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Abstract
We describe the Stanford University NLP
Group submission to the 2013 Workshop
on Statistical Machine Translation Shared
Task. We demonstrate the effectiveness of a
new adaptive, online tuning algorithm that
scales to large feature and tuning sets. For
both English-French and English-German,
the algorithm produces feature-rich mod-
els that improve over a dense baseline and
compare favorably to models tuned with
established methods.

1 Introduction
Green et al. (2013b) describe an online, adaptive
tuning algorithm for feature-rich translation mod-
els. They showed considerable translation quality
improvements over MERT (Och, 2003) and PRO
(Hopkins and May, 2011) for two languages in a
research setting. The purpose of our submission to
the 2013 Workshop on Statistical Machine Trans-
lation (WMT) Shared Task is to compare the algo-
rithm to more established methods in an evaluation.
We submitted English-French (En-Fr) and English-
German (En-De) systems, each with over 100k fea-
tures tuned on 10k sentences. This paper describes
the systems and also includes new feature sets and
practical extensions to the original algorithm.

2 Translation Model
Our machine translation (MT) system is Phrasal
(Cer et al., 2010), a phrase-based system based on
alignment templates (Och and Ney, 2004). Like
many MT systems, Phrasal models the predictive
translation distribution p(e|f ;w) directly as

p(e|f ;w) = 1

Z(f)
exp

[
w>φ(e, f)

]
(1)

where e is the target sequence, f is the source se-
quence, w is the vector of model parameters, φ(·)

is a feature map, and Z(f) is an appropriate nor-
malizing constant. For many years the dimension
of the feature map φ(·) has been limited by MERT,
which does not scale past tens of features.

Our submission explores real-world translation
quality for high-dimensional feature maps and as-
sociated weight vectors. That case requires a more
scalable tuning algorithm.

2.1 Online, Adaptive Tuning Algorithm
FollowingHopkins andMay (2011) we castMT tun-
ing as pairwise ranking. Consider a single source
sentence f with associated references e1:k. Let d
be a derivation in an n-best list of f that has the
target e = e(d) and the feature map φ(d). Define
the linear model scoreM(d) = w · φ(d). For any
derivation d+ that is better than d− under a gold
metric G, we desire pairwise agreement such that

G
(
e(d+), e

1:k
)
> G

(
e(d−), e1:k

)

⇐⇒ M(d+) > M(d−)

Ensuring pairwise agreement is the same as ensur-
ing w · [φ(d+)− φ(d−)] > 0.
For learning, we need to select derivation pairs

(d+, d−) to compute difference vectors x+ =
φ(d+) − φ(d−). Then we have a 1-class separa-
tion problem trying to ensure w · x+ > 0. The
derivation pairs are sampled with the algorithm of
Hopkins and May (2011). Suppose that we sample
s pairs for source sentence ft to compute a set of
difference vectors Dt = {x1:s+ }. Then we optimize

`t(w) = `(Dt, w) = −
∑

x+∈Dt

log
1

1 + e−w·x+

(2)
which is the familiar logistic loss. Hopkins and
May (2011) optimize (2) in a batch algorithm
that alternates between candidate generation (i.e.,
n-best list or lattice decoding) and optimization
(e.g., L-BFGS). We instead use AdaGrad (Duchi
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et al., 2011), a variant of stochastic gradient de-
scent (SGD) in which the learning rate is adapted
to the data. Informally, AdaGrad scales the weight
updates according to the geometry of the data ob-
served in earlier iterations. Consider a particu-
lar dimension j of w, and let scalars vt = wt,j ,
gt = ∇j`t(wt−1), and Gt =

∑t
i=1 g

2
i . The Ada-

Grad update rule is

vt = vt−1 − η G−1/2t gt (3)
Gt = Gt−1 + g2t (4)

In practice,Gt is a diagonal approximation. IfGt =
I , observe that (3) is vanilla SGD.
In MT systems, the feature map may generate

exponentially many irrelevant features, so we need
to regularize (3). The L1 norm of the weight vec-
tor is known to be an effective regularizer in such
a setting (Ng, 2004). An efficient way to apply
L1 regularization is the Forward-Backward split-
ting (FOBOS) framework (Duchi and Singer, 2009),
which has the following two-step update:

wt− 1
2
= wt−1 − ηt−1∇`t−1(wt−1) (5)

wt = argmin
w

1

2
‖w − wt− 1

2
‖22 + ηt−1r(w)

(6)

where (5) is just an unregularized gradient descent
step and (6) balances the regularization term r(w)
with staying close to the gradient step.

For L1 regularization we have r(w) = λ||w||1
and the closed-form solution to (6) is

wt = sign(wt− 1
2
)
[
|wt− 1

2
| − ηt−1λ

]
+

(7)

where [x]+ = max(x, 0) is the clipping function
that in this case sets a weight to 0 when it falls below
the threshold ηt−1λ.

Online algorithms are inherently sequential; this
algorithm is no exception. If we want to scale the
algorithm to large tuning sets, then we need to par-
allelize the weight updates. Green et al. (2013b)
describe the parallelization technique that is imple-
mented in Phrasal.

2.2 Extensions to (Green et al., 2013b)
Sentence-Level Metric We previously used the
gold metric BLEU+1 (Lin and Och, 2004), which
smoothes bigram precisions and above. This metric
worked well with multiple references, but we found
that it is less effective in a single-reference setting

like WMT. To make the metric more robust, Nakov
et al. (2012) extended BLEU+1 by smoothing both
the unigram precision and the reference length. We
found that this extension yielded a consistent +0.2
BLEU improvement at test time for both languages.
Subsequent experiments on the data sets of Green
et al. (2013b) showed that standard BLEU+1 works
best for multiple references.

Custom regularization parameters Green et al.
(2013b) showed that large feature-rich models over-
fit the tuning sets. We discovered that certain fea-
tures caused greater overfitting than others. Custom
regularization strengths for each feature set are one
solution to this problem. We found that technique
largely fixed the overfitting problem as shown by
the learning curves presented in section 5.1.

Convergence criteria Standard MERT imple-
mentations approximate tuning BLEU by re-
ranking the previous n-best lists with the updated
weight vector. This approximation becomes infeasi-
ble for large tuning sets, and is less accurate for algo-
rithms like ours that do not accumulate n-best lists.
We approximate tuning BLEU by maintaining the
1-best hypothesis for each tuning segment. At the
end of each epoch, we compute corpus-level BLEU
from this hypothesis set. We flush the set of stored
hypotheses before the next epoch begins. Although
memory-efficient, we find that this approximation
is less dependable as a convergence criterion than
the conventional method. Whereas we previously
stopped the algorithm after four iterations, we now
select the model according to held-out accuracy.

3 Feature Sets

3.1 Dense Features

The baseline “dense” model has 19 features: the
nine Moses (Koehn et al., 2007) baseline features, a
hierarchical lexicalized re-ordering model (Galley
and Manning, 2008), the (log) bitext count of each
translation rule, and an indicator for unique rules.
The final dense feature sets for each language

differ slightly. The En-Fr system incorporates a
second language model. The En-De system adds a
future cost component to the linear distortion model
(Green et al., 2010).The future cost estimate allows
the distortion limit to be raised without a decrease
in translation quality.
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3.2 Sparse Features
Sparse features do not necessarily fire on each hy-
pothesis extension. Unlike prior work on sparseMT
features, our feature extractors do not filter features
based on tuning set counts. We instead rely on the
regularizer to select informative features.
Several of the feature extractors depend on

source-side part of speech (POS) sequences and
dependency parses. We created those annotations
with the Stanford CoreNLP pipeline.

Discriminative Phrase Table A lexicalized in-
dicator feature for each rule in a derivation. The
feature weights can be interpreted as adjustments
to the associated dense phrase table features.

Discriminative Alignments A lexicalized indi-
cator feature for the phrase-internal alignments in
each rule in a derivation. For one-to-many, many-to-
one, and many-to-many alignments we extract the
clique of aligned tokens, perform a lexical sort, and
concatenate the tokens to form the feature string.

Discriminative Re-ordering A lexicalized indi-
cator feature for each rule in a derivation that ap-
pears in the following orientations: monotone-with-
next, monotone-with-previous, non-monotone-
with-next, non-monotone-with-previous. Green
et al. (2013b) included the richer non-monotone
classes swap and discontinuous. However, we found
that these classes yielded no significant improve-
ment over the simpler non-monotone classes. The
feature weights can be interpreted as adjustments
to the generative lexicalized re-ordering model.

Source Content-Word Deletion Count-based
features for source content words that are “deleted”
in the target. Content words are nouns, adjectives,
verbs, and adverbs. A deleted source word is ei-
ther unaligned or aligned to one of the 100 most
frequent target words in the target bitext. For each
deleted word we increment both the feature for the
particular source POS and an aggregate feature for
all parts of speech. We add similar but separate
features for head content words that are either un-
aligned or aligned to frequent target words.

Inverse Document Frequency Numeric fea-
tures that compare source and target word frequen-
cies. Let idf(·) return the inverse document fre-
quency of a token in the training bitext. Suppose
a derivation d = {r1, r2, . . . , rn} is composed of
n translation rules, where e(r) is the target side of
the rule and f(r) is the source side. For each rule

Bilingual Monolingual
Sentences Tokens Tokens

En-Fr 5.0M 289M 1.51B
En-De 4.4M 223M 1.03B

Table 1: Gross corpus statistics after data selection
and pre-processing. The En-Fr monolingual counts
include French Gigaword 3 (LDC2011T10).

r that translates j source tokens to i target tokens
we compute

q =
∑

i

idf(e(r)i)−
∑

j

idf(f(r)j) (8)

We add two numeric features, one for the source and
another for the target. When q > 0 we increment
the target feature by q; when q < 0 we increment
the target feature by |q|. Together these features
penalize asymmetric rules that map rare words to
frequent words and vice versa.

POS-based Re-ordering The lexicalized dis-
criminative re-ordering model is very sparse, so we
added re-ordering features based on source parts of
speech. When a rule is applied in a derivation, we
extract the associated source POS sequence along
with the POS sequences from the previous and next
rules. We add a “with-previous” indicator feature
that is the conjunction of the current and previous
POS sequences; the “with-next” indicator feature is
created analogously. This feature worked well for
En-Fr, but not for En-De.

4 Data Preparation
Table 1 describes the pre-processed corpora from
which our systems are built.

4.1 Data Selection
We used all of the monolingual and parallel En-
De data allowed in the constrained condition. We
incorporated all of the French monolingual data,
but sampled a 5M-sentence bitext from the approx-
imately 40M available En-Fr parallel sentences.
To select the sentences we first created a “target”
corpus by concatenating the tuning and test sets
(newstest2008–2013). Then we ran the feature
decay algorithm (FDA) (Biçici and Yuret, 2011),
which samples sentences that most closely resem-
ble the target corpus. FDA is a principled method
for reducing the phrase table size by excluding less
relevant training examples.
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4.2 Tokenization
We tokenized the English (source) data according
to the Penn Treebank standard (Marcus et al., 1993)
with Stanford CoreNLP. The French data was to-
kenized with packages from the Stanford French
Parser (Green et al., 2013a), which implements a
scheme similar to that used in the French Treebank
(Abeillé et al., 2003).

German is more complicated due to pervasive
compounding. We first tokenized the data with the
same English tokenizer. Then we split compounds
with the lattice-based model (Dyer, 2009) in cdec
(Dyer et al., 2010). To simplify post-processing we
added segmentation markers to split tokens, e.g.,
überschritt⇒ über #schritt.

4.3 Alignment
We aligned both bitexts with the Berkeley Aligner
(Liang et al., 2006) configured with standard set-
tings. We symmetrized the alignments according
to the grow-diag heuristic.

4.4 Language Modeling
We estimated unfiltered 5-gram language models
using lmplz (Heafield et al., 2013) and loaded them
with KenLM (Heafield, 2011). For memory effi-
ciency and faster loading we also used KenLM to
convert the LMs to a trie-based, binary format. The
German LM included all of the monolingual data
plus the target side of the En-De bitext. We built
an analogous model for French. In addition, we
estimated a separate French LM from the Gigaword
data.1

4.5 French Agreement Correction
In French verbs must agree in number and person
with their subjects, and adjectives (and some past
participles) must agree in number and gender with
the nouns they modify. On their own, phrasal align-
ment and target side language modeling yield cor-
rect agreement inflection most of the time. For
verbs, we find that the inflections are often accurate:
number is encoded in the English verb and subject,
and 3rd person is generally correct in the absence
of a 1st or 2nd person pronoun. However, since En-
glish does not generally encode gender, adjective
inflection must rely on language modeling, which
is often insufficient.

1The MT system learns significantly different weights for
the two LMs: 0.086 for the primary LM and 0.044 for the
Gigaword LM.

To address this problem we apply an automatic
inflection correction post-processing step. First, we
generate dependency parses of our system’s out-
put using BONSAI (Candito and Crabbé, 2009),
a French-specific extension to the Berkeley Parser
(Petrov et al., 2006). Based on these dependencies,
we match adjectives with the nouns they modify
and past participles with their subjects. Then we
use Lefff (Sagot, 2010), a machine-readable French
lexicon, to determine the gender and number of the
noun and to choose the correct inflection for the
adjective or participle.
Applied to our 3,000 sentence development set,

this correction scheme produced 200 corrections
with perfect accuracy. It produces a slight (−0.014)
drop in BLEU score. This arises from cases where
the reference translation uses a synonymous but
differently gendered noun, and consequently has
different adjective inflection.

4.6 German De-compounding
Split German compounds must be merged after
translation. This process often requires inserting
affixes (e.g., s, en) between adjacent tokens in the
compound. Since the German compounding rules
are complex and exception-laden, we rely on a dic-
tionary lookup procedure with backoffs. The dic-
tionary was constructed during pre-processing. To
compound the final translations, we first lookup
the compound sequence—which is indicated by
segmentation markers—in the dictionary. If it is
present, then we use the dictionary entry. If the com-
pound is novel, then for each pair of words to be
compounded, we insert the suffix most commonly
appended in compounds to the first word of the pair.
If the first word itself is unknown in our dictionary,
we insert the suffix most commonly appended after
the last three characters. For example, words end-
ing with ung most commonly have an s appended
when they are used in compounds.

4.7 Recasing
Phrasal includes an LM-based recaser (Lita et al.,
2003), which we trained on the target side of the
bitext for each language. On the newstest2012 de-
velopment data, the German recaser was 96.8% ac-
curate and the French recaser was 97.9% accurate.

5 Translation Quality Experiments

During system development we tuned on
newstest2008–2011 (10,570 sentences) and tested
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#iterations #features tune newstest2012 newstest2013†

Dense 10 20 30.26 31.12 –
Feature-rich 11 207k 32.29 31.51 29.00

Table 2: En-Fr BLEU-4 [% uncased] results. The tuning set is newstest2008–2011. (†) newstest2013 is
the cased score computed by the WMT organizers.

#iterations #features tune newstest2012 newstest2013†

Dense 10 19 16.83 18.45 –
Feature-rich 13 167k 17.66 18.70 18.50

Table 3: En-De BLEU-4 [% uncased] results.

on newstest2012 (3,003 sentences). We compare
the feature-rich model to the “dense” baseline.
The En-De system parameters were: 200-best

lists, a maximum phrase length of 8, and a distortion
limit of 6 with future cost estimation. The En-Fr
system parameters were: 200-best lists, a maximum
phrase length of 8, and a distortion limit of 5.

The online tuning algorithm used a default learn-
ing rate η = 0.03 and a mini-batch size of 20. We
set the regularization strength λ to 10.0 for the dis-
criminative re-ordering model, 0.0 for the dense
features, and 0.1 otherwise.

5.1 Results
Tables 2 and 3 show En-Fr and En-De results, re-
spectively. The “Feature-rich” model, which con-
tains the full complement of dense and sparse fea-
tures, offers ameager improvement over the “Dense”
baseline. This result contrasts with the results
of Green et al. (2013b), who showed significant
translation quality improvements over the same
dense baseline for Arabic-English and Chinese-
English. However, they had multiple target refer-
ences, whereas the WMT data sets have just one.
We speculate that this difference is significant. For
example, consider a translation rule that rewrites
to a 4-gram in the reference. This event can in-
crease the sentence-level score, thus encouraging
the model to upweight the rule indicator feature.

More evidence of overfitting can be seen in Fig-
ure 1, which shows learning curves on the devel-
opment set for both language pairs. Whereas the
dense model converges after just a few iterations,
the feature-rich model continues to creep higher.
Separate experiments on a held-out set showed that
generalization did not improve after about eight
iterations.

6 Conclusion
We submitted a feature-rich MT system to WMT
2013. While sparse features did offer a measur-
able improvement over a baseline dense feature set,
the gains were not as significant as those shown
by Green et al. (2013b). One important difference
between the two sets of results is the number of ref-
erences. Their NIST tuning and test sets had four
references; the WMT data sets have just one. We
speculate that sparse features tend to overfit more
in this setting. Individual features can greatly in-
fluence the sentence-level metric and thus become
large components of the gradient. To combat this
phenomenon we experimented with custom reg-
ularization strengths and a more robust sentence-
level metric. While these two improvements greatly
reduced the model size relative to (Green et al.,
2013b), a generalization problem remained. Nev-
ertheless, we showed that feature-rich models are
now competitive with the state-of-the-art.
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