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Abstract

I present an automatic post-editing ap-
proach that combines translation systems
which produce syntactic trees as output.
The nodes in the generation tree and target-
side SCFG tree are aligned and form
the basis for computing structural similar-
ity. Structural similarity computation aligns
subtrees and based on this alignment, sub-
trees are substituted to create more accu-
rate translations. Two different techniques
have been implemented to compute struc-
tural similarity: leaves and tree-edit dis-
tance. I report on the translation quality of
a machine translation (MT) system where
both techniques are implemented. The ap-
proach shows significant improvement over
the baseline for MT systems with limited
training data and structural improvement
for MT systems trained on Europarl.

1 Introduction

Statistical MT (SMT) and rule-based MT
(RBMT) have complimentary strengths and
combining their output can improve translation
quality. The underlying models in SMT lack
linguistic sophistication when compared to
RBMT systems and there is a trend towards
incorporating more linguistic knowledge by
creating hybrid systems that can exploit the
linguistic knowledge contained in hand-crafted
rules and the knowledge extracted from large
amounts of text.

Hierarchical phrases (Chiang, 2005) are en-
coded in a tree structure just as linguistic trees.
Most RBMT systems also encode the analysis of
a sentence in a tree. The rules generating hierar-
chical trees are inferred from unlabeled corpora

and RBMT systems use hand-crafted rules based
in linguistic knowledge. While the trees are gen-
erated differently, alignments between nodes and
subtrees in the generation phase can be computed.
Based on the computed alignments, substitution
can be performed between the trees.

The automatic post-editing approach proposed
in this paper is based on structural similarity.
The tree structures are aligned and subtree sub-
stitution based on the similarity of subtrees per-
formed. This knowledge-poor approach is com-
patible with the surface-near nature of SMT sys-
tems, does not require other information than
what is available in the output, and ensures that
the approach is generic so it can, in principle, be
applied to any language pair.

2 Hybrid Machine Translation

Hybrid machine translation (HMT) is a paradigm
that seeks to combine the strengths of SMT
and RBMT. The different approaches have com-
plementary strengths and weaknesses (Thurmair,
2009) which have led to the emergence of HMT
as a subfield in machine translation research.

The strength of SMT is robustness - i.e. it will
always produce an output - and fluency due to the
use of language models. A weakness of SMT is
the lack of explicit linguistic knowledge, which
make translation phenomena requiring such infor-
mation, e.g. long-distance dependencies, difficult
to handle.

RBMT systems translate more accurately in
cases without parse failure, since they can take
more information into account e.g. morpholog-
ical, syntactic or semantic information, where
SMT only uses surface forms. RBMT often suf-
fer from lack of robustness when parsing fails and
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Figure 1: Hybrid system architecture.

in lexical selection in transfer. RBMT systems are
also very costly to build, and maintenance and de-
velopment can be very complex e.g. due to the
interdependency of rules.

The post-editing approach attempts to incorpo-
rate the linguistic knowledge encoded in target-
side dependency trees into hierarchical trees pro-
duced by an SMT system.

2.1 Related work

System combinations by coupling MT systems
serially or in parallel have been attempted before
e.g. via hypothesis selection (Hildebrand and Vo-
gel, 2008), by combining translation hypotheses
locally using POS tags (Federmann et al., 2010)
or by statistical post-editing (SPE) (Simard et al.,
2007). In hypothesis selection approaches, a num-
ber of MT systems produce translations for an n-
best list and use a re-ranking module to rescore
the translations. Using this approach, the best im-
provements are achieved with a large number of
systems running in parallel and this is not feasible
in a practical application, mostly due to the com-
putational resources required by the component
systems. The translations will also not be better
than the one produced by the best component sys-
tem. Tighter integration of rule-based and statisti-
cal approaches have also been proposed: Adding
probabilities to parse trees, pre-translation word
reordering, enriching the phrase table with output
phrases from a rule-based system (Eisele et al.,

Jeg [jeg] 1S NOM @SUBJ #1->2
arbejder [arbejde] <mv> V PR AKT @FS-STA #2->0
hjemme [hjemme] <aloc> ADV LOC @<ADVL #3->2
. [.] PU @PU #4->0

Figure 2: Disambiguated CG representation for I work
at home. Dependency annotation is indicated by the
#-character.

2008), creating training data from RBMT systems
etc. The factored translation models also present
a way to integrate rule-based parsing systems.

The automatic post-editing approach proposed
here does not exactly fit the classification of par-
allel coupling approaches in Thurmair (2009).
Other coupling architectures with post-editing
work on words or phrases and generate confu-
sion networks or add more information to iden-
tify substitution candidates, while the units fo-
cused on here are graphs and no additional infor-
mation is added to the MT output. This approach
does select a skeleton upon which transformations
are conducted as in Rosti et al. (2007) and re-
quires the RBMT system to generate a target side
language analysis which must be available to the
post-editing systems, but does not require a new
syntactic analysis of noisy MT output. The archi-
tecture of the hybrid system used in this paper is
parallel coupling with post-editing. A diagram of
the implemented systems can be seen in Figure 1.
The dark grey boxes represent pre-existing mod-
ules and open source software and the light grey
boxes represent the additional modules developed
to implement the post-editing approach.

2.2 RBMT Component

The Danish to English translation engine in
GramTrans (Bick, 2007) is called through an API.
The output is a constraint grammar (CG) analysis
on the target language side after all transfer and
target side transformation rules have been applied.
Example output is shown in Figure 2. In the anal-
ysis, dependency information is provided and they
form the basis for creating the tree used for struc-
tural similarity computation. Part-of-speech tags,
source and target surface structure, sentence po-
sition and dependency information are extracted
from the CG analysis.

GramTrans is created to be robust and produce
as many dependency markings as possible to be
used in later translation stages. Errors in the as-
signment of functional tags propagate to the de-
pendency level and can result in markings that
will produce a dependency tree and a number of
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unconnected subgraphs with circularities. This
presents a problem if the dependency markings
are the basis for creating a dependency tree be-
cause it is not straight-forward to reattach a sub-
graph correctly, when the grammatical tags can-
not be relied upon.

2.3 SMT Component

A CKY+ algorithm for chart decoding is imple-
mented in Moses (Koehn et al., 2007) for tree-
based models and is used as the SMT component
system in this paper.

Hierarchical phrases are phrases that can con-
tain subphrases, i.e. a hierarchical phrase contains
non-terminal symbols. An example rule from
Danish to English:

X1 i øvrigt X2 −→ moreover, X1 X2

Xn is a nonterminal and the subscript identi-
fies how the nonterminals are aligned. The hierar-
chical phrases are learned from bitext with unan-
notated data and are formally productions from
a synchronous context-free grammar (SCFG) and
can be viewed as a move towards syntax-based
SMT (Chiang, 2005). Since hierarchical phrases
are not linguistic, Chiang makes a distinction be-
tween linguistically syntax-based MT and for-
mally syntax-based MT where hierarchical mod-
els fall in the latter category because the struc-
tures they are defined over are not linguistically
informed, i.e. unannotated bitexts.

A hierarchical model is based on a SCFG and
the elementary structures are rewrite rules:

X −→ 〈γ, α,∼〉

As above, X is a nonterminal, γ and α are both
strings of terminals and nonterminals and ∼ is a
1-to-1 correspondence between nonterminals in γ
and α. As in shown previously, the convention is
to use subscripts to represent ∼.

To maintain the advantage of the phrase-based
approach, glue rules are added to the rules that are
otherwise learned from raw data:

S −→ 〈S1X2, S1X2〉
S −→ 〈X1, X1〉

Only these rewrite rules contain the nontermi-
nal S. These rules are added to give the model

Figure 3: The matching process.

the option of combining partial hypotheses seri-
ally and they make the hierarchical model as ro-
bust as the traditional phrase-based approaches.

The Moses chart decoder was modified to out-
put trace information from which the n-best hier-
archical trees can be reconstructed. The trace in-
formation contains the derivations which produce
the translation hypotheses.

The sentence–aligned Danish-English part of
Europarl (Koehn, 2005) was used for training,
and to tune parameters with MERT, the test set
from the NAACL WMT 2006 was used (Koehn
and Monz, 2006). GIZA++ aligns hierarchical
phrases which were extracted by Moses to train
a translation model and a language model was
trained with SRILM (Stolcke, 2002). Moses was
trained using the Experimental Management Sys-
tem (EMS) (Koehn, 2010) and the configuration
followed the standard guidelines in the syntax tu-
torial.1 To train SRILM, the English side of Eu-
roparl was used.

3 Matching Approach

The post-editing approach relies on structures
output by the component systems. It is neces-
sary to find similar structures to perform subtree
substitution. Matching structures is a problem in
several application areas such as semantic web,
schema and ontology integration, query media-
tion etc. Structures include database schemas, di-
rectories, diagrams and graphs. Shvaiko and Eu-
zenat (2005) provide a comprehensive survey of
matching techniques.

The matching operation determines an align-
ment between two structures and an alignment is
a set of matching elements. A matching element
is a quintuple: 〈id, e, e′, n,R〉:

id Unique id.

e, e′ Elements from different structures.

n Confidence measure.
1http://www.statmt.org/moses/?n=Moses.

SyntaxTutorial
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Figure 4: The refined alignment from dependency tree to hierarchical tree.

R The relation holding between the elements.

The resources that can be used in the match-
ing process are shown in Figure 3. o and o′ are
the structures to be matched, A is an optional ex-
isting alignment, r is external resources, p is pa-
rameters, weights and thresholds and A′ is the set
of matching elements created by the process. In
this paper, only matching elements with an equiv-
alence relation (=) are used.

The returned alignment can be a new alignment
or a refinement of A. o will be a dependency tree
and o′ the hierachical trees from the SMT com-
ponent system. To compute the initial alignment
A between hierarchical and dependency trees, the
source to target language phrase alignment output
by the component systems is used. So the initial
alignment between leaf nodes in target-side trees
are computed over the alignment to the source
language.

An important decision regarding this hybrid ap-
proach is how to compute the alignment and the
size of the substituted subtrees. Irrespective of
which technique is chosen to compute structural
similarity, the resulting alignment should be re-
fined to contain matching elements between inter-
nal nodes as shown in Figure 4.

3.1 Alignment Challenges
The change made to the chart decoder to output
the n-best trace information is simple and does not
output the alignment information. Currently, the
tree extraction module computes an alignment be-
tween the source and target language phrases.

The segmentation of words into phrases done
by Moses does not always correspond to the

word-based segmentation required by the CG
parser; phrases recognised by the CG parser rarely
correspond to phrases in Moses and the hierarchi-
cal phrase alignment is not easy to handle.

Aligning hierarchical phrases like (a) in Figure
5 is not complicated. The ordering is identical
and the Danish word offentliggøres is aligned to
will be published. The numbers 1-3 refer to the
alignment of non-terminal nodes based on phrase
positions.

It is more complicated to align (b) in Figure
5. There are two methods of handling this type of
alignment appropriate for the component systems.
Because there are an equal number of tokens in
the English phrase and Danish phrase, aligning
the tokens 1-1 monotonically would be a solution
that, in this case, results in a correct alignment.

Another approach relies on weak word reorder-
ing between Danish and English and would align
findes with there are. This reduces the align-
ment problem to aligning vi der with we. In this
case, the alignment is noisy, but usable for creat-
ing matching elements. Both approaches are im-
plemented in the hybrid system and the first ap-
proach supercedes the second due to the advan-
tage of correlating with the CG approach.

An initial element-level alignment between
nodes in a dependency tree and a hierarchical tree
is computed over the source language and cre-
ates a set of matching elements containing aligned
nodes.

3.2 Alignment Refinement

Between a dependency and an hierarchical tree,
an element-level alignment needs to be refined to
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(a) offentliggøres X : X -> will be published X : 1-3

(b) vi X der X findes : X -> X, we X there are : 1-3 3-0

Figure 5: Simplified example of a simple alignment.

a structure-level alignment similar to the one in
Figure 4.

Not all matching elements in an initial align-
ment should be refined e.g. if both nodes in a
matching element are leaf nodes, no refinement
is needed. Criteria for selecting initial matching
elements for refinement are needed.

In the RBMT output, there are no indications of
where the parser encountered problems. If a sur-
face form is an out-of-vocabulary (OOV) word,
the morphological analyser is used to assign a lex-
ical category based on the word form, hypothesise
additional tags based on the analysis and proceed
with parsing. In the SMT output, an OOV marker
is appended to a surface form to indicate that the
word has not been translated. The marker gives an
indication of where enriching a hierarchical tree
with RBMT output can result in improvement of
translation quality.

Based on these observations, hierarchical trees
are chosen to function as skeletons. Substi-
tuting dependency subtrees into a hierarchical
tree is more straightforward than using depen-
dency trees as skeletons. It was not possible to
identify head-dependent relations based solely on
the information contained in hierarchical subtrees
while removing subtrees from hierarchical trees
and inserting dependency subtrees does not de-
stroy linguistic information in the tree and depen-
dency subtrees can easily be transformed into a
hierarchical-style subtree.

Leaves Based on the OOV marker, a matching
technique based on leaf nodes is implemented to
refine matching elements and based on this align-
ment, substitute hierarchical subtrees with depen-
dency subtrees.

The dependency subtree is identified by collect-
ing all descendants of a node. The descendants
are handled as leaf nodes because both leaf and
nonterminal nodes contain surface forms in a de-
pendecy tree.

The dependency trees provided by GramTrans
are not always projective. Subtrees may not rep-
resent a continuous surface structure and a con-
tinuous subtree must be isolated before an align-
ment between subtrees can be found because the

hierarchical trees resemble phrase structure trees
and discontinuous phrases are handled using glue
rules.

To identify the corresponding subtree in the hi-
erarchical tree, the matching elements that contain
the nodes in the dependency subtree are collected
and a path from each leaf node to the root node is
computed. The intersection of nodes is retrieved
and the root node of the subtree identified as the
lowest node present in all paths. It is not always
possible to find a common root node besides the
root node of the entire tree. To prevent the loss of
a high amount of structural information, the root
node cannot be replaced or deleted.

3.3 Substitution based on an edit script

An algorithm for computing structural similarity
is the Tree Edit Distance (TED) algorithm, which
computes how many operations are necessary for
transforming one tree into another tree. Following
Zhang and Shasha (1989) and Bille (2005), the
operations are defined on nodes and the trees are
ordered, labelled trees. There are 3 different edit
operations:

rename Change the label of a node in a tree.

delete Remove a node n from a tree. Insert the
children of n as children of the parent of n so
the sequence of children are preserved. The
deleted node may not be the root node.

insert Insert a node as the child of a node n in
a tree. A subsequence of children of n are
inserted as children of the new node so the
sequence of children are preserved. An in-
sertion is the inverse operation of a deletion.

A cost function is defined for each operation.
The goal is to find the sequence of edit operations
that turns a tree T1 into another tree T2 with min-
imum cost. The sequence of edit operations is
called an edit script and the cost of the optimal
edit script is the tree edit distance.

The cost functions should return a distance
metric and satisfy the following conditions:

1. γ(i→ j) ≥ 0 and γ(i→ i) = 0
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2. γ(i→ j) = γ(j → i)

3. γ(i→ k) ≤ γ(i→ j) + γ(j → k)

γ is the cost of an edit operation.
The edit distance mapping is a representation

of an edit script. A rename operation is repre-
sented as (i1 → j2) where the subscript denotes
that the nodes i and j belong to different trees.
(i1 → ε) represents a deletion and (ε → j2) an
insertion.

The cost of an edit distance mapping is given
by:

γ(M) =
∑

(i,j)∈M

γ(i→ j)+
∑
i∈T1

γ(i→ ε)+
∑
j∈T2

γ(ε→ j)

j ∈ T2 means j is in the set of nodes in T2.
It is important to note that the trees are ordered

trees. The unordered version of the tree edit dis-
tance problem is NP-hard, while polynomial algo-
rithms based on dynamic programming exist for
ordered trees.

The algorithm does not require an input align-
ment or external resources. The cost functions
for deletion, insertion and renaming must be de-
fined on the information present in the nodes and
a unique id must be assigned to the nodes. This id
is assigned by traversing the tree depth-first and
assigning an integer as id. The algorithm visits
each node in the trees in post order and determines
based on the cost assigned by the cost functions,
which edit operation should be performed.

To generate matching elements that align
dependency nodes to nonterminal hierarchical
nodes, cost functions for edit operations are mod-
ified to assign a lower cost to rename operations
where one of the nodes is a hierarchical nonter-
minal node. If two nodes have the same target
and source phrase, a rename operation does not
incur any cost and neither does the renaming of
untranslated phrases. This ensures that matching
elements from the initial alignment that does not
require refinement are not altered. Also, if the
source is the same and the difference in sentence
position is no more than five, the renaming cost
is reduced. Experiments showed that a window
of five words was necessary to account for differ-
ences in sentence position and prevent alignment
to nodes later in the sentence with the same source
phrase.

This technique is independent of the OOV
marker and creates a structure-level alignment.

The substitutions performed can be of very high
quality but some untranslated words might not be
handled. If the system finds any OOV words in
the hierachical tree after substitution, a rename
operation is carried out on the node.

The extracted matching elements are noisy be-
cause they rely on the noisy source to target lan-
guage alignment and the RBMT engine can also
produce an inaccurate translation making the sub-
stitution counter-productive. Further limitations
on the cost functions become too restrictive and
produce too few matching elements. To avoid
some of the noise, all permutations of applying
substitutions based on the edit script are gener-
ated, re-ranked and the highest scoring hypothesis
chosen as the translation.

3.4 Generation

To ensure that the surface string generated from
the newly created tree will have the correct word
ordering, the dependency subtree is transformed
before being inserted into the hierarchical tree.
To create the insertion tree, the dependency nodes
are inserted as leaf nodes of a dummy node. The
dummy node is inserted before the root node of
the aligned hierarchical subtree and the informa-
tion on the root node copied to the new node.
Subsequently, the hierarchical nodes are removed
from the tree. If both nodes in a matching element
are leaf nodes, the hierarchical node is relabeled
with information from the dependency node.

4 Experiments

The experiments have been conducted between
Danish and English. The language model trained
with EMS is used to re-rank translation alterna-
tives. BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) and METEOR (Banerjee and Lavie,
2005) scores will be reported.

4.1 Experimental Setup

Two sets of five experiments have been con-
ducted. The first set of experiments use the initial
100,000 lines from Europarl for training Moses
and the second set of experiments use the full Eu-
roparl corpus of ca. 1.8 mio sentences. The SMT
baseline is the hierarchical version of Moses.

TED Skeleton Selection The impact of choos-
ing the translation hypothesis with a minimal edit
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Metrics: BLEU TER METEOR
RBMT baseline 19.35 64.54 53.19
SMT baseline 30.16 (22.63) 57.16 (63.10) 59.51 (50.72)
Lexical substitution 30.53 (25.28) 56.40 (60.56) 61.22 (57.24)
Leaves technique 29.06 (21.96) 57.96 (64.80) 60.09 (54.32)
TED skeleton(any bias) 30.16 (22.63) 57.08 (62.98) 59.46 (50.75)
TED-R 1-best 29.78 (25.16) 57.25 (60.51) 59.87 (57.31)
TED-R skeleton(any bias) 29.99 (25.18) 56.72 (60.44) 60.79 (57.34)

Table 1: Automatic evaluation. 100k experiments in parentheses

distance to the dependency tree from the rule-
based system is investigated. In one setting, the
cost functions adhere to the constrictions of com-
puting a distance metric. Two settings test the
impact of biasing the insertion and deletion cost
functions to assign a lower cost to inserting/delet-
ing nonterminals, i.e. turning the dependency tree
into the hierarchical tree and vice versa.

TED is computed for 20 translation hypotheses
and the best performing setting reported.

Leaves An experiment using the leaves tech-
nique has been conducted. The experiment is per-
formed using the best hypothesis from Moses and
also using TED to chose the most structurally sim-
ilar skeleton. The best setting will be reported.

Lexical substitution To be able to compare a
more naive approach, subtree substitution based
on the initial element-level alignment between
leaf nodes is used. In this approach, a subtree is
one node. The technique is identical to using the
RBMT lexicon to lookup untranslated words and
inserting them in the translation.

TED-R An experiment where the mappings
that represent a rename operation, which are pro-
duced during TED computation, are extracted and
used as matching elements is conducted. Map-
ping elements containing only punctuation or the
root node of either tree are discarded. All com-
binations of substitutions based on the extracted
matching elements are performed and the highest
ranking hypothesis according to a language model
is chosen as the final translation.

The extracted matching elements may not in-
corporate all the untranslated nodes. All untrans-
lated nodes are subsequently translated using lexi-
cal substitution as mentioned above. The subtrees
inserted into the hierarchical tree will undergo the
same transformation as the subtrees inserted using
the leaves technique.

This experiment is evaluated using both the 1-
best hierarchical tree as skeleton and choosing the

skeleton using TED. All three settings are tested
and the best performing experiment reported.

4.2 Evaluation
The results of the automatic evaluation can be
seen in Table 1. Skeleton indicates that TED was
used to pick the hierarchical tree. The best evalu-
ations are in bold.

100k The RBMT baseline is outperformed by
all hybrid configurations, though it does have a
higher METEOR score than the SMT baseline
and skeleton selection. Lexical substitution and
TED-R obtains an increase of ca. 2.5 BLEU, 4
TER and 4 METEOR points over the best base-
line scores. The leaves technique decreases the
metrics except for METEOR and the skeleton se-
lection only shows an insignificant improvement.

Europarl Only lexical substitution improve all
metrics over the baseline. Using the leaves tech-
nique again results in a decrease in BLEU and
TER, but improves METEOR. The impact of
skeleton selection is similar to previous experi-
ments, but the use of skeleton selection in TED-R
has become larger.

Manual Evaluation The evaluators rank 20
sentences randomly extracted from the test set on
a scale from 1-5 with 5 being the best and it is pos-
sible to assign the same score to multiple transla-
tion alternatives. This evaluation was inspired by
the sentence ranking evaluation in Callison-Burch
et al. (2007). The five sentences to be evaluated
will come from the RBMT and SMT baselines,
lexical substitution, leaves technique and TED-
R skeleton and the evaluators are 5 Danes who
have studied translation with English as second
language and 3 native English speakers.

The baseline systems make up 85% of the low-
est ranking. The distribution between systems is
more even for the second lowest ranking with the
baselines only accounting for 52.6%. In the mid-
dle ranking, the top scorer is lexical substitution
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System 1 2 3 4 5 Avg. rank
SMT 53 64 30 12 1 2.025
RBMT 14 48 61 29 8 2.806
Lex. sub. 3 33 63 58 3 3.156
Leaves 6 33 61 55 5 3.125
TED-R 3 35 46 55 21 3.35

Table 2: Rankings from the manual evaluation of the
second set of experiments.

with a small margin to the RBMT baseline and
the leaves technique. The many assignments of
rank 3 could indicate that many of the transla-
tions produced can be used for gisting, i.e. get
an impression of what information the source text
conveys, but not enough to give a complete under-
standing, but can also be a result of being the mid-
dle value and chosen when the evaluators are in
doubt. Lexical substitution is also the top scorer in
the second-best ranking, followed closely by the
other hybrid configurations and the hybrid sys-
tems account for 80.3% of the second-best rank-
ings. TED-R recieves more top rankings than
the other systems combined (55.3%). The RBMT
baseline achieves second-most top-rankings. This
can be attributed to the cases where the rules did
not encounter unknown words and created very
accurate translations, as is the hallmark of RBMT.

5 Discussion

It is not surprising that lexical substitution
achieves a significant increase in all metrics. The
approach only translates untranslated words using
the RBMT lexicon. This can improve the transla-
tion or, because of noisy matching elements, in-
troduce wrong words but the penalty incurred for
untranslated words and wrongly translated words
is the same if the number of tokens is similar. Fur-
ther, lexical substitution does not rely on struc-
tural similarity and can avoid the potential sources
of errors encountered at a later processing stage.

Skeleton selection has little impact on the met-
rics and distinct derivations can result in the same
surface structure, giving the same scores, but it is
evident that finding the most similar tree improves
substitution.

The improvements observed in the 100k exper-
iments are not evident in the metrics when the
full Europarl data is used. The more powerful
SMT system is able to handle more translations
but manual evaluation reveals a distribution where
the majority of rankings for the baseline systems

SMT ( COM ( 1999 ) 493 - C5-0320
baseline / 1999 - 1999 / 2208 ( COS ) )
Leaves ( came ( 1999 ) 493 -

C5-0320/1999-1999/2208 ( COM COS
) ) - C5-0320 / 1999 - 1999 / 2208 (

TED-R ( COM ( 1999 ) 493 -
C5-0320/1999-1999/2208

/ 1999 - 1999 / 2208 ( COS ) )

Table 3: Substitution of numbers.

are in the lower half and rankings for the hy-
brid systems tend more towards the mid-to-upper
rankings, with TED-R having more distribution
around the second-best and highest score. This
indicates that the approach creates more accurate
translations.

The leaves technique consistently underper-
forms lexical substitution, but manual evaluation
shows a high correlation between the two meth-
ods and their average ranks are similar. TED-R
is ranked higher than the leaves technique in the
metrics and manual evaluation also ranks TED-
R higher than lexical substitution. This suggests
that the extra surface structure removed is not
present in the reference translation and that TED-
R is a better implementation of the post-editing
approach.

Subtree substitution, whether using leaves or
TED, does not handle parentheses, hyphens and
numbers well. The structure severely degrades
when performing substitution near these environ-
ments. The example in Table 3 shows the er-
rors made by the substitution algorithm. An en-
tire subphrase is duplicated using the leaves tech-
nique which introduces an opening parenthesis
with no closing counterpart and includes the erro-
neous translation came, while TED-R duplicates /
1999 - 1999 / 2208.

The reason for these wayward substitutions can
be found in the dependency tree. The matching
parentheses are not part of the same subtree and
this is the root cause of the problem. The leaves
technique is very sensitive to these errors and
there is no easy way to prevent spurious parenthe-
ses from being introduced. Re-ranking in TED-
R could filter these hypotheses out, but because
the re-ranking module cannot model this depen-
dency, the sentences with these errors are not al-
ways discarded. In the manual evaluation cam-
paign, the sentence from Table 3 was included
in the sample sentences. It would seem that the
many evaluators did not view this error as impor-
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tant or it was ignored. It would be impossible to
find the referenced Council decision based on the
translations and dates or monetary amounts might
change drastically, which would not be acceptable
if the translated text should be ready for publish-
ing after translation. For gisting, where the user
knows that the translation is not perfect, this may
constitute less of a problem.

6 Future work

The initial alignment is based on the source to tar-
get language alignment. In the RBMT module, it
is mostly word-based while in Moses, the align-
ment must be recomputed due to the simplicity
of the modification and that the Moses chart de-
coder cannot output word alignment. The mod-
elling only handles alignment crossing one non-
terminal and reduces alignment problems to these
cases by assuming a weak reordering.

Future work should include extracting the word
alignment from the SMT system to improve
source to target language alignment. The MT de-
coder Joshua can output complete derivations in-
cluding word-based alignment which would elim-
inate the need to recompute source to target lan-
guage alignment which currently produces noisy
matching elements. Experiments using a differ-
ent RBMT engine should also be conducted. The
RBMT module does not always produce one com-
plete tree structure for a sentence and the reattach-
ment algorithm handles this by adding any addi-
tional graphs to the root node of the tree structure.
A RBMT engine that produces complete deriva-
tions is likely to improve the translation quality.
This will require different tree extraction modules
for Joshua and the RBMT engine, but otherwise
the system can be reused as is.

6.1 Languages and formalisms
The chosen languages are closely related Ger-
manic languages. While the results seem promis-
ing, the applicability of the approach should
be tested on a more distant language pair, e.g.
Chinese-English or Russian-English if you wish
to preserve the possibility of using METEOR
for evaluation, but any distant pair for which an
RBMT system exists can be used — provided a
tree output is available.

The implementation substitutes dependency
subtrees into a hierarchical CFG-style tree. A sec-
ond test of the hybridisation approach is to com-

bine systems where the structures are not as di-
verse. Hierarchical systems are derived from a
SCFG so a RBMT system based on a CFG for-
malism such as LUCY, could be used to test the
generality of the hybridisation approach.

As the TED-R approach does not rely on mark-
ers for OOV words, an implementation where hi-
erarchical subtrees are inserted into the RBMT
output should also be conducted. The problem
of inserting CFG-style subtrees into a dependency
tree and generating the correct surface structure
must be resolved or a different RBMT system
which produce CFG-style trees implemented.

The implementation of the leaves technique re-
lies on the diversity of the tree structures, i.e. that
there are element-level similarities between hier-
archical leaf nodes and both terminal and non-
terminal dependency nodes and that the subtree
rooted in a dependency node can be aligned to
a hierarchical subtree. The refinement method
would have to be altered. The relations and chil-
dren techniques (Shvaiko and Euzenat, 2005) are
good candidates for similar tree structures.

A change of formalism would not require alter-
ations of the tree edit distance approach, as long
as the structures are in fact tree structures.

7 Conclusion

The post-editing approach proposed in this pa-
per combines the strengths of statistical and rule-
based machine translation and improve transla-
tion quality, especially for the least accurate trans-
lations. The structural and knowledge-poor ap-
proach is novel and has not been attempted before.
It exploits structural output to create hybrid trans-
lations and uses the linguistic knowledge encoded
in structure and on nodes to improve the transla-
tion candidates of hierarchical phrase-based MT
systems.

Automatic evaluation shows a significant in-
crease over the baselines when training data is
limited and also improvement in TER and ME-
TEOR for lexical substitution and TED-R with a
SMT system trained on the Europarl corpus.

Manual evaluation on test data shows that hy-
brid translations were generally ranked higher, in-
dicating that the hybrid approach produces more
accurate translations.
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