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Abstract

We present a new approach to named-entity
recognition that jointly learns to identify
named-entities in parallel text. The sys-
tem generates seed candidates through local,
cross-language edit likelihood and then boot-
straps to make broad predictions across both
languages, optimizing combined contextual,
word-shape and alignment models. It is com-
pletely unsupervised, with no manually la-
beled items, no external resources, only us-
ing parallel text that does not need to be eas-
ily alignable. The results are strong, with
F > 0.85 for purely unsupervised named-
entity recognition across languages, compared
to just F = 0.35 on the same data for su-
pervised cross-domain named-entity recogni-
tion within a language. A combination of un-
supervised and supervised methods increases
the accuracy toF = 0.88. We conclude that
we have found a viable new strategy for unsu-
pervised named-entity recognition across low-
resource languages and for domain-adaptation
within high-resource languages.

1 Introduction

At first pass, our approach sounds like it shouldn’t
work, as ‘unsupervised’tasks significantly under-
perform their supervised equivalents and for most
cross-linguistic tasks‘unaligned’ will mean ‘unus-
able’. However, even among very loosely aligned
multilingual text it is easy to see why named-entities
are different: they are the least likely words/phrases
to change form in translation. We can see this in the
following example which shows the named-entities
in both a Krèyol message and its English translation:

Lopital Sacre-Coeurki nan vil Milot, 14
km nan sid vil Okap, pre pou li resevwa
moun malad e lap mande pou moun ki
malad yo ale la.

Sacre-Coeur Hospitalwhich located in
this village Milot 14 km south of Oakp
is ready to receive those who are injured.
Therefore, we are asking those who are
sick to report to that hospital.

The example is taken from the parallel corpus of
English and Haitian Krèyol text messages used in
the2010 Shared Task for the Workshop on Machine
Translation(Callison-Burch et al., 2011), which is
the corpus used for evaluation in this paper.

The similarities in the named-entities across the
translation are clear, as should be the intuition for
how we can leverage these for named-entity ex-
traction. Phrases with the least edit distance be-
tween the two languages, such as‘Lopital Sacre-
Coeur’, ‘Milot’ , and ‘Okap’, can be treated as
high-probability named-entity candidates, and then
a model can be bootstrapped that exploits predictive
features, such as word shape (e.g.: more frequent
capitalization) and contextual cues such as the pre-
ceding‘vil’ in two cases above.

However, the problem of identifying entities in
this way is non-trivial due to a number of complicat-
ing factors. The inexact translation repeats the non-
entity ‘hospital’ which limits machine-translation-
style alignments and has an equal edit-distance with
the entity‘Loptial’ . The entity‘Hospital’ and ‘Lo-
pital’ are not an exact match and are not perfectly
aligned, changing position within the phrase. The
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capitalization of entities is not always so consistent
(here and in short-message communications more
generally). A typographic error in the translation
writes ‘Okap’ as ‘Oakp’. ‘Okap’ is itself slang for
‘Cap-Häıtien’ and other messages translated this lo-
cation across the different spellings (‘Cap-Haitien’,
‘Cap Haitien’, ‘Kap’ , ‘Kapayisyen’, etc.), which in-
creases the edit distance. There are few resources
for Haitian Krèyol such as gazatteers of place names
(except at the Department/major Town/City level –
at the time these messages were sent,Google Maps
andOpen Street Maplisted only a handful of loca-
tions in Haiti, and such resources tend not to include
slang terms). Finally, what was one sentence in the
original message is split into two in the translation.

As Kay points out, most parallel textsshouldn’t
be alignable, as different contexts mean different
translation strategies, most of which will not result
in usable input for machine translation (Kay, 2006).
This is true of the corpus used here – the translations
were made for quick understanding by aid workers,
explaining much of the above: it was clearer to break
the translation into two sentences; it reduced ambi-
guity to repeat ‘hospital’ rather than leave it under-
specified; the typo simply didn’t matter. We con-
firmed the ‘unalignability’ of this corpus using the
GIZA++ aligner in theMosestoolkit (Koehn et al.,
2007); by notingMicrosoft Research’s work on the
same data where they needed to carefully retranslate
the messages for training (Lewis, 2010); and from
correspondence with participants in the2011 Work-
shop on Machine Translationwho reported the need
for substantial preprocessing and mixed results.

We do not rule out the alignability of the corpus
altogether – the system presented here could even be
used to create better alignment models – noting only
that it is rare that translations can be used straight-of-
the-box, while in our case wecanstill make use of
this data. Even with perfect alignment, the accuracy
for named-entity extraction in Haitian Krèyol could
only be as accurate as that for English, which in this
case wasF = 0.336 with a supervised model, so
alignment is therefore only part of the problem.

For the same reasons, we are deliberately omitting
another important aspect of cross-linguistic named-
entity recognition: transliteration. Latin Script
may be wide-spread, especially for low resource
languages where it is the most common script for

transcribing previously non-written languages, but
some of the most widely spoken languages include
those that use Arabic, Bengali, Cyrillic, Devanagari
(Hindi) and Hanzi (Chinese) scripts, and the meth-
ods proposed here would be even richer if they could
also identify named entities across scripts. A first
pass on cross-script data looks like itis possible to
apply our methods across scripts, especially because
the seeds only need to be drawn from the most con-
fident matches and across scripts there seem to be
some named entities that are more easier to translit-
erate than others (which is not surprising, of course –
most cross-linguistic tasks are heterogeneous in this
way). However, with a few notable exceptions like
Tao et al. (2006), transliteration is typically a super-
vised task. As with machine translation it is likely
that the methods used here could aid transliteration,
providing predictions that can be used within a fi-
nal, supervised transliteration model (much like the
semi-supervised model proposed later on).1

1.1 The limitations of edit-distance and
supervised approaches

Despite the intuition that named-entities are less
likely to change form across translations, it is clearly
only a weak trend. Even if we assume oracle knowl-
edge of entities in English (that is, imagining that
we have perfect named-entity-recognition for En-
glish), by mapping the lowest edit-distance phrase
in the parallel Krèyol message to each entity we can
only identify an entity with about 61%, accuracy.
Withoutoracle knowledge – training on an existing
English NER corpora, tagging the English transla-
tions, and mapping via edit distance – identifies an
entity with only around 15% accuracy. This is not
particularly useful and we could probably achieve
the same results with naive techniques like cross-
linguistic gazetteers.

Edit distance and cross-linguistic supervised
named-entity recognition arenot, therefore, partic-
ularly useful as standalone strategies. However, we
are able to use aspects of both in an unsupervised
approach.

1On a more practical level, we also note that this year’s
shared task for the Named Entity Workshop is on translitera-
tion. With the leading researchers in the field currently tackling
the transliteration problem, it is likely that any methods we pre-
sented here would soon be outdated.
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In this paper we focus on named-entity identifica-
tion, only briefly touching on named-entity classifi-
cation (distinguishing between types of entities), pri-
marily because the named-entity identification com-
ponent of our system is more novel and therefore
deserves greater attention.

We use 3,000 messages in Haitian Krèyol
and their English translations, with named-entities
tagged in an evaluation set of 1,000 of the messages.
To keep the task as unsupervised a possible, the sys-
tem was designed and parameters were set without
observing the actual tags.

1.2 Strategy and potential applications

Our approach is two-step for pairs of low resource
languages, and three-step for pairs of languages
where one has named-entity resources:

1. Generate seeds by calculating the edit like-
lihood deviation. For all cross-language
pairs of messages, extract the cross-language
word/phrase pairs with the highest edit like-
lihood, normalized for length. Calculate the
intramessage deviation of this edit likelihood
from the mean pair-wise likelihood from all
candidate pairs within the message. Across
all messages, generate seeds by selecting the
word/phrase pairs with the highest and lowest
intramessage edit likelihood deviation.

2. Learn context, word-shape and alignment mod-
els. Using the seeds from Step 1, learn mod-
els over the context, word-shape and align-
ment properties (but not edit distance). Apply
the models to all candidate pairs. Because we
have the candidate alignments between the lan-
guages, we can also jointly learn to identify
named-entities by leveraging the context and
word-shape features in the parallel text, in com-
bination with the alignment predictions.

3. Learn weighted models over the context, word-
shape, alignment and supervised predictions
(with high-resource languages only). Using the
seeds from Step 1 and predictions from Step 2,
learn models over the broader features and su-
pervised predictions from a model in the high-
resource language, applying the models to all
candidate pairs.

The results are very strong, withF > 0.85
for purely unsupervised named-entity recognition
across languages. This is compared to justF = 0.35
for supervised approaches across domains within a
language (MUC/CoNLL-trained English applied to
the English translations of the messages).

The combined unsupervised/supervised methods
increase the accuracy toF = 0.88. Inter-annotator
agreement is around0.95, so this may be close to the
best possible result.

This leads us to conclude that cross-linguistic un-
supervised named-entity recognition, even when not
alignable via machine-translation methods, is a pow-
erful, scalable technique for named-entity recogni-
tion in low resource languages.

The potential applications of are broad. There are
some 5,000 languages in the connected world, most
of which will have no resourcesother than loose
translations, so there is great application potential.
For high-resource languages, the results here indi-
cate that the technique can be used to increase ac-
curacy in cross-domain named-entity recognition, a
consistent problem across even closely-related do-
mains. For the specific corpus used there is also
direct practical value – the messages include high
volumes of time-critical requests for aid, citing lo-
cations that did not appear on any map in a language
with few resources.

2 STEP 1: Establish Edit Likelihood
Deviation

As we state in the introduction, we cannot simply
tag in English and then find the least-edit distance
word/phrase in the parallel Krèyol.

We evaluated several different edit distance func-
tions, including the well-known Levenshtein and
slightly more complex Jaro-Winkler measures. We
also extended the Levenshtein measure by reducing
the edit penalty for pairs of letters of phonetic relat-
edness, such as ‘c’ and ‘k’, following the subword
modeling work of Munro and Manning on this cor-
pus and previous subword modeling for short mes-
sages (Munro, 2011; Munro and Manning, 2010).2

2We also attempted a more sophisticated approach to learn-
ing weights for edits by extracting edit probabilities fromthe fi-
nal model. This also made little improvement, but it could have
simply been the result data-sparseness over only 3000 pairsof
entities, so no strong conclusions can be drawn.
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The more sophisticated edit distance functions
gave more accurate predictions (which is unsurpris-
ing), but the advantages were lost in the following
step when calculating the deviation from the norm,
with all approaches producing more or less the same
seeds. Rather than the String Similarity Estimate be-
ing the key factor, we conclude that our novel treat-
ment of edit distance (calculating the local devia-
tion) is the critical factor in generating seeds for the
model.

All else being equal, then, we report results from
the simplestapproach to edit distance, normalizing
Levenshtein’s measure,LEV () by length to a 0-
1 scale. Candidate words/phrases were limited to
a maximum of four words, delimited by space or
punctuation, simply to cap the cost of theLEV ().
Given a stringS in messageM , MS and and its can-
didate pairM ′

S′ , and a length functionLEN(), this
gives usSSE(MS ,M

′

S′) =

1−
(2(LEV (MS ,M

′

S′)) + 1

LEN(MS) + LEN(M ′
S′) + 1

The+1 smoothing is to avoid too much variation
at smaller lengths, which is fairly common practice
in subword models looking at morphological varia-
tion (Tchoukalov et al., 2010).

The String Similarity Estimate is a global measure
that is not sensitive to the contexts of the given pairs.
Suppose a sentencewasn’ta translation, but simply
a repetition, or that much of the translation was a
direct (non-translated) quote of the original. Both
occur in the data we used.

We propose, then, that the best candidate seeds
for named-entities are those that display the highest
likelihood relative to the other candidate pairs within
the same pairs of messages. In other words, when
there are two phrases with very little edit distance,
but when there is very high cross-language edit dis-
tance between the contexts of the phrases. We define
this asEdit Likelihood Deviation, ELD().

There are many ways to calculating deviation.
Again, to keep it as simple as possible we report re-
sults using the most well-known deviation metric, z-
scores. Given average and standard deviation func-
tionsAV () andSD(), givesELD(MS ,M

′

S′) =

(SSE(MS ,M
′

S′))−AV (SSE(M0−n,M
′

0−m))

SD(SSE(M0−n,M ′
0−m))

Figure 1: A comparison of the different approaches to
generating seeds from edit distance. The comparison
shows that local deviation, the novel method introduced
in this paper, is the most successful. With about 10%
of the most confident entity candidates by Edit Likeli-
hood Deviation or Weighted Deviation Estimate, there is
greater than95% precision, giving a clean enough divi-
sion of the data to seed a model.

At this point, we have the global string similarity of
each candidate entity pair across languages,SSE(),
and the local string similarity deviation of each can-
didate pair,ELD().

A combination was also explored that combined
the two, creating an equally weighted product of
SSE and ELD(), Weighted Deviation Estimate,
WDE() (equation omitted for space). As Figure
1 shows, there is only a slight improvement from
the combination of the two, showing thatEdit Like-
lihood Deviation, the novel approach here, con-
tributes the most to identifying candidate seeds.

We can calculate the first accuracies here by as-
suming that the best candidate in each message pair
was an entity. All results also summarized at the end
of the paper:

Precision Recall F-value
Krèyol: 0.619 0.619 0.619
English: 0.633 0.633 0.633

The results are reasonably strong for methods that
made few assumptions about the data and were not
optimized, with errors in a little under half the pre-
dictions.

While the different equations are monotonically
distributedwithin each pair of messages, the esti-
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matesbetweenmessages now take into account both
local and global edit likelihoods, allowing us to rank
the candidates byWDE and sample the most likely
and least likely. Here, we simply took the top and
bottom 5%.3

3 STEP 2: Learn joint alignment and
word-shape models using the likelihood
estimates as seeds.

Taking the seeds from Step 1, we can then treat them
as training items in a linear model.

We used the Stanford Maximum Entropy Classi-
fier. Model-choice is only important in that a dis-
criminative learner is required. The 5% ‘non-entity’
pairs were still the highest String Similarity for their
particular message/translation, but simply did not
deviate greatly from the average within that mes-
sage/translation. Therefore, we are explicitly target-
ing the border between entities and non-entities in
the high String Similarity part of the vector space.
This sampling strategy would not work for a gener-
ative learner.

For the same reason, though, we donot include
raw edit distance or the String Similarity Estimate
among the features. If we did, then the model will
simply relearn and overfit this bias and give all the
weight to edit distance.

We build the model on features that include con-
text (the entity itself and surrounding words), word-
shape features (capitalization, punctuation, segmen-
tation, and numerical patterns), and alignment (ab-
solute and relative character offsets between the can-
didates in the messages and translation). For word-
shape features, we used a simple representation that
converted all sequences of capitalized letters, lower-
case letters, and non-letter characters into ‘C’, ‘c’
and ‘n’, respectively. Therefore, ‘Port-au-Prince’,
‘Port au Prince’ and ‘Port.a.Prons’ would all get
the same word-shape feature, ‘CcncnCc’. We al-

3There are clearly many more parameters and variants of
equations that could be explored. As an unsupervised approach,
it is by conscious choice that only the most well-known equa-
tions are used and tunable parameters are set at sensible defaults
(like the equal weights here). This is to keep the experiments as
cleanly ‘unsupervised’ as possible, and to demonstrate that the
accurate results here are not simply a quirk of a particular equa-
tion, but a broadly applicable approach to generating seedsby
local deviation estimates.

Figure 2: Comparing the predictions for the String Sim-
ilarity for the same candidates, to the jointly-learned
model. (Coding scheme: tp = true-positive, etc.) The
distribution shows that while String Similarity correlates
with named-entities, it is not a clean division. Note espe-
cially the mass of true-negatives in the bottom-right cor-
ner of the graph. These would be a relatively high vol-
ume of false-positives for String Similarity alone, but the
model that bootstraps knowledge of context, word-shape
and alignment has little trouble distinguishing them and
correctly assigning them zero-probably of being an entity.

lowed the model to also find character-ngrams over
these shapes to capture features which would rep-
resent characteristics like ‘is-capitalized’, ‘contains-
internal-capital’, and ‘is-multiword-phrase’.

As a relatively small set of features, we also
model the intersection of each of them. This al-
lows the model to learn, for example, that words that
are perfectly aligned, but are both all lower-case, are
weighted0.06 more likely as a non-entity. Despite
the simplicity and low number of features, this is a
fairly powerful concept to model.

As with all unsupervised methods that bootstrap
predictions through seeded data, the success relies
on a representative feature space to avoid learning
only one part of the problem. The results are strong:

Precision Recall F-value
Krèyol: 0.907 0.687 0.781
English: 0.932 0.766 0.840

There is a reasonably high precision-recall ratio
which is typical of unsupervised learning that learns
a model on seeded data, but the results are still
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strong for both Krèyol and English, indicating that
the seeding method in Step 1 did, in fact, produce
candidates that occurred in broad range of contexts,
overcoming one of the limits of gazetteer-based ap-
proaches.

Perhaps the most obvious extension is to jointly
learn the models on both languages, using the candi-
date alignment models in combination with the con-
texts in both the original text and the translation:

Precision Recall F-value
Krèyol: 0.904 0.794 0.846
English: 0.915 0.813 0.861

This improves the results for both, especially the
Krèyol which can now take advantage of the more
consistent capitalization and spelling in the English
translations.

For many supervised learners,0.846 would be a
strong result. Here, we are able to get this in Hatian
Krèyol using only unsupervised methods and a few
thousand loosely translated sentences.

4 STEP 3: Learning weighted models over
the context, word-shape, alignment and
supervised predictions (with
high-resource languages)

The natural extension to the supervised comparison
is to combine the methods. We included the Stanford
NER predictions in the features for the final model,
allowing the bootstrapped model to arrive at the op-
timal weights to apply to the supervised predictions
in the given context.

From the perspective of supervised NER, this
can be thought of as leveraging unsupervised align-
ment models for domain-adaptation. The Stanford
NER predictions were added as features in the final
model, directly for the English phrases and across
the candidate alignments for the Krèyol phrases.

Taken alone, the unsupervised strategies clearly
improve the results, but for someone coming from a
supervised learning background in NER (which will
be most NER researchers) this should provide an in-
tuition as to exactly how good. We cannot compare
the Krèyol as there is no supervised NER corpus for
Krèyol, and our labeled evaluation data is too small
to train on. However, we can compare the English
results to near state-of-the-art NER taggers.

We compared our system to the predictions made
by the Stanford NER parser trained on MUC and
CoNLL data (Sang, 2002; Sang and De Meulder,
2003):

Precision Recall F-value
English: 0.915 0.206 0.336

The low cross-domain result is expected, but 0.336
for supervised cross-domain predictions within a
language ismuch less than 0.861 for unsupervised
cross-language predictions. This clearly shows that
the methods and evaluation used here really do
demonstrate a new strategy for NER. It also shows
that domain-specificity might be even be more im-
portant than language-specificity when we can boot-
strap our knowledge of context.4

Combining the two approaches, we get the most
accurate results:

Precision Recall F-value
Krèyol: 0.838 0.902 0.869
English: 0.846 0.916 0.880

Even though English is a high-resource language,
this is still a very good result for cross-domain adap-
tation, withF > 0.5 improvement over the super-
vised model alone. It is clear that this strategy could
be used for domain adaptation more broadly wher-
ever loose translations exists.

While not as big a gain in accuracy as the previ-
ous steps, theF > 0.02 gain is still significant. Al-
though untested here, it is easy to imagine that with a
small amount of labeled data or improved gazetteers
the supervised approach should further. About 10%
of the error can be attributed to capitalization, too,
which is a slight bias against the MUC/CoNLL
trained data where the capitalization of named enti-
ties was consistent. A realistic deployment approach
would be to create an initial model using the unsu-
pervised methods described in this paper and then to
further bootstrap the accuracy through supervised la-
beling. This particular approach to semi-supervised
learning is outside the scope of this paper.

4For the edge cases and entity boundary errors, we always
gave the benefit of the doubt to the Stanford NER tagger.
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4.1 Distinguishing Types of Entity

NER often distinguishes types of Entities (eg: Peo-
ple, Locations, Organizations); a frequent subtask
sometimes callednamed-entity discriminationor
named-entity classification. We discuss this briefly.

By seeding the data with the Stanford NER pre-
dictions for ‘Person’, ‘Location’, and ‘Organization’
and learning a three-way distinction within the enti-
ties, we saw that it wasn’t a difficult problem for this
particular corpus. The main potential complication
was between organizations and locations (especially
for radio stations) but there were relatively few or-
ganizations in the data so the micro-fvalue would
change very little. No doubt, in other texts the lo-
cation/organization division would compose a big-
ger part of the problem. These observations about
distinguishing NERs are consistent with the known
problems in NER more broadly. The Stanford NER
only made predictions for 114 of the entities that
were confidently mapped to their Krèyol counter-
parts in Step 1:

Precision Recall F-value
English: 0.512 0.782 0.619

To exploit any signal here, let alone a respectable
F = 0.619 is a good result, but clearly more im-
provements are possible.

5 Analysis

The results presented in the paper are summarized
in Table 1. Taken together, they make it clear that
this is a very promising new method for named-
entity recognition in low resources languages, and
for domain-adaptation in high-resource languages.

Analysis of the consistent errors shows several
clear patterns. Products like‘aquatab’ were a com-
mon false positive, although a product could be a
named-entity in certain coding schemas. Dates, fig-
ures and currency (‘250gd’) were also frequent false
positives, but would be reasonably easy to filter as
they follow predictable patterns.

Some cognates and borrowings also
made it through as false-positives: ‘antibi-
otics’/‘antibiotik’ , ‘drinking water’/‘drinking wa-
ter’, ‘medicine’/‘medicament’, ‘vitamin c’/‘vitamine
c’, ‘cyber’/‘cyber’, ‘radio’ /‘radyo’, although‘cyber

cafe’ almost always referred to a specific location
and‘radio’ was often part of an organization name,
‘radio enspirasyon’.

The false-negatives were almost all very low-
frequency words or high-frequency words that were
more commonly used as non-entities. This is con-
sistent with named-entity recognition more broadly.

6 Background and Related Work

We were surprised that no one had previously re-
ported looked at leveraging cross-linguistic named-
entity recognition in this way. Perhaps previous
researchers had found (like us) that edit distance
alone was not particularly useful in cross-linguistic
named-entity recognition, and therefore not pursued
it. While the approach is novel, the general observa-
tion that named-entities change form less than other
words cross-linguistically is one of the oldest in lan-
guage studies. Shakespeare’s ‘River Avon’ simply
means ‘River River’, as ‘Avon’ is, literally, ‘River’
in the pre-English Celtic language of the region.

For parallel short-message corpora, named-entity
recognition is completely unresearched, but there is
growing work in classification (Munro and Man-
ning, 2010; Munro, 2011) and translation (Lewis,
2010), the latter two using the same corpus as here.

Past ‘Multilingual Named-Entity Recognition’
systems meant training the same supervised system
on different languages, which was the focus of the
past CoNLL tasks. While the goal of these systems
was the same as ours – broad cross-linguistic cov-
erage for named-entity recognition – this isnot the
same ‘cross-linguistic’ as the one employed here.

More closely related to our work, Steinberger
and Pouliquen have found cross-linguistic named-
entity recognition to be possible by aligning texts
at the granularity of news stories (Steinberger and
Pouliquen, 2007), but using a supervised approach
for the first pass and focusing on transliteration. In
other related work, the 2007 NISTREFLEXeval-
uation (Song and Strassel, 2008), tasked partici-
pants with using alignment models to map named-
entities between English, Arabic, and Chinese data.
They found that relying on alignment models alone
was very poor, even among these high-resource lan-
guages, although it was a relatively small corpus
(about 1,000 aligned entities). The focus was more
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on transliteration – an important aspect of translation
that we simply aren’t addressing here.

Most earlier work used a tagger in one language
in combination with machine translation-style align-
ments models. Among these, Huang et al. is the
most closely related to our work as they are translat-
ing rare named-entities, and are therefore in a similar
low-resource context (Huang et al., 2004). As with
the NIST project, most work building on Huang et
al. has been in transliteration.

Although not cross-linguistic, Piskorski et al.’s
work on NER for inflectional languages (2009) also
relied on the similarities in edit distance between the
intra-language variation of names.

In gazetteer-related work, Wang et al. and others
since, have looked at edit distance within a language,
modeling the distance between observed words and
lists of entities (Wang et al., 2009). Similarly, there
is a cluster of slightly older work on unsupervised
entity detection, also within one language (Pedersen
et al., 2006; Nadeau et al., 2006), but all relying on
web-scale quantities of unlabeled data.

While the implementation is not related, it is
also worth highlighting Lin et al.’s very recent work
on unsupervised language-independent name trans-
lation the mines data from Wikipedia ‘infoboxes’,
(Lin et al., 2011) however the infoboxes give a fairly
and highly structured resource, that might be consid-
ered more supervised than not.

In alignment work, the foundational work is
Yarowsky et al.’s induction of projections across
aligned corpora (Yarowsky et al., 2001), most suc-
cessfully adapted to cross-linguistic syntactic pars-
ing (Hwa et al., 2005). The machine translation sys-
tems used named-entity recognition are too many to
list here, but as we say, the system we present could
aid translation considerably, especially in the con-
text of low resources languages and humanitarian
contexts, a recent focus in the field (Callison-Burch
et al., 2011; Lewis et al., 2011).

7 Conclusions

We have presented a promising a new strategy
for named-entity recognition from unaligned paral-
lel corpora, finding that unsupervised named-entity
recognition across languages can be bootstrapped
from calculating the local edit distance deviation be-

Unsupervised Precision Recall F-value
Edit likelihood deviation
Krèyol: 0.619 0.619 0.619
English: 0.633 0.633 0.633
Language-specific models
Krèyol: 0.907 0.687 0.781
English: 0.932 0.766 0.840
Jointly-learned models
Krèyol: 0.904 0.794 0.846
English: 0.915 0.813 0.861

Supervised
English: 0.915 0.206 0.336

Semi-supervised
Identification
Krèyol: 0.838 0.902 0.869
English: 0.846 0.916 0.880
Classification (micro-F)
English: 0.512 0.782 0.619

Table 1: A summary of the results presented in this paper
showing promising new methods for unsupervised and
semi-supervised named-entity recognition.

tween candidate entities. Purely unsupervised ap-
proaches are able to identify named entities with
F = 0.846 accuracy for Krèyol andF = 0.861 for
English, leveraging the candidate alignments for im-
proved accuracy in both cases. Combined with su-
pervised learning, the accuracy rises toF = 0.869
andF = 0.880 respectively, which is approaching
the level of accuracy achieved by in-domain super-
vised systems. It is rare for unsupervised systems
to be competitive with supervised approaches as ac-
curacy is usually lost for coverage, but here it looks
like the method can be effective for both.

There is the potential to apply this system to a
large number of natural language processing prob-
lems, and to extend the system in a number of di-
rections. Each of the three steps has parameters
that could be optimized, especially in combination
with supervised approaches. The linguistic nature
of the language pairs might also influence the effec-
tiveness. The results here are therefore the first pre-
sentation of a new strategy – one that will hopefully
lead to more research in extracting rich information
from a diverse range of low-resource languages.
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