee et al. (2008) study methods for
improving the translation quality removing noise
from the parallel corpus.

SMT can be also applied to sentence represen-
tations different than words. Cui et al. (2005)
approach the task of passage retrieval for QA
with translations of dependency parsing relations.
They extract the sequences of relations that link
each pair of words in the question and, using the
IBM translation model 1, score their similarity
to the relations extracted from the candidate pas-
sage. Thus, an approximate relation matching
score is obtained. Surdeanu et al. (2011) extend
the scope of this approach by combining together
the translation probabilities of words, dependency
relations, and semantic roles in the context of an-
swer searching in FAQ collections.

The works we have described so far use
archives of question-answer pairs as information
sources. They are really doing document re-
trieval and sentence retrieval rather than question
answering, because every document/sentence is
known to be the answer of a question written in
the form of an answer, and no further information
extraction is necessary, they just select the best
answer from a given pool of answers. The dif-
ference with a standard IR task is that these sys-
tems are not searching for relevant documents but
for answer documents. In contrast, Echihabi and
Marcu (2003) introduce an SMT-based method
for extracting the concrete answer in factoid QA.
First, they use a standard IR engine to retrieve
candidate sentences and process them with a con-
stituent parser. Then, an elaborated process sim-
plifies these parse trees converting them into se-
quences of relevant words and/or syntactic tags.
This process reduces the length disparity between
questions and answers. For the answer extraction,
a special tag marking the position of the answer
is sequentially added to all suitable positions in
the sentence, thus yielding several candidate an-
swers for each sentence. Finally, each answer is
rated according to its likelihood of being a trans-
lation of the question, according to an IBM model
4 trained on a corpus of TREC and web-based
question-answer pairs.

With the exception of the query expansion ap-
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proaches (Riezler et al., 2007), all works dis-
cussed here use some form of noisy-channel
model (translation model and target language
model) but do not perform the decoding part of
the SMT process to generate translations, nor use
the rich set of features of a full SMT. In fact, the
formulation of the noisy-channel in these works
has very few differences with pure language mod-
elling approaches to QA like the one of Heie et al.
(2011), where two different models for retrieval
and filtering are learnt from a corpus of question-
answer pairs.

3 Question-to-Answer Translation

The core of our QA system is an SMT system for
the Question-to-Answer language pair. In SMT,
the best translation for a given source sentence is
the most probable one, and the probability of each
translation is given by the Bayes theorem. In our
case, the source sentence corresponds to the ques-
tion Q and the target or translation is the sentence
containing the answer A. With this correspon-
dence, the fundamental equation of SMT can be
written as:

A(Q) = Â = argmaxA P (A|Q)

= argmaxA P (Q|A)P (A), (1)

where P (Q|A) is the translation model and P (A)
is the language model, and each of them can be
understood as the sum of the probabilities for each
of the segments or phrases that conform the sen-
tence. The translation model quantifies the appro-
priateness of each segment of Q being answered
by A; the language model is a measure of the flu-
ency of the answer sentence and does not take into
account which is the question. Since we are in-
terested in identifying the concrete string that an-
swers the question and not a full sentence, this
probability is not as important as it is in the trans-
lation problem.

The log-linear model (Och and Ney, 2002), a
generalisation of the original noisy-channel ap-
proach (Eq. 1), estimates the final probability as
the logarithmic sum of several terms that depend
on both the question Q and the answer sentence
A. Using just two of the features, the model re-
produces the noisy-channel approach but written
in this way one can include as many features as
desired at the cost of introducing the same number
of free parameters. The model in its traditional

form includes 8 terms:

A(Q) = Â = argmaxA logP (A|Q) =

+ λlm logP (A) + λd logPd(A,Q)

+ λlg log lex(Q|A) + λld log lex(A|Q)

+ λg logPt(Q|A) + λd logPt(A|Q)

+ λph log ph(A) + λw logw(A) , (2)

where P (A) is the language model probabil-
ity, lex(Q|A) and lex(A|Q) are the generative
and discriminative lexical translation probabilities
respectively, Pt(Q|A) the generative translation
model, Pt(A|Q) the discriminative one, Pd(A,Q)
the distortion model, and ph(A) and w(A) corre-
spond to the phrase and word penalty models. We
start by using this form for the answer probabil-
ity and analyse the importance and validity of the
terms in the experiments Section. The λ weights,
which account for the relative importance of each
feature in the log-linear probabilistic model, are
commonly estimated by optimising the translation
performance on a development set. For this opti-
misation one may use Minimum Error Rate Train-
ing (MERT) (Och, 2003) where BLEU (Papineni
et al., 2002) is the reference evaluation.

Once the weights are determined and the prob-
abilities estimated from a corpus of question-
answer pairs (a parallel corpus in this task), a de-
coder uses Eq. 2 to score the possible outputs and
to find the best answer sentence given a question
or, in general, an n-best list of answers.

This formulation, although possible from an
abstract point of view, is not feasible in prac-
tice. The corpus from which probabilities are es-
timated is finite, and therefore new questions may
not be represented. There is no chance that SMT
can generate ex nihilo the knowledge necessary to
answer questions such as Q1201: What planet has
the strongest magnetic field of all the planets?.
So, rather than generating answers via translation,
we use translations as indicators of the sentence
context where an answer can be found. Context
here has not only the meaning of near words but
also a context at a higher level of abstraction.

To achieve this, we use two different represen-
tations of the question-answer pairs and two dif-
ferent SMT models in our QA system. We call
Level1 representation the original strings of text
of the question-answer pairs. The Level2 repre-
sentation, that aims at being more abstract, more
general and more useful in SMT, is constructed
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applying this sequence of transformations: 1)
Quoted expressions in the question are identified,
paired with their counterpart in the answer (in
case any exists) and substituted by a special tag
QUOTED. 2) Each named entity is substituted
by its entity class (e.g., “Karl Malone” by PER-
SON). 3) Each noun and verb is substituted by
their WordNet supersense1 (e.g. “nickname” by
COMMUNICATION). 4) Any remaining word,
such as adjectives, adverbs and stop words, is left
as is. Additionally, in the answer sentence string,
the correct answer entity is substituted by a spe-
cial tag ANSWER. An example of this annotation
is given in Figure 1.

An SMT system trained with Level1 examples
will translate Q to answer sentences with vocab-
ulary and structure similar to the learning exam-
ples. The Level2 system will translate to a mix of
named entities, WordNet supersenses, bare words,
and ANSWER markers that represent the abstract
structure of the answer sentence. We call patterns
to the Level2 translations. The rationale of this
process is that the SMT model can learn the con-
text where answers appear depending of the struc-
ture of the question. The obtained translations
from both levels can be searched in the document
collection to find sentences that are very similar.

Note that in Level2, the vocabulary size of
the question-answer pairs is dramatically reduced
with respect to the original Level1 sentences, as
seen in Table 2. Thus, the sparseness is reduced,
and the translation model gains in coverage; pat-
terns are also easier to find than Level1 sentences,
and give flexibility and generality to the transla-
tion. And the most important feature, patterns
capture the context of the answer, pinpointing it
with accuracy.

These Level1 and Level2 translations are the
core of our QA system that is presented in the fol-
lowing Section.

4 The Question Answering System

Our QA system is a pipeline of three modules.
In the first one, the question is analysed and an-
notated with several linguistic processors. This
information is used by the rest of the modules.
In the second one, relevant documents are ob-

1WordNet noun synsets are organised in 26 semantic cat-
egories based on logical groupings, e.g., ARTIFACT, ANI-
MAL, BODY, COMMUNICATION. . . The verbs are organ-
ised in 15 categories. (Fellbaum, 1998)

Level1 Q: What is Karl Malone’s nickname ?
Level1 A: Malone , whose overall consistency has earned
him the nickname ANSWER , missed both of them with nine
seconds remaining .

Level2 Q: What STATIVE B-PERSON ’s COMMUNICA-
TION ?
Level2 A: B-PERSON , whose overall ATTRIBUTE POS-
SESSION POSSESSION him the COMMUNICATION
ANSWER , PERCEPTION both of them with B-NUM TIME
CHANGE .

Figure 1: Example of the two annotation levels used.

tained from the document collection with straight-
forward IR techniques and a list of candidate an-
swers is generated. Finally, these candidate an-
swers are filtered and ranked to obtain a final list
of proposed answers. This pipeline is a common
architecture for a simple QA system.

4.1 Question Analysis
Questions are processed with a tokeniser, a POS
tagger, a chunker, and a NERC. Besides, each
word is tagged with its most frequent sense in
WordNet. Then, a maximum-entropy classi-
fier determines the most probable expected an-
swer types for the question (EAT). This classi-
fier is built following the approach of Li and Roth
(2005), it can classify questions into 53 different
answer types and belongs to our in-house QA sys-
tem. Finally, a weighted list of relevant keywords
is extracted from the question. Their saliences are
heuristically determined: the most salient tokens
are the quoted expressions, followed by named
entities, then sequences of nouns and adjectives,
then nouns, and finally verbs and any remaining
non-stop word. This list is used in the candidate
answer generation module.

4.2 Candidate Answer Generation
The candidate answer generation comprises two
steps. First a set of passages is retrieved from the
document collection, and then the candidate an-
swers are extracted from the text.

For the retrieval, we have used the passage
retrieval module of our in-house QA system.
The passage retrieval algorithm initially creates
a boolean query with all nouns and more salient
words, and sets a threshold t to 50. It uses the
Lucene IR engine2 to fetch the documents match-

2http://lucene.apache.org
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ing the current query and a subsequent passage
construction module extracts passages as docu-
ment segments where two consecutive keyword
occurrences are separated by at most t words.
If too few or too many passages are obtained
this way, a relaxation procedure is applied. The
process iteratively adjusts the salience level of
the keywords used in the query by dropping low
salient words when too few are obtained or adding
them when too many, and it also adjusts their
proximity threshold until the quality of the recov-
ered information is satisfactory (see ?) for further
details).

When the passages have been gathered, they
are split into sentences and processed with POS
tagging, chunking and a NERC. The candidate an-
swer list is composed of all named entities and
all phrases containing a noun. Each candidate is
associated to the sentence it has been extracted
from.

4.3 Answer Ranking

This module selects the best answers from the
candidates previously generated. It employs three
families of scores to rank them.

Context scores B and R: The n-best list of
Level2 question translations is generated. In this
step retrieved sentences are also transformed to
the Level2 representation. Then, each candidate
answer is replaced by the special ANSWER tag in
the associated sentence, thus, each sentence has a
unique ANSWER tag, as in the training examples.
Finally, each candidate is evaluated assessing the
similarity of the source sentence with the n-best
translations.

For this assessment we use two different met-
rics. One of them is a lexical metric commonly
used in machine translation, BLEU (Papineni et
al., 2002). A smoothed version is used to evalu-
ate the pairs at sentence level yielding the score B.
The other metric is ROUGE (Lin and Och, 2004),
here named R. We use the skip-bigram overlap-
ping measure with a maximum skip distance of
4 unigrams (ROUGE-S4). Contrary to BLEU,
ROUGE-S does not require consecutive matches
but is still sensitive to word order.

Both BLEU and ROUGE are well-known met-
rics that are useful for finding partial matchings in
long strings of words. Therefore it is an easy way
of implementing an approximated pattern match-

ing algorithm with off-the-shelf components.
Although these scores can determine if a sen-

tence is a candidate for asserting a certain prop-
erty of a certain object, they do not have the power
to discriminate if these objects are the actually re-
quired by the question. Level2 representation is
very coarse and, for example, treats all named en-
tities of the same categories as the same word.
Thus, it is prone to introduce noise in the form
of totally irrelevant answers. For example, con-
sider the questions Q1760: Where was C.S. Lewis
born? and Q1519: Where was Hans Christian
Anderson born?. Both questions have the same
Level2 representation: Where STATIVE PERSON
STATIVE?, and the same n-best list of transla-
tions. Any sentence stating the birthplace (or even
deathplace) of any person is equally likely to be
the correct answer of both questions because the
lexicalisation of Lewis and Anderson is lost.

On the other hand, B and R also show another
limitation. Since they are based on n-gram match-
ing, they cannot be discriminative enough when
there is only one different token between options,
and that happens when a same sentence has differ-
ent candidates for the answer. In this case the sys-
tem would be able to distinguish among answer
sentences but then all the variations with the an-
swer in a different position would have too much
similar scores. In order to mitigate these draw-
backs, we consider two other scores.

Language scores Lb, Lr, Lf : To alleviate the
discriminative problem of the context matching
metrics, we calculate the same B and R scores
but with Level1 translations and the original lexi-
calised question. These are the Lb and Lr scores.

Additionally, we introduce a new score Lf that
does not take into account the n-gram structure
of the sentences: after the n-best list of Level1
question translations is generated, the frequency
of each word present in the translations is com-
puted. Then, the words in the candidate answer
sentence are scored according to their normalised
frequency in the translations list and added up to-
gether. This score lies in the [0, 1] range.

Expected answer type score E: This score
checks if the type of the answer we are evalu-
ating matches the expected types we have deter-
mined in the question analysis. For this task, the
expected answer types are mapped to named enti-
ties and/or supersenses (e.g., type ENTY:product
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is mapped to ARTIFACT). If the candidate answer
is a named entity of the expected type, or con-
tains a noun of the expected supersense, then this
candidate receives a score E equal to the confi-
dence of the question classification (the scores of
the ME classifier have been previously normalised
to probabilities).

These three families of scores can be combined
in several ways in order to produce a ranked list
of answers. In Section 6 the combination methods
are discussed.

5 Experiments

5.1 Training and Test Corpora

We have used the datasets from the Question
Answering Track of the TREC evaluation cam-
paigns3 ranging from TREC-9 to TREC-16 in our
experiments. These datasets provide both a robust
testbed for evaluation, and a source of question-
answer pairs to use as a parallel corpus for train-
ing our SMT system. Each TREC evaluation
provides a collection of documents composed of
newspaper texts (three different collections have
been used over the years), a set of new ques-
tions, and an answer key providing both the an-
swer string and the source document. Descrip-
tion of these collections can be found in the TREC
overviews (Voorhees, 2002; Dang et al., 2007).

We use the TREC-11 questions for test pur-
poses, the remaining sets are used for training un-
less some parts of TREC-9, TREC-10 and TREC-
12 that are kept for fitting the weights of our SMT
system. To gather the SMT corpus, we select all
the factoid questions whose answer can be found
in the documents and extract the full sentence that
contains the answer. With this methodology, a
parallel corpus with 12,335 question-answer pairs
is obtained. We have divided it into two subsets:
the pairs with only a single answer found in the
documents are used for the development set, and
the remaining pairs (i.e. having multiple occur-
rences of the correct answer) are used for train-
ing. The test set are the 500 TREC-11 questions,
452 out of them have a correct answer in the doc-
uments. The numbers are summarised in Table 1.

In order to obtain the Level2 representation of
these corpora, the documents and the test sets
must be annotated. For the annotation pipeline

3http://trec.nist.gov/data/qamain.html

Q A TRECs

Train 2264 12116 9,10,12,13,14,15,16
Dev 219 219 9,10,12
Test 500 2551 11

Table 1: Number of Questions and Answers in our data
sets. The number of TREC evaluation from which are
obtained is indicated.

Tokens Vocabulary

Q A Q A

TrainL1 97028 393978 3232 32013
TrainL2 91567 373008 540 9130

Table 2: Statistics for the 12,116 Q-A pairs in the train-
ing corpus according to the annotation level.

we use the TnT POS tagger (Brants, 2000),
WordNet (Fellbaum, 1998), the YamCha chun-
ker (Kudo and Matsumoto, 2003), the Stanford
NERC (Finkel et al., 2005), and an in-house tem-
poral expressions recogniser.

Table 2 shows some statistics for the parallel
corpus and the two different levels of annotation.
From the SMT point of view the corpus is small
in order to estimate the translation probabilities in
a reliable way but, as stated before, Level2 repre-
sentation diminishes the vocabulary considerably
and alleviates the problem.

5.2 SMT system

The statistical system is a state-of-the-art phrase-
based SMT system trained on the previously
introduced corpus. Its development has been
done using standard freely available software.
The language model is estimated using interpo-
lated Kneser-Ney discounting with SRILM (Stol-
cke, 2002). Word alignment is done with
GIZA++ (Och and Ney, 2003) and both phrase
extraction and decoding are done with the Moses
package (Koehn et al., 2007). The model weights
are optimised with Moses’ script of MERT
against the BLEU evaluation metric.

For the full model, we consider the language
model, direct and inverse phrase probabilities, di-
rect and inverse lexical probabilities, phrase and
word penalties, and a non-lexicalised reordering.

5.3 QA system

The question answering system has three differ-
ent modules as explained in Section 4. For the
25



T1 T50 MRR

QA 0.006 (4) 0.206 (14) 0.024 (4)
SR 0.066 (8) 0.538 (9) 0.142 (8)

Upper bound 0.677 0.677 0.677

Table 3: Mean and standard deviation for 1000 real-
isations of the random baseline for QA and SR. The
upper bound is also shown.

first module, questions are annotated using the
same tools introduced in the corpora Section. The
second module generates 2,866,098 candidate an-
swers (373,323 different sentences), that is to say,
a mean of 5,700 answers per question (750 sen-
tences per question). These candidates are made
available to the third module resulting in the ex-
periments that will be discussed in Section 6.

The global QA system performance is evalu-
ated with three measures. T1 is a measure of
the system’s precision and gives the percentage
of correct answers in the first position; T50 gives
the number of correct answers in the first 50 po-
sitions, in some cases that corresponds to all can-
didate answers; finally the Mean Reciprocal Rank
(MRR) is a measure of the ranking capability of
the system and is estimated as the mean of the in-
verse ranking of the first correct answer for every
question: MRR= Q−1

∑
i rank−1

i .

6 Results Analysis

Given the set of answers retrieved by the candi-
date answer generation module, a naı̈ve baseline
system is estimated by selecting randomly 50 an-
swers for each of the questions. Table 3 shows
the mean of the three measures after applying this
random process 1000 times. The upper bound
of this task is the oracle that selects always the
correct answer/sentence if it is present in the re-
trieved passages. An answer is considered correct
if it perfectly matches the official TREC’s answer
key and a sentence is correct if it contains a cor-
rect answer. The random baseline has a precision
of 0.6%.

We also evaluate a second task, sentence re-
trieval for QA (SR). In this task, the system has
to provide a sentence that contains the answer, but
not to extract it. Within our SMT approach, both
tasks are done simultaneously, because the answer
is extracted according to its context sentence. A
random baseline for this second task, where only

QA SR

Metric T1 T50 MRR T1 T50 MRR

B 0.018 0.292 0.049 0.084 0.540 0.164
R 0.018 0.283 0.045 0.119 0.608 0.209
B+R 0.022 0.294 0.053 0.097 0.573 0.180
BR 0.027 0.294 0.057 0.137 0.591 0.211

Table 4: System performance using an SMT that gen-
erates a 100-best list, uses a 5-gram LM and all the
features of the TM.

1st best: The B-ORGANIZATION B-LOCATION ,
B-DATE ( B-ORGANIZATION ) - B-PERSON , whose
COMMUNICATION STATIVE ” ANSWER . ”

50th best: The ANSWER ANSWER , B-DATE ( B-ORGA-
NIZATION ) - B-PERSON , the PERSON of ANSWER
, the most popular ARTIFACT , serenely COGNITION
COMMUNICATION .

100th best: The B-LOCATION , B-DATE ( B-ORGANIZA-
TION ) - B-PERSON , the PERSON of ANSWER , COM-
MUNICATION B-LOCATION ’s COMMUNICATION .

Figure 2: Example of patterns found in an n-best list.

full sentences without marked answers are taken
into account, can also be read in Table 3.

We begin this analysis studying the perfor-
mance of the SMT-based parts alone. Table 4
shows the results when using an SMT decoder
that generates a 100-best list, uses a 5-gram lan-
guage model and all the features of the transla-
tion model. An example of the generated patterns
in Level2 representation can be found in Figure 2
for the question of Figure 1, Q1565: What is Karl
Malone’s nickname?.

Candidate answer sentences are ranked accord-
ing to the similarity with the patterns generated by
translation as measured by BLEU (B), ROUGE-
S4 (R) or combinations of them. To calcu-
late these metrics the n-best list with patterns is
considered to be a list of reference translations
(Fig. 2) to every candidate (Fig. 1). In general,
a combination of both metrics is more powerful
than any of them alone and the product outper-
forms the sum given that in most cases BLEU is
larger than ROUGE and smooths its effect. The
inclusion of the SMT patterns improves the base-
line but it does not imply a quantum leap. T1 is
at least three times better than the baseline’s one
but still the system answers less than a 3% of the
questions. In the first 50 positions the answer is
26



SMT Features T1 T50 MRR

Lex, LM5, 100-best 0.027 0.294 0.057
noLex, LM5, 100-best 0.015 0.281 0.045

Lex, LM3, 100-best 0.015 0.257 0.041
Lex, LM7, 100-best 0.033 0.288 0.050

Lex, LM5, 10-best 0.024 0.310 0.056
Lex, LM5, 1000-best 0.027 0.301 0.061
Lex, LM5, 10000-best 0.011 0.290 0.045

Table 5: System performance with different combina-
tions of the SMT features used in decoding. BR is the
metric used to score the answers.

found a 30% of the times. In the sentence re-
trieval task, results grow up to 14% and 59% re-
spectively. Its difference between tasks shows one
of the limitations of these metrics commented be-
fore, they are not discriminative enough when the
only difference among options is the position of
the ANSWER tag inside the sentence. This is the
empirical indication of the need for a score like
E. On the other hand, each question has a mean
of 5,732 candidate answers, and although T50 is
not a significant measure, its good results indicate
that the context scores metrics are doing their job.
The highest T50, 0.608, is reached by R and it is
very close to the upper bound 0.667.

Taking BR as a reference measure, we investi-
gate the impact of three features of the SMT in
Table 5. Regarding the length of the language
model used in the statistical translation, there is
a trend to improve the accuracy with longer lan-
guage models (T1 is 0.015 for a LM3, 0.027 for
LM5 and 0.033 for LM7 with the product of met-
rics) but recall is not very much affected and the
best values are obtained for LM5.

Second, the number of features in the trans-
lation model indicates that the best scores are
reached when one reproduces the same number
of features as a standard translation system. That
is, all of the measures when the lexical trans-
lation probabilities are ignored are significantly
lower than when the eight features are used. In
a counterintuitive way, the token to token transla-
tion probability helps to improve the final system
although word alignments here can be meaning-
less or nonexistent given the difference in length
and structure between question and answer.

Finally, the length of the n-best list is not a de-
cisive factor to take into account. Since the ele-

QA SR

Metric T1 T50 MRR T1 T50 MRR

Lf 0.016 0.286 0.046 0.137 0.605 0.236
Lb 0.022 0.304 0.054 0.100 0.581 0.192
Lr 0.018 0.326 0.060 0.131 0.627 0.225
Lbrf 0.038 0.330 0.079 0.147 0.622 0.238
E 0.044 0.373 0.096 0.058 0.579 0.142
ELbrf 0.018 0.293 0.048 0.118 0.623 0.214

BLbrf 0.051 0.337 0.091 0.184 0.616 0.271
RLbrf 0.033 0.346 0.069 0.191 0.618 0.279
BRLbrf 0.042 0.350 0.082 0.182 0.616 0.273
(B+R)Lbrf 0.044 0.346 0.085 0.187 0.618 0.273

BE 0.035 0.384 0.084 0.086 0.579 0.179
RE 0.035 0.377 0.086 0.131 0.630 0.228
BRE 0.049 0.377 0.098 0.135 0.608 0.220
(B+R)E 0.040 0.386 0.091 0.102 0.596 0.196

BELbrf 0.093 0.379 0.137 0.200 0.621 0.283
RELbrf 0.071 0.377 0.123 0.208 0.619 0.294
BRELbrf 0.091 0.379 0.132 0.200 0.622 0.287
(B+R)ELbrf 0.100 0.377 0.141 0.204 0.621 0.286

Table 6: System performance according to three dif-
ferent ranking strategies: context score (B and R), the
language scores (Lx) and EAT type checking (E).

ments in a n-best list usually differ very little, and
this is even more important for a system with a
reduced vocabulary, increasing the size of the list
does not enrich in a substantial way the variety of
the generated answers and results show no signif-
icant variances. Given these observations, we fix
an SMT system with a 5-gram language model,
the full set of translation model features and the
generation of a 100-best list for obtaining B and
R scores.

Each score approaches different problems of
the task and therefore, complement each other
rather than overlapping. Table 6 introduces the
results of a selected group of score combinations,
where Lbrf =LbLrLf .

The scores Lbrf and E alone are not very useful
because Lbrf gives the same score to all candi-
dates in the same sentence and E gives the same
score to all candidates of the same type. Exper-
imental results confirm that, as expected, Lbrf is
more appropriate for the SR task and E for the
QA task, although the figures are very low. When
joining E and the Ls together, no improvement is
obtained, and the results for the QA task are worse
than Lbrf alone, thus demonstrating that Level1
translations are not good enough for the QA task.
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A better system combines all the metrics together.
The best results are achieved when adding B

and R scores to the combination. All of these
combinations (i.e. B, R, BR and B+R) are bet-
ter when are multiplied by both E and Lbrf than
by only one of them alone. Otherwise, combina-
tions of only E and Lbrf yield very poor results.
Thus, the Level2 representation boosts T1 scores
from 0.018 (ELbrf ) to 0.100 ((B+R)ELbrf ) in QA
and almost doubles it in SR. As a general trend,
we see that combinations involving R but not B
are better in the SR task than in the QA task. In
fact the best results for SR are obtained with the
RELbrf combination. The best MRR scores are
achieved also with the best T1 scores.

7 Discussion and Conclusions

The results here presented are our approach to
consider question answering a translation prob-
lem. Questions in an abstract representation
(Level2) are translated into an abstract represen-
tation of the answer, and these generated answers
are matched against all the candidates obtained
with the retrieval module. The candidates are then
ranked according to their similarity with the n-
best list of translations as measured by three fam-
ilies of metrics that include R, B, E and L.

The best combination of metrics is able to
answer a 10.0% of the questions in first place
(T1). This result is in the lowest part of the ta-
ble reported by the official TREC-11 overview
(Voorhees, 2002). The approach of Echihabi
and Marcu (2003) that uses translation proba-
bilities to rank the answers achieves higher re-
sults on the same data set (an MRR of 0.325
versus our 0.141). Although both works use
SMT techniques, the approach is quite different.
In fact, our system is more similar in spirit to
that of Ravichandran and Hovy (2002), which
learns regular expressions to find answer contexts
and shows significant improvements for out-of-
domain test sets, that is web data. Besides the fact
that Echihabi and Marcu use translation models
instead of a full translation system, they explicitly
treat the problem of the difference of length be-
tween the question and the answer. In our work,
this is not further considered than by the word and
phrase penalty features of the translation model.
Future work will address this difficulty.

The results of sentence ranking of our system
are similar to those obtained by Murdock and

Croft (2005), however, since test sets are different
they are not directly comparable. This is notable
because we tackle QA, and sentence retrieval is
obtained as collateral information.

Possible lines of future research include the
study abstraction levels different from Level2.
The linguistic processors provide us with interme-
diate information such as POS that is not currently
used as it is WordNet and named entities. Sev-
eral other levels combining this information can
be also tested in order to find the most appropri-
ate degree of abstraction for each kind of word.

The development part of the SMT system is a
delicate issue. MERT is currently optimising to-
wards BLEU, but the final score for ranking the
answers is a combination of a smoothed BLEU,
ROUGE, L and E. It has been shown that opti-
mising towards the same metric used to evaluate
the system is beneficial for translation, but also
that BLEU is one of the most robust metrics to
be used (Cer et al., 2010), so the issue has to
be investigated for the QA problem. Also, refin-
ing BLEU and ROUGE for this specific problem
can be useful. A first approximation could be an
adaptation of the n-gram counting of BLEU and
ROUGE so that it is weighted by its distance to
the answer; this way sentences that differ only be-
cause of the candidate answer string would be bet-
ter differentiated.

Related to this, the generation of the candidate
answer strings is exhaustive; the suppression of
the less frequent candidates could help to elimi-
nate noise in the form of irrelevant answer sen-
tences. Besides, the system correlates these an-
swer strings with the expected answer type of
the question (coincidence measured with E). This
step should be replaced by an SMT-based mech-
anism to build a full system only based on SMT.
Furthermore, we plan to include the Level1 trans-
lations into the candidate answer generation mod-
ule in order to do query expansion in the style of
Riezler et al. (2007).
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