
Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 17–25,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Phrase-Based Approach for Adaptive Tokenization

Jianqiang Ma Dale Gerdemann
Department of Linguistics

University of Tübingen
Department of Linguistics

University of Tübingen
Wilhelmstr. 19, Tübingen, 72074, Germany Wilhelmstr. 19, Tübingen, 72074, Germany

jma@sfs.uni-tuebingen.de dg@sfs.uni-tuebingen.de

Abstract

Fast re-training of word segmentation models is
required for adapting to new resources or
domains in NLP of many Asian languages
without word delimiters. The traditional
tokenization model is efficient but inaccurate.
This paper proposes a phrase-based model that
factors sentence tokenization into phrase
tokenizations, the dependencies of which are
also taken into account. The model has a good
OOV recognition ability, which improves the
overall performance significantly. The training
is a linear time phrase extraction and MLE
procedure, while the decoding is via dynamic
programming based algorithms.

1 Introduction

In many Asian languages, including Chinese, a
sentence is written as a character sequence without
word delimiters, thus word segmentation remains a
key research topic in language processing for these
languages. Although many reports from evaluation
tasks present quite positive results, a fundamental
problem for real word applications is that most
systems heavily depend on the data they were
trained on. In order to utilize increasingly available
language resources such as user contributed
annotations and web lexicon and/or to dynamically
construct models for new domains, we have to
either frequently re-build models or rely on
techniques such as incremental learning and
transfer learning, which are unsolved problems
themselves.
 In the case of frequent model re-building, the
most efficient approach is the tokenization model

(using the terminology in Huang et al., 2007), in
which the re-training is just the update of the
dictionary and the segmentation is a greedy string
matching procedure using the dictionary and some
disambiguation heuristics, e.g. Liang (1986) and
Wang et al. (1991). An extension of this approach
is the dynamic programming search of the most
probable word combination on the word lattice,
such as Ma (1996) and Sproat et al. (1996), which
utilize information such as word frequency
statistics in a corpus to build the model and are less
efficient but more accurate.
 However, all the methods mentioned above are
mostly based on the knowledge of in-vocabulary
words and usually suffer from poor performance,
as the out-of-vocabulary words (OOV) rather than
segmentation ambiguities turn out to the dominant
error source for word segmentation on real corpora
(Huang and Zhao, 2007). This fact has led to a
shift of the research focus to modeling the roles of
individual characters in the word formation process
to tackle the OOV problem. Xue (2003) proposes a
character classification model, which classifies
characters according to their positions in a word
using the maximum entropy classifier (Berger et
al., 1996). Peng et al. (2004) has further extended
this model to its sequential form, i.e. sequence
labeling, by adopting linear-chain conditional
random fields (CRFs, Lafferty et al., 2001). As it is
capable of capturing the morphological behaviors
of characters, the character classification model
has significantly better performance in OOV
recognition and overall segmentation accuracy, and
has been the state-of-art since its introduction,
suggested by the leading performances of systems
based on it in recent international Chinese word

17

segmentation bakeoffs (Emerson, 2005; Levow,
2006; Zhao and Liu, 2010).
 The tokenization model has advantages in
simplicity and efficiency, as the basic operation in
segmentation is string matching with linear time
complexity to the sentence length and it only needs
a dictionary thus requires no training as in the
character classification model, which can easily
have millions of features and require hundreds of
iterations in the training phase. On the other hand,
it has inferior performance, caused by its poor
OOV induction ability.
 This work proposes a framework called phrase-
based tokenization as a generalization of the
tokenization model to cope with its deficiencies in
OOV recognition, while preserving its advantages
of simplicity and efficiency, which are important
for adaptive word segmentation. The segmentation
hypothesis unit is extended from a word to a
phrase, which is a character string of arbitrary
length, i.e. combinations of partial and/or complete
words. And the statistics of different tokenizations
of the same phrase are collected and used for
parameters estimation, which leads to a linear time
model construction procedure. This extension
makes hypothesis units capable of capturing richer
context and describing morphological behavior of
characters, which improves OOV recognition.
Moreover, overlapping hypothesis units can be
combined once certain consistency conditions are
satisfied, which avoids the unrealistic assumption
of independence among the tokenizations of
neighboring phrases.
 Phrase-based tokenization decomposes the
sentence tokenization into phrase tokenizations.
We use a graph called phrase tokenization lattice
to represent all the hypotheses of phrase
tokenization in a given sentence. Under such a
formulation, tokenizing a sentence is transformed
to the shortest path search problem on the graph,
which can be efficiently solved by dynamic
programming techniques similar to the Viterbi
(1967) algorithm.

2 Phrase-Based Model

The hypothesis unit of the tokenization model is
the word, i.e. it selects the best word sequence
from all the words that can be matched by
substrings of the sentence (usually in a greedy
manner). Once a word is chosen, the corresponding

boundaries are determined. This implies that as the
characters in a word are always considered as a
whole, the morphological behavior of an individual
character, e.g. the distribution of its positions in
words, is ignored thus makes it impossible to
model the word formation process and recognize
OOV.
 Critical tokenization (Guo, 1997) suggests a
method of discovering all and only unambiguous
token boundaries (critical points) and generating
longest substrings with all inner positions
ambiguous (critical fragments) under the
assumption of complete dictionary. Then an
example-based method using the context can be
adopted to disambiguate the tokenization of critical
fragments (Hu et al, 2004). However, the complete
dictionary assumption is not realistic in practice, as
the word formation is so dynamic and productive
that there is no dictionary that is even close to the
complete lexicon. Given the presence of OOV, a
word, including a monosyllabic word, in the
original dictionary may be a substring, i.e. a partial
word, of an OOV. In this case, the critical points
found by the dictionary are not guaranteed to be
unambiguous.
 As the complete dictionary does not exist as a
static object, a possible solution is to make a
dynamic dictionary, which induces words on the
fly. But this will not be discussed in this paper.
Instead, we attempt to generalize the tokenization
model to work without the complete dictionary.
Different from making distinctions of critical
fragments and “non-critical” fragments in critical
tokenization, we suggest using phrases to represent
potentially ambiguous fragments of sentences in a
unified way. We define a phrase as a substring of a
sentence, the boundaries of which, depending on
the tokenization, may or may not necessarily match
word boundaries. The fact that partial words,
including single characters, may appear on both
ends of a phrase makes it possible to describe
“morphemes in the context” for OOV induction. A
consequence of introducing phrase in tokenization
is that a manually segmented corpus is needed in
order to collect phrases.

2.1 Tokenization

Tokenization is the process of separating words or
word-like units from sentences or character strings.
We can consider sentence tokenization as a
mapping from each position in the sentence to a

18

binary value, which indicates the presence
(denoted as #) or the absence of word boundary
(denoted as $) at that position. A specific
tokenization realization of a sentence can be
represented by a list of binary values, which can be
generated by the concatenations of its sub-lists. In
other words, a tokenization of a given sentence can
be represented as the concatenation of the
tokenizations of its component phrases.
 If we assume that the tokenization of a phrase is
independent of other phrases in the same sentence,
the sentence tokenization problem is decomposed
to smaller phrase tokenization problems, which are
unrelated to each other. The independency
assumption is not necessarily true but in general is
a good approximation. We take this assumption by
default, unless there exists evidence that suggests
otherwise. In that case, we introduce a method
called backward dependency match to fix the
problem, which will be discussed in Section 3.3.

 2.2 Phrase Tokenization Lattice

Informally a phrase tokenization lattice, or lattice
in short, is a set of hypothesized tokenization of
phrases in the given sentence, which is a compact
representation of all the possible tokenization for
that sentence. Using the notations in Mohri (2002),
we formally define a lattice as a weighted directed
graph <V,E > with a mapping W :E! A , where
V is the set of nodes, E is the set of edges, and
the mapping W assigns each edge a weight w
from the semiring < A,!,", 0,1> 1.
 For a given sentence S[0...m] , each node
v !V , denotes a sentence position (the position
between a pair of adjacent characters in a
untokenized sentence). Each edge e! E from
node va to node vb , denotes a tokenization of the
phrase between the positions defined by va and
vb . And for each edge e , a weight w is
determined by the mapping W , denotes the phrase
tokenization probability, the probability of the
phrase defined by the two nodes of the edge being
tokenized as the tokenization defined by that edge.
A path ! in the lattice is a sequence of
consecutive edges, i.e. ! = e1e2...ek , where ei and

1 A semiring defines an algebra system with certain rules to
compute path probabilities and the max probabilities from a
node to another. See Mohri (2002) for details.

ei+1 are connected with a node. The weight for the
path ! can be defined as:

w(!) =!
i=1

k
w(ei) (1)

which is the product of the weights of its
component edges. A path from the source node to
the sink node, represents a tokenization of the
sentence being factored as the concatenation of
tokenizations of phrases represented by those edges
of on that path.
 For example, with some edges being pruned, the
lattice for the sentence 有人质疑他 ‘Someone
questions him’ is shown in Figure 1.

Figure 1. A pruned phrase tokenization lattice. Edges
are tokenizations of phrases, e.g. e5 represents
tokenizing 质疑 ‘question’ into a word and e7
represents tokenizing疑他 ‘doubt him’ into a partial
word 疑 ‘doubt’ followed by a word 他 ‘him’.

2.3 Tokenization as the Best Path Search

After the introduction of the lattice, we formally
describe the tokenization (disambiguation)
problem as the best path searching on the lattice:

T! = argmax

T!D
w T() (2)

where D is the set of all paths from the source
node to the sink node, and T! is the path with the
highest weight, which represents the best
tokenization of the sentence. Intuitively, we
consider the product of phrase tokenization
probabilities as the probability of the sentence
tokenization that is generated from the
concatenation of these phrase tokenizations.
 Note that every edge in the lattice is from a node
represents an earlier sentence position to a node
that represents a later one. In other words, the
lattice is acyclic and has a clear topological order.

19

In this case, the best path can be found using the
Viterbi (1967) algorithm efficiently2.

3 Training and Inference Algorithms

3.1 Model Training

In order to use the lattice to tokenize unseen
sentences, we first have to build a model that can
generate the edges and their associated weight, i.e.
the tokenization of all the possible phrases and
their corresponding phrase tokenization probability.
We do it by collecting all the phrases that have
occurred in a training corpus and use maximum
likelihood estimation (MLE) to estimate the phrase
tokenization probabilities. The estimation of the
probability that a particular phrase A = a1a 2 ...an
being tokenized as the tokenization T = t1t2 ...tm is
given in equation (3), where C(•) represents the
empirical count, and the set of all T ' stands for all
possible tokenizations of A . To avoid extreme
cases in which there is no path at all, techniques
such as smoothing can be applied.

P(T | A) = C (T ,A)
C (T ',A)

T '! = C (T ,A)
C (A) (3)

 The result of the MLE estimation is stored in a
data structure called phase tokenization table, from
which one can retrieval all the possible
tokenizations with their corresponding
probabilities for the every phrase that has occurred
in the training corpus. With this model, we can
construct the lattice, i.e. determine the set of edges
E and the mapping function W (defining nodes is
trivial) for a given sentence in a simple string
matching and table retrieval manner: when a
substring of sentence is matched to a stored phrase,
an edge is built from the its starting and ending
node to represent a tokenization of that phrase,
with the weight of the edge equals to the MLE
estimation of the stored phrase-tokenization pair.

3.2 Simple Dynamic Programming

Once the model is built, we can tokenize a given
sentence by the inference on the lattice which
represents that sentence. The proposed simple
dynamic programming algorithm (Algorithm 1, as

2 More rigid mathematical descriptions of this family of
problems and generic algorithms based on semirings are
discussed in Mohri (2002) and Huang (2008).

shown in Figure 2) can be considered as the phrase
tokenization lattice version of the evalUtterance
algorithm in Venkataraman (2001). The best
tokenization of the partial sentence up to a certain
position is yielded by the best combination of one
previous best tokenization and one of the phrase
tokenizations under consideration at the current
step.
 The upper bound of the time complexity of
Algorithm 1 is O(kn2) , where n is the sentence
length and k is the maximum number of the
possible tokenization for a phrase. But in practice,
it is neither necessary nor possible (due to data
sparseness) to consider phrases of arbitrary length,
so we set a constraint of maximum phrase length
of about 10, which makes the time complexity de-
facto linear.

!"#$%&'()*+,**-&)."/*0123)&4*5%$#%3))&2#

!"#"#$%&'&(#)**!+",'#*-./#0&1,(&.0*-,23#*4!-5*

62.7')***6#0(#07#**689:::;<

62&'&3"&83'&$2,

=#'(67."#>*!?@&A#0'&.0*1#".*B#7(."

=#'(-./#0&1,(&.0>*!?@&A#0'&.0*0%33?'("&0C*B#7(."

!"#$%&'()9,

:$%*">D***(.***;***;$*,*************EE*")*7%""#0(*F.'&(&.0*&0*(+#*'#0(#07#

********:$%***#>"?D***(.***9****;$*,****EE*#)*'(,"(&0C*F.'&(&.0*.G*(+#*3,'(*F+",'#

****************$%&'()>68#)"<*************

****************&:***$%&'()***&0***!-*,**

************************+,-)."/'+",.>H#(-.F-./#0&1,(&.04!-I*$%&'()5**

************************+,-)."/'+",.0$&,1>H#(!".2,2&3&(J4!-I*+,-)."/'+",.5

************************(2,&)>=#'(67."#8#<*K*+,-)."/'+",.0$&,1*

************************&:***(2,&)L=#'(67."#8"<*,

********************************=#'(-./#0&1,(&.08"<>+,-)."/'+",.

********************************=#'(67."#8"<3(2,&)

********************************1'2-0$,".+)&4"53#***************

****************/"9/)

************************<%/3=****EE*&G*(+#*F+",'#*0.(*&0*!-I*#M&'(*(+#*&00#"*3..F

*

=#'(!,(+*N**!,(+*(",7#@*2,7/*G".A*2,7/OF.&0(#"8;<*

6#0(#07#-./#0&1,(&.0N*P.07,(#0,(&.0*.G*(+#*=#'(-./#0&1,&(.0*

#0("&#'*.G*(+#*#@C#'*.0*(+#*=#'(!,(+*4Q+&7+*,"#*F+",'#*(./#0&1,(&.0'5*

>7'.7')****6#0(#07#-./#0&1,(&.0!!

Figure 2. The pseudo code of Algorithm 1.

 The key difference to a standard word-lattice
based dynamic programming lies in the phrase
lattice representation that the algorithm runs on.
Instead of representing a word candidate as in
Venkataraman (2001), each edge now represents a

20

tokenization of a phrase defined by two nodes of
the edge, which can include full and partial words.
The combination of phrase tokenizations may yield
new words that are not in the dictionary, i.e. our
method can recognize OOVs.
 Let us consider a slightly modified version of
the lattice in Figure 1. Suppose edge e5 =#质$疑#
does not exist , i.e. the word 质疑 ‘question’ is not

in the dictionary, and there is new edge e5!= #质
$ that links node 2 and node 3 and represents a
partial word. Two of possible tokenizations of the
sentence are path p1 = e1e4e6e8 and path

p2 = e2e5!e7 . Note that p2 recognizes the word质
疑 ‘question’ by combining two partial words,
even though the word itself has not seen before. Of
course, this OOV is finally recognized only if a
path that can yield it is the best path found by the
decoding algorithm.
 Once the best path is found, the procedure of
mapping it back to segmented words is as follows.
The phrase tokenizations represented by the edges
of the best path are concatenated, before
substituting meta symbols # and $ into white space
and empty string, respectively. For example, if

p2 = e2e5!e7 is the best path, the concatenation of
the phrase tokenizations of the three edges on the
path will be #有#人##质$$疑#他#, and removal of
$ and substitution of # into the white space will
further transform it into 有 人 质疑 他
‘Somebody questions him’, which is the final
result of the algorithm.

3.3 Compatibility and Backward Dependency
Match

As mentioned in Section 2, the independency
assumption of phrase tokenization is not always
true. Considering the example in Figure 1, e4 and
and e7 are not really compatible, as e4 represents a
word while e7 represents a partial word that
expects the suffix of its preceding phrase to form a
word with its prefix. To solve this problem, we
require that the last (meta) symbol of the preceding
tokenization must equal to the first (meta) symbol
of the following tokenization in order to
concatenate the two. This, however, has the
consequence that there may be no valid

tokenization at all for some positions. As a result,
we have to maintain the top k hypotheses and use
the k-best path search algorithms instead of 1-best
(Mohri, 2002). We adopt the naïve k-best path
search, but it is possible to use more advanced
techniques (Huang and Chiang, 2005).
 The compatibility problem is just the most
salient example of the general problem of variable
independency assumptions, which is the "unigram
model" of phrase tokenization. A natural extension
is a higher order Markov model. But that is
inflexible, as it assumes a fixed variable
dependency structure (the current variable is
always dependent on previous n variables). So we
propose a method called backward dependency
match, in which we start from the independency
assumption, then try to explore the longest
sequence of adjacent dependencies that we can
reach via string match for a given phrase and its
precedent.
 To simplify the discussion, we use sequence
labeling, or conditional probability notation of the
tokenization. A tokenization of the given character
sequence (sentence) is represented as a specific
label sequence of same length. The label can be
those in the standard 4-tag set of word
segmentation (Huang and Zhao, 2007) or the #/$
labels indicating the presence or absence of a word
boundary after a specific character.
 The possible tokenizations of character sequence
a1a2a3 are represented as the probability
distribution P(t

1
t
2
t
3
| a1a2a3) , where t1t2t3 are labels

of a1a2a3 . If a tokenization hypothesis of
a1a2a3 decomposes its tokenization into the
concatenation of the tokenization of a1a2 and the
tokenization of a3 , this factorization can be
expressed as P(t1t2 | a1a2)! P(t3 | a3) , as shown in
Figure 3a. For a specific assignment
< a1a2a3;t1t2 t3 > , if we find that < a2a3 > can be
tokenized as < t2t3 > , it suggests that t3 may be
dependent on a2 and t2 as well, so we update the
second part of the factorization (at least for this
assignment) to: P(t3 | a3;a2t2) , which can be
estimated as:

P(t3 | a3;a2 t2) =
C(a

2
a
3
t
2
t
3
)

C(a
2
a
3
t
2
t
3
)

t3

!
 (4)

21

In this case, the factorization of the tokenization
P(t

1
t
2
t
3
| a1a2a3) is P(t1t2 | a1a2)! P(t3 | a3;a2t2) , as

shown in Figure 3b.

Figure 3a. The factorization of P(t1t2t3 | a1a2a3)
intoP(t1t2 | a1a2)! P(t3 | a3) .

Figure 3b. The factorization of P(t1t2t3 | a1a2a3)
into P(t1t2 | a1a2)! P(t3 | a3;a2t2) . Note that in the 2nd
factor, in addition to a3, a2 and t2 are also observed
variables and all of them are treated as a unit (shown by
the L-shape). The shadowed parts (a2 and t2) represent
the matched items.

 Algorithm 2 is based on the k-best search
algorithm, which calls the backward dependency
match after a successful compatibility check, and
match as far as possible to get the largest
probability of each tokenization hypothesis. In

extreme cases, where no tokenization hypothesis
survives the compatibility check, the algorithm
backs off to Algorithm 1.

4 Experiments

We use the training and testing sets from the
second international Chinese word segmentation
bakeoff (Emerson, 2005), which are freely
available and most widely used in evaluations.
There are two corpora in simplified Chinese
provided by Peking University (PKU) and
Microsoft Research (MSR) and two corpora in
traditional Chinese provided by Academic Sinica
(AS) and the City University of Hong Kong
(CityU). The experiments are conducted in a
closed-test manner, in which no extra recourse
other than the training corpora is used. We use the
same criteria and the official script for evaluation
from the bakeoff, which measure the overall
segmentation performance in terms of F-scores,
and the OOV recognition capacity in terms of
Roov.
 Precision is defined as the number of correctly
segmented words divided by the total number of
words in the segmentation result, where the
correctness of the segmented words is determined
by matching the segmentation with the gold
standard test set. Recall is defined as the number of
correctly segmented words divided by the total
number of words in the gold standard test set. The
evenly-weighted F-score is calculated by:

 F = 2 ! p ! r / (p + r) (5)
Roov is the recall of all the OOV words. And Riv is
the recall of words that have occurred in the
training corpus. The evaluation in this experiment
is done automatically using the script provided
with the second bakeoffs data.
 We have implemented both Algorithm 1 and
Algorithm 2 in Python with some simplifications,
e.g. only processing phrase up to the length of 10
characters, ignoring several important details such
as pruning. The performances are compared with
the baseline algorithm maximum matching (MM),
described in Wang et al. (1991), and the best
bakeoff results. The F-score, Roov and Riv are
summarized in Table 1, Table 2, and Table 3,
respectively.
 All the algorithms have quite similar recall for
the in-vocabulary words (Riv), but their Roov vary

22

greatly, which leads to the differences in F-score.
In general both Algorithm 1 and Algorithm 2
improves OOV Recall significantly, compared
with the baseline algorithm, maximum matching,
which has barely any OOV recognition capacity.
This confirms the effectiveness of the proposed
phrase-based model in modeling morphological
behaviors of characters. Moreover, Algorithm 2
works consistently better than Algorithm 1, which
suggests the usefulness of its strategy of dealing
with dependencies among phrase tokenizations.
 Besides, the proposed method has the linear
training and testing (when setting a maximum
phrase length) time complexity, while the training
complexity of CRF is the proportional to the
feature numbers, which are often over millions.
Even with current prototype, our method takes
only minutes to build the model, in contrast with
several hours that CRF segmenter needs to train
the model for the same corpus on the same
machine.
 Admittedly, our model still underperforms the
best systems in the bakeoff. This may be resulted
from that 1) our system is still a prototype that
ignores many minor issues and lack optimization
and 2) as a generative model, our model may suffer
more from the data sparseness problem, compared
with discriminative models, such as CRF.
 As mentioned earlier, the OOV recognition is
the dominant factor that influences the overall
accuracy. Different from the mechanism of
tokenization combination in our approach, state-of-
art systems such as those based on MaxEnt or
CRF, achieve OOV recognition basically in the
same way as in-dictionary word recognition. The
segmentation is modeled as assigning labels to
characters. And the probability of the label
assignment for a character token is mostly
determined by its features, which are usually local
contexts in the form of character co-occurrences.
 There are many other OOV recognition methods
proposed in literature before the rise of machine
learning in the field. For example, the Sproat et al.
(1996) system can successfully recognize OOVs of
strong patterns, such as Chinese personal names,
transliterations, using finite-state techniques.
Another typical example is Ma and Chen (2003),
which proposed context free grammar like rules
together with a recursive bottom-up merge
algorithm that merges possible morphemes after an
initial segmentation using maximum matching. It

would be fairer to compare the OOV recognition
performance of our approach with these methods,
rather than maximum matching. But most earlier
works are not evaluated on standard bake-off
corpora and the implementations are not openly
available, so it is difficult to make direct
comparisons.

F-score As CityU MSR PKU

Best Bakeoff 0.952 0.943 0.964 0.950

Algorithm 2 0.919 0.911 0.946 0.912

Algorithm 1 0.897 0.888 0.922 0.890

MM 0.882 0.833 0.933 0.869

Table 1. The F-score over the bakeoff-2 data.

Roov AS CityU MSR PKU

Best Bakeoff 0.696 0.698 0.717 0.636

Algorithm 2 0.440 0.489 0.429 0.434

Algorithm 1 0.329 0.367 0.411 0.416

MM 0.004 0.000 0.000 0.059

Table 2. The Roov over the bakeoff-2 data.

Riv AS CityU MSR PKU

Best Bakeoff 0.963 0.961 0.968 0.972

Algorithm 2 0.961 0.961 0.970 0.951

Algorithm 1 0.955 0.940 0.950 0.940

MM 0.950 0.952 0.981 0.956

Table 3. The Riv over the bakeoff-2 data.

5 Conclusion

In this paper, we have presented the phrase-based
tokenization for adaptive word segmentation. The
proposed model is efficient in both training and
decoding, which is desirable for fast model re-
construction. It generalizes the traditional

23

tokenization model by considering the phrase
instead of the word as the segmentation hypothesis
unit, which is capable of describing “morphemes in
the context” and improves the OOV recognition
performance significantly. Our approach
decomposes sentence tokenization into phrase
tokenizations. The final tokenization of the
sentence is determined by finding the best
combination of the tokenizations of phrases that
cover the whole sentence. The tokenization
hypotheses of a sentence are represented by a
weighed directed acyclic graph called phrase
tokenization lattice. Using this formalism, the
sentence tokenization problem becomes a shortest
path search problem on the graph.
 In our model, one only needs to estimate the
phrase tokenization probabilities in order to
segment new sentences. The training is thus a
linear time phrase extraction and maximum
likelihood estimation procedure. We adopted a
Viterbi-style dynamic programming algorithm to
segment unseen sentences using the lattice. We
also proposed a method called backward
dependency match to model the dependencies of
adjacent phrases to overcome the limitations of the
assumption that tokenizations of neighboring
phrases is independent. The experiment showed
the effectiveness of the proposed phrase-based
model in recognizing out-of-vocabulary words and
its superior overall performance compared with the
traditional tokenization model. It has both the
efficiency of the tokenization model and the high
performance of the character classification model.
 One possible extension of the proposed model
is to apply re-ranking techniques (Collins and Koo,
2005) to the k-best list generated by Algorithm 2.
A second improvement would be to combine our
model with other models in a log linear way as in
Jiang et al. (2008). Since phrase-based tokenization
is a model that can be accompanied by different
training algorithms, it is also interesting to see
whether discriminative training can lead to better
performance.

Acknowledgments

The research leading to these results has received
funding from the European Commission’s 7th
Framework Program under grant agreement n°
238405 (CLARA).

References

Adam Berger, Stephen Della Pietra, and Vincent Della
Pietra. 1992. A Maximum Entropy Approach to
Natural Language Processing. 1996. Computational
Linguistics, 22(1): 39-71

Michael Collins and Terry Koo. 2005. Discriminative
Reranking for Natural Language Parsing.
Computational Linguistics, 31(1):25-69.

Thomas Emerson. 2005. The second international Chi-
nese word segmentation bakeoff. In Proceedings of
Forth SIGHAN Workshop on Chinese Language
Processing. Jeju Island, Korea.

Jin Guo. 1997. Critical tokenization and its properties.
Computational Linguistics, 23(4): 569-596

Qinan Hu, Haihua Pan, and Chunyu Kit. 2004. An
example-based study on Chinese word segmentation
using critical fragments. In Proceedings of IJCNLP-
2004. Hainan Island, China

Changning Huang and Hai Zhao. 2007. Chinese Word
Segmentation: a Decade Review. Journal of Chinese
Information Processing, 21(3): 8-20

Chu-Ren Huang, Petr Simon, Shu-Kai Hsieh, and
Laurent Prévot. Rethinking Chinese word
segmentation: tokenization, character classification,
or wordbreak identification. In Proceedings of ACL-
2007. Prague, Czech

Liang Huang. 2008. Advanced dynamic programming
in semiring and hypergraph frameworks. In
Proceedings of COLING 2008. Manchester, UK.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology. Vancouver,
Canada

Wenbin Jiang, Liang Huang, Qun Liu, Yajuan Lu. 2008.
A Cascaded Linear Model for Joint Chinese Word
Segmentation and Part-of-Speech Tagging. In
Proceedings of ACL 2008: HLT. Columbus, USA

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling
sequence data. In Proceedings of ICML 2001.
Williamstown, MA, USA

Gina-Anne Levow. 2006. The third international
Chinese language processing bakeoff: Word
segmentation and named entity recognition. In
Proceedings of the Fifth SIGHAN Workshop on
Chinese Language Processing. Sydney, Australia

24

Nanyuan Liang. 1986. On computer automatic word
segmentation of written Chinese. Journal of Chinese
Information Processing, 1(1).

Wei-Yun Ma and Keh-Jiann Chen. 2003. A bottom-up
merging algorithm for Chinese unknown word
extraction. In Proceedings of the second SIGHAN
workshop on Chinese language processing. Sapporo,
Japan

Yan Ma. 1996. The study and realization of an
evaluation-based automatic segmentation system. In
Changning Huang and Ying Xia, editors, Essays in
Language Information Processing. Tsinghua
University Press, Beijing, China.

Mehryar Mohri. 2002. Semiring frameworks and
algorithms for shortest-distance problems. Journal of
Automata, Languages and Combinatorics, 7(3):321–
350.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detection
using conditional random fields. In Proceedings of
COLING. Stroudsburg, PA, USA.

Richard Sproat, Chilin Shih, William Gale, and Nancy
Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377-404.

Anand Venkataraman. 2001. A Statistical Model for
Word Discovery in Transcribed Speech.
Computational Linguistics, 27(3): 351-372

Andrew Viterbi (1967). Error bounds for convolutional
codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information
Theory, 13 (2): 260–269.

Xiaolong Wang, Kaizhu Wang, and Xiaohua Bai. 1991.
Separating syllables and characters into words in
natural language understanding. Journal of Chinese
Information Processing, 5(3):48-58.

Nianwen Xue. 2003. Chinese Word Segmentation as
Characater Tagging. Computational Linguistics and
Chinese Language Processing, 8(1): 29-48

Hongmei Zhao and Qun Liu. 2010. The CIPS-SIGHAN
CLP 2010 Chinese Word Segmentation Bakeoff. In
Proceedings of the First CPS-SIGHAN Joint
Conference on Chinese Language Processing.
Beijing, China.

25

