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Abstract

This paper proposes passage reranking
models that (i) do not require manual fea-
ture engineering and (ii) greatly preserve
accuracy, when changing application do-
main. Their main characteristic is the
use of relational semantic structures rep-
resenting questions and their answer pas-
sages. The relations are established us-
ing information from automatic classifiers,
i.e., question category (QC) and focus
classifiers (FC) and Named Entity Recog-
nizers (NER). This way (i) effective struc-
tural relational patterns can be automati-
cally learned with kernel machines; and
(ii) structures are more invariant w.r.t. dif-
ferent domains, thus fostering adaptability.

1 Introduction

A critical issue for implementing Question An-
swering (QA) systems is the need of designing
answer search and extraction modules specific to
the target application domain. These modules en-
code handcrafted rules based on syntactic patterns
that detect the relations between a question and its
candidate answers in text fragments. Such rules
are triggered when patterns in the question and the
passage are found. For example, given a ques-
tion1:

What is Mark Twain’s real name?

and a relevant passage, e.g., retrieved by a search
engine:

Samuel Langhorne Clemens, better
known as Mark Twain.

the QA engineers typically apply a syntactic parser
to obtain the parse trees of the above two sen-
tences, from which, they extract rules like:

1We use this question/answer pair from TREC QA as a
running example in the rest of the paper.

if the pattern “What is NP2’s ADJ
name” is in the question and the pat-
tern “NP1 better known as NP2”
is in the answer passage then associate
the passage with a high score2.

Machine learning has made easier the task of
QA engineering by enabling the automatic learn-
ing of answer extraction modules. However, new
features and training data have to be typically de-
veloped when porting a QA system from a domain
to another. This is even more critical considering
that effective features tend to be as much complex
and similar as traditional handcrafted rules.

To reduce the burden of manual feature engi-
neering for QA, we proposed structural models
based on kernel methods, (Moschitti et al., 2007;
Moschitti and Quarteroni, 2008; Moschitti, 2008)
with passages limited to one sentence. Their main
idea is to: (i) generate question and passage pairs,
where the text passages are retrieved by a search
engine; (ii) assuming those containing the correct
answer as positive instance pairs and all the oth-
ers as negative ones; (iii) represent such pairs with
two syntactic trees; and (ii) learn to rank answer
passages by means of structural kernels applied to
two trees. This enables the automatic engineering
of structural/lexical semantic patterns.

More recently, we showed that such models can
be learned for passages constituted by multiple
sentences on very large-scale (Severyn and Mos-
chitti, 2012). For this purpose, we designed a shal-
low syntactic representation of entire paragraphs
by also improving the pair representation using re-
lational tags.

In this paper, we firstly use our model in (Sev-
eryn and Moschitti, 2012) as the current baseline
and compare it with more advanced structures de-
rived from dependency trees.

2If the point-wise answer is needed rather than the entire
passage, the rule could end with: returns NP1
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Figure 1: Kernel-based Answer Passage Reranking system

Secondly, we enrich the semantic representa-
tion of QA pairs with the categorical informa-
tion provided by automatic classifiers, i.e., ques-
tion category (QC) and focus classifiers (FC) and
Named Entity Recognizers (NER). FC determines
the constituent of the question to be linked to the
named entities (NEs) of the answer passage. The
target NEs are selected based on their compatibil-
ity with the category of the question, e.g., an NE
of type PERSON is compatible with a category of
a question asking for a human (HUM).

Thirdly, we tested our models in a cross-domain
setting since we believe that: (i) the enriched rep-
resentation is supposed to increase the capability
of learning effective structural relational patterns
through kernel machines; and (ii) such structural
features are more invariant with respect to differ-
ent domains, fostering their adaptability.

Finally, the results show that our methods
greatly improve on IR baseline, e.g., BM25, by
40%, and on previous reranking models, up to
10%. In particular, differently from our previous
work such models can effectively use NERs and
the output of different automatic modules.

The rest of the paper is organized as follows,
Sec. 2 describes our kernel-based reranker, Sec. 3
illustrates our question/answer relational struc-
tures; Sec. 5 briefly describes the feature vectors,
and finally Sec. 6 reports the experimental results
on TREC and Answerbag data.

2 Learning to rank with kernels

2.1 QA system

Our QA system is based on a rather simple rerank-
ing framework as displayed in Figure 1: given a
query question a search engine retrieves a list of
candidate passages ranked by their relevancy. Var-

ious NLP components embedded in the pipeline as
UIMA3 annotators are then used to analyze each
question together with its candidate answers, e.g.,
part-of-speech tagging, chunking, named entity
recognition, constituency and dependency pars-
ing, etc. These annotations are then used to
produce structural models (described in Sec. 3),
which are further used by a question focus detector
and question type classifiers to establish relational
links for a given question/answer pair. The result-
ing tree pairs are then used to train a kernel-based
reranker, which outputs the model to refine the ini-
tial ordering of the retrieved answer passages.

2.2 Tree kernels

We use tree structures as our base representation
since they provide sufficient flexibility in repre-
sentation and allow for easier feature extraction
than, for example, graph structures. We rely on
the Partial Tree Kernel (PTK) (Moschitti, 2006) to
handle feature engineering over the structural rep-
resentations. The choice of PTK is motivated by
its ability to generate rich feature spaces over both
constituency and dependency parse trees. It gen-
eralizes a subset tree kernel (STK) (Collins and
Duffy, 2002) that maps a tree into the space of
all possible tree fragments constrained by the rule
that the sibling nodes from their parents cannot be
separated. Different from STK where the nodes
in the generated tree fragments are constrained to
include none or all of their direct children, PTK
fragments can contain any subset of the features,
i.e., PTK allows for breaking the production rules.
Consequently, PTK generalizes STK, thus gener-
ating an extremely rich feature space, which re-
sults in higher generalization ability.

2.3 Preference reranking with kernels

To enable the use of kernels for learning to
rank with SVMs, we use preference reranking
(Joachims, 2002), which reduces the task to bi-
nary classification. More specifically, the problem
of learning to pick the correct candidate hi from
a candidate set {h1, . . . , hk} is reduced to a bi-
nary classification problem by creating pairs: pos-
itive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and
negative instances 〈h2, h1〉, . . . , 〈hk, h1〉. This set
can then be used to train a binary classifier. At
classification time the standard one-versus-all bi-
narization method is applied to form all possible

3http://uima.apache.org/
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pairs of hypotheses. These are ranked according
to the number of classifier votes they receive: a
positive classification of 〈hk, hi〉 gives a vote to
hk whereas a negative one votes for hi.

A vectorial representation of such pairs is the
difference between the vectors representing the
hypotheses in a pair. However, this assumes that
features are explicit and already available whereas
we aim at automatically generating implicit pat-
terns with kernel methods. Thus, for keeping im-
plicit the difference between such vectors we use
the following preference kernel:

PK(〈h1, h2〉, 〈h′1, h′2〉) = K(h1, h
′
1)+

K(h2, h
′
2)−K(h1, h

′
2)−K(h2, h

′
1),

(1)

where hi and h′i refer to two sets of hypothe-
ses associated with two rankings and K is a ker-
nel applied to pairs of hypotheses. We represent
the latter as pairs of question and answer passage
trees. More formally, given two hypotheses, hi =
〈hi(q), hi(a)〉 and hi = 〈h′i(q), h′i(a)〉, whose
members are the question and answer passage
trees, we define K(hi, h

′
i) as TK(hi(q), h

′
i(q)) +

TK(hi(a), h
′
i(a)), where TK can be any tree ker-

nel function, e.g., STK or PTK.
To enable traditional feature vectors it is enough

to add the product (~xh1 − ~xh2) · (~xh′
1
− ~xh′

2
) to

the structural kernel PK , where ~xh is the feature
vector associated with the hypothesis h.

We opted for a simple kernel sum over a prod-
uct, since the latter rarely works in practice. Al-
though in (Moschitti, 2004) the kernel product has
been shown to provide some improvement when
applied to tree kernels over a subcategorization
frame structure, in general, it seems to work well
only when the tree structures are small and derived
rather accurately (Giordani and Moschitti, 2009;
Giordani and Moschitti, 2012).

3 Structural models of Q/A pairs

First, we briefly describe a shallow tree represen-
tation that we use as our baseline model and then
propose a new dependency-based representation.

3.1 Shallow tree structures
In a shallow syntactic representation first explored
for QA in (Severyn and Moschitti, 2012) each
question and its candidate answer are encoded into
a tree where part-of-speech tags are found at the
pre-terminal level and word lemmas at the leaf
level. To encode structural relationships for a

given q/a pair a special REL tag is used to link
the related structures. The authors adopt a sim-
ple strategy to establish such links: lemmas shared
between a question and and answer get their par-
ents (POS tags) and grandparents (chunk labels)
marked by a REL tag.

3.2 Dependency-based structures

Given the ability of PTK to generate a rich set
of structural features from a relatively flat shal-
low tree representation, we propose to use depen-
dency relations between words to derive an al-
ternative structural model. In particular, we use
a variation of the dependency tree, where depen-
dency relations are altered in such a way that the
words are always at the leaf level. This reorder-
ing of the nodes in the dependency tree, s.t. words
do not form long chains, which is typical in the
standard dependency tree representation, is essen-
tial for PTK to extract meaningful fragments. We
also add part-of-speech tags between the words
and the nodes encoding their grammatical roles
(provided by the original dependency parse tree).
Again a special REL tag is used in the same man-
ner as in the shallow representation to establish
structural links between a question and an answer.
Fig. 2 (top) gives an example of a dependency-
based structure for our example q/a pair.

4 Relational Linking

The use of a special tag to mark the related frag-
ments in the question and answer tree represen-
tations has been shown to yield more accurate
relational models (Severyn and Moschitti, 2012).
However, previous approach was based on a naı̈ve
hard matching between word lemmas.

Below we propose a novel strategy to estab-
lish relational links using named entities extracted
from the answer along with question focus and
category classifiers. In particular, we use a ques-
tion category to link the focus word of a question
with the named entities extracted from the candi-
date answer. For this purpose, we first introduce
our tree kernel-based models for building a ques-
tion focus and category classifiers.

4.1 Question focus detection

The question focus is typically a simple noun rep-
resenting the entity or property being sought by
the question (Prager, 2006). It can be used to
search for semantically compatible candidate an-
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NER: Person NER: Personfocus

Figure 2: Dependency-based structure DEP (top) for the q/a pair. Q: What is Mark Twain’s real name? A: Samuel Langhorne
Clemens, better known as Mark Twain. Arrows indicate the tree fragments in the question and its answer passage linked by the
relational REL tag. Shallow tree structure CH (bottom) with a typed relation tag REL-FOCUS-HUM to link a question focus
word name with the named entities of type Person corresponding to the question category (HUM).

swers in document passages, thus greatly reduc-
ing the search space (Pinchak, 2006). While sev-
eral machine learning approaches based on man-
ual features and syntactic structures have been
recently explored, e.g. (Quarteroni et al., 2012;
Damljanovic et al., 2010; Bunescu and Huang,
2010), we opt for the latter approach where tree
kernels handle automatic feature engineering.

In particular, to detect the question focus word
we train a binary SVM classifier with tree ker-
nels applied to the constituency tree representa-
tion. For each given question we generate a set
of candidate trees where the parent (node with the
POS tag) of each candidate focus word is anno-
tated with a special FOCUS tag. Trees with the
correctly tagged focus word constitute a positive
example, while the others are negative examples.
To detect the focus for an unseen question we clas-
sify the trees obtained after tagging each candidate
focus word. The tree yielding the highest classifi-
cation score reveals the target focus word.

4.2 Question classification

Question classification is the task of assigning a
question to one of the pre-specified categories. We
use the coarse-grain classes described in (Li and
Roth, 2002): six non-overlapping classes: Abbre-
viations (ABBR), Descriptions (DESC, e.g. def-
initions or explanations), Entity (ENTY, e.g. an-
imal, body or color), Human (HUM, e.g. group
or individual), Location (LOC, e.g. cities or coun-
tries) and Numeric (NUM, e.g. amounts or dates).
These categories can be used to determine the Ex-
pected Answer Type for a given question and find

the appropriate entities found in the candidate an-
swers. Imposing such constraints on the potential
answer keys greatly reduces the search space.

Previous work in Question Classification re-
veals the power of syntactic/semantic tree repre-
sentations coupled with tree kernels to train the
state-of-the-art models (Bloehdorn and Moschitti,
2007). Hence, we opt for an SVM multi-classifier
using tree kernels to automatically extract the
question class. To build a multi-class classifier
we train a binary SVM for each of the classes and
apply a one-vs-all strategy to obtain the predicted
class. We use constituency trees as our input rep-
resentation.

4.3 Linking focus word with named entities
using question class

Question focus captures the target information
need posed by a question, but to make this piece
of information effective, the focus word needs to
be linked to the target candidate answer. The focus
word can be lexically matched with words present
in an answer, or the match can be established us-
ing semantic information. Clearly, the latter ap-
proach is more appealing since it helps to allevi-
ate the lexical gap problem which makes the näive
string matching of words between a question and
its answer less reliable.

Hence, we propose to exploit a question cate-
gory (automatically identified by a question type
classifier) along with named entities found in the
answer to establish relational links between the
tree structures of a given q/a pair. In particu-
lar, once the question focus and question category
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Table 1: Question classes → named entity types.

Question Category Named Entity types
HUM Person
LOC Location
NUM Date, Time, Money, Percentage
ENTY Organization, Person

are determined, we link the focus word wfocus in
the question, with all the named entities whose
type matches the question class. Table 1 provides
the correspondence between question classes and
named entity types. We perform tagging at the
chunk level and use two types of relational tags:
plain REL-FOCUS and a tag typed with a ques-
tion class, e.g., REL-FOCUS-HUM. Fig. 2 (bot-
tom) shows an example q/a pair where the typed
relational tag is used in the shallow syntactic tree
representation to link the chunk containing the
question focus name with the named entities of the
corresponding type Person (according to the map-
ping defined in Table 1), i.e. samuel langhorne
clemens and mark twain.

5 Feature vector representation

While the primary focus of our study is on the
structural representations and relations between
q/a pairs we also include basic features widely
used in QA:
Term-overlap features. A cosine similarity be-
tween a question and an answer: simCOS(q, a),
where the input vectors are composed of: (i) n-
grams (up to tri-grams) of word lemmas and part-
of-speech tags, and (ii) dependency triplets. For
the latter, we simply hash the string value of the
predicate defining the triple together with its argu-
ment, e.g. poss(name, twain).
PTK score. For the structural representations we
also define a similarity based on the PTK score:
simPTK(q, a) = PTK(q, a), where the input
trees can be both dependency trees and shallow
chunk trees. Note that this similarity is computed
between the members of a q/a pair, thus, it is very
different from the one defined in Eq. 1.
NER relatedness represents a match between a
question category and the related named entity
types extracted from the candidate answer. It
counts the proportion of named entities in the an-
swer that correspond to the question type returned
by the question classifier.

In our study feature vectors serve a complemen-
tary purpose, while the main focus is to study the
virtue of structural representations for reranking.
The effect of a more extensive number of pairwise

similarity features in QA has been studied else-
where, e.g., (Surdeanu et al., 2008).

6 Experiments

We report the results on two QA collections: fac-
toid open-domain QA corpus from TREC and a
community QA corpus Answerbag. Since we fo-
cus on passage reranking we do not carry out an-
swer extraction. The goal is to rank the passage
containing the right answer in the top position.

6.1 Corpora

TREC QA. In the TREC QA tasks, answer pas-
sages containing correct information nuggets, i.e.
answer keys, have to be extracted from a given text
corpus, typically a large corpus from newswire.
In our experiments, we opted for questions from
2002 and 2003 years, which totals to 824 ques-
tions. AQUAINT newswire corpus4 is used for
searching the supporting answers.
Answerbag is a community-driven QA collection
that contains a large portion of questions that have
“professionally researched” answers. Such an-
swers are provided by the website moderators and
allow for training high quality models. From the
original corpus containing 180k question/answer
pairs, we use 1k randomly sampled questions for
testing and 10k for training.
Question Focus. We use 3 datasets for train-
ing and evaluating the performance of our fo-
cus detector: SeCo-600 (Quarteroni et al., 2012),
Mooney GeoQuery (Damljanovic et al., 2010) and
the dataset from (Bunescu and Huang, 2010). The
SeCo dataset contains 600 questions from which
we discarded a subset of multi-focus questions
and non-interrogative queries. The Mooney Geo-
Query contains 250 question targeted at geograph-
ical information in the U.S. The first two datasets
are very domain specific, so we also carried out
experiments with the dataset from (Bunescu and
Huang, 2010), which contains the first 2000 ques-
tions from the answer type dataset from Li and
Roth annotated with focus words. We removed
questions with implicit and multiple focuses.
Question Classification. We used the UIUIC
dataset (Li and Roth, 2002)5 which contains 5952

4http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/
5although the QC dataset from (Li and Roth, 2002) in-

cludes additional 50 fine grain classes we opted for using only
6 coarse classes that are sufficient to capture the coarse se-
mantic answer type of the candidate answer. This choice also
results in a more accurate multi-class classifier.
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factoid questions from different sources (USC,
TREC 8, TREC 9, TREC 10). For training the
classifiers we excluded questions from TREC 8 to
ensure there is no overlap with the data used for
testing models trained on TREC QA.

6.2 Models and Metrics

Our models are built applying a kernel-based
reranker to the output of a search engine.

6.2.1 BM25
We use Terrier6 search engine, which provides
BM25 scoring model for indexing and retrieval.
For the TREC QA 2002 and 2003 task we index
AQUAINT corpus treating paragraphs as docu-
ments. The resulting index contains about 12 mil-
lion items. For the Answerbag we index the entire
collection of 180k answers. We retrieve a list of
top 50 candidate answers for each question.

6.2.2 Reranking models
To train our reranking models we used SVM-light-
TK7, which encodes structural kernels in SVM-
light (Joachims, 2002) solver. In particular, we
use PTK on the relational tree structures combined
with the polynomial kernel of degree 3 applied to
the feature vectors. Therefore, different represen-
tations lead to different models described below.
CH - our basic shallow chunk tree (Severyn and
Moschitti, 2012) used as a baseline structural
reranking model.
DEP - dependency tree augmented with POS tags
and reorganized relations suitable for PTK.
V - reranker model using similarity features de-
fined in Sec. 5.
DEP+V, CH+V - a combination of tree structures
and similarity feature vectors.
+FC+QC - relational linking of the question focus
word and named entities of the corresponding type
using Focus and Question classifiers.
+TFC+QC - a typed relational link refined a ques-
tion category.8

6.2.3 Metrics
We report the following metrics, most commonly
used in QA: Precision at rank 1 (P@1), i.e.,

6http://terrier.org/
7http://disi.unitn.it/moschitti/Tree-Kernel.htm
8† is used for showing the results of DEP, DEP+V and

CH+V structural representations that are significantly better
than the baseline model CH, while ‡ indicates improvement
of +QC+FC and +QC+TFC tagging applied to basic struc-
tural representations, e.g. CH+V and DEP+V.

Table 2: Structural representations on TREC QA.

MODELS MAP MRR P@1
BM25 0.22 28.02 18.17
V 0.22 28.40 18.54

STRUCTURAL REPRESENTATIONS
CH (S&M, 2012) 0.28 35.63 24.88
CH+V 0.30† 37.45† 27.91†

DEP 0.30† 37.87† 28.05†

DEP+V 0.30† 37.64† 28.05†

REFINED RELATIONAL TAG

CH+V+QC+FC 0.32‡ 39.48‡ 29.63‡

CH+V+QC+TFC 0.32‡ 39.49‡ 30.00‡

DEP+V+QC+FC 0.31‡ 37.49 28.56
DEP+V+QC+TFC 0.31‡ 38.05‡ 28.93‡

the percentage of questions with a correct an-
swer at rank 1, Mean Reciprocal Rank (MRR),
and Mean Average Precision (MAP). The reported
metrics are averages after performing a 5-fold
cross-validation. We used a paired t-test at 95%
confidence to compare the performance of our
models to a baseline.

6.3 Passage Reranking Results

We first evaluate the impact of two different syn-
tactic representations using shallow and depen-
dency trees. Then, we evaluate the accuracy boost
when such structures are enriched with automati-
cally derived tags, e.g., question focus and ques-
tion category and NEs found in the answer pas-
sage.

6.3.1 Structural representations
Table 2 reveals that using V model results in a
small improvement over BM25 baseline. Indeed,
similarity scores that are most often based on
word-overlap measures even when computed over
various q/a representations are fairly redundant to
the search engine similarity score. Instead, using
the structural representations, CH and DEP, gives
a bigger boost in the performance. Interestingly,
having more features in the CH+V model results
in further improvement while DEP+V seems to re-
main insensitive to additional features provided by
the V model.

6.3.2 Semantically Enriched Structures
In the following set of experiments we explore an-
other strategy for linking structures for a given
q/a pair. We automatically detect the question
focus word and link it to the related named en-
tities in the answer, selected accordingly to the
question category identified by the question clas-
sifier (QC+FC). Further refining the relational link
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Table 3: Accuracy (%) of focus classifiers.

DATASET ST STK STK+BOW PTK
MOONEY 73.0 81.9 81.5 80.5
SECO-600 90.0 94.5 94.5 90.0
BUNESCU 89.7 98.3 98.2 96.9

Table 4: Accuracy (%) of question classifiers.

DATASET STK+BOW PTK
LI & ROTH 86.1 82.2
TREC TEST 79.3 78.1

with the question category yields QC+TFC model.
First, we report the results of training our question
focus detector and question category classifier.

Focus classifier results. Table 3 displays the ac-
curacies obtained by the question focus detector
on 3 datasets using different kernels: the ST (sub-
tree kernel where fragments contain full subtrees
including leaves), STK, STK+bow (bag-of-words
feature vector is added) and PTK. As we can see,
using STK model yields the best accuracy and we
use it in our pipeline to automatically detect the
focus.

Question classifier results. Table 4 contains the
accuracies of the question classifier on the UIUIC
dataset and the TREC questions that we also use
for testing our reranker models. STK+bow per-
forms better than PTK, since here the input rep-
resentation is a plain constituency tree, for which
STK is particularly suited. Hence, we use this
model to predict the question category.

Ranking results. Table 2 (bottom) summarizes
the performance of the CH+V and DEP+V models
when coupled with QC+FC and QC+TFC strate-
gies to establish the links between the structures
in a given q/a pair. CH structural representation
with QC+FC yields an interesting improvement,
while further refining the relational tag by adding
a question category (QC+TFC) gives slightly bet-
ter results.

Integrating the refined relational tag into the
DEP based structures results more problematic,
since the dependency tree is less suitable for repre-
senting multi-word expressions, named entities in
our case. Hence, using the relational tag to mark
the nodes spanning such multi-word entities in the
dependency structure may result in less meaning-
ful features than in CH model, where words in a
phrase are naturally grouped under a chunk node.
A more detailed discussion on the merits of each
model is provided in the Sec. 6.5.

Table 5: Cross-domain experiment: training on Answerbag
and testing on TREC QA.

MODELS MAP MRR P@1
BM25 0.22 27.91 18.08
V 0.23 28.86 18.90

BASIC STRUCTURAL REPRESENTATIONS
CH (S&M, 2012) 0.24 30.25 20.42
CH+V 0.25† 31.31† 21.28†

DEP+V 0.26† 33.26† 22.21†

REFINED RELATIONAL TAG

CH+V+QC+TFC 0.27‡ 33.53‡ 22.81‡

DEP+V+QC+TFC 0.29‡ 34.25‡ 23.45‡

6.4 Learning cross-domain pairwise
structural relationships

To test the robustness of the syntactic patterns au-
tomatically learned by our structural models, we
conduct a cross-domain experiment, i.e. we train
a model on Answerbag data and test it on TREC. It
should be noted that unlike TREC data, where the
answers are simply passages containing the cor-
rect answer phrase, answers in Answerbag specif-
ically address a given question and are generated
by humans. Additionally, TREC QA contains only
factoid questions, while Answerbag is a commu-
nity QA corpus with a large portion of non-factoid
questions. Interestingly, the results demonstrate
the robustness of our syntactic relational model
which captures patterns shared across different do-
mains, e.g. TREC and Answerbag data.

Table 5 shows that: (i) models based on depen-
dency structures result in a better generalization
ability extracting more robust syntactic patterns;
and (ii) the strategy to link the question focus with
the related named entities in the answer provides
an interesting improvement over the basic struc-
tural representations.

6.5 Error Analysis

Consider our running example q/a pair from
Sec. 1. As the first candidate answer, the
search engine retrieves the following incorrect
passage: “The autobiography of Mark Twain”,
Mark Twain. It is relatively short and mentions the
keywords {Mark, Twain} twice, which apparently
results in a high score for the BM25 model. In-
stead, the search engine ranks the correct answer at
position 34. After reranking using the basic CH+V
model the correct answer is promoted by 20 posi-
tions. While using the CH+V+QC+FC model the
correct answer advances to position 6. Below, we
provide the intuition behind the merits of QC+FC
and QC+TFC encoding question focus and ques-
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tion category into the basic models.
The model learned by the reranker represents a

collection of q/a pairs from the training set (sup-
port vectors) which are matched against each can-
didate q/a pair. We isolated the following pair
from the model that has a high structural similarity
with our running example:

Q: What is Barbie’s full name?
A: The toy is called after Barbie Millicent

Roberts from Willows.
Despite differences in the surface forms of

the words, PTK extracts matching patterns,
e.g. [S NP [VP VBN] [PP IN] REL-NP],
which yields a high similarity score boosting the
rank of the correct candidate. However, we
note that at the same time an incorrect candi-
date answer, e.g. Mark Twain was accused of
racist language., exhibits similar patterns and also
gets a high rank. The basic structural repre-
sentation is not able to encode essential differ-
ences from the correct answer candidate. This
poses a certain limitation on the discriminative
power of CH and DEP representations. Intro-
ducing a focus tag changes the structural repre-
sentation of both q/a pairs, s.t. the correct q/a
pair preserves the pattern (after identifying word
name as focus and question category as HUM,
it is transformed to [S REL-FOCUS-NP [VP
VBN] [PP IN] REL-FOCUS-NP]), while it
is absent in the incorrect candidate. Thus, linking
the focus word with the related NEs in the answer
helps to discriminate between structurally similar
yet semantically different candidates.

Another step towards a more fine-grained struc-
tural representation is to specialize the relational
focus tag (QC+TFC model). We propose to aug-
ment the focus tag with the question category to
avoid matches with other structurally similar but
semantically different candidates. For example, a
q/a pair found in the list of support vectors:

Q: What is Mark Twain’s place of birth?
A: Mark Twain was raised in Hannibal Missouri.

would exhibit high structural similarity even when
relational focus is used (since the relational tag
does not incorporate the question class LOC), but
refining the focus tag with the question class elim-
inates such cases.

7 Related Work

Previous studies similar to ours carry out pas-
sage reranking by exploiting structural informa-

tion, e.g. using subject-verb-object relations (At-
tardi et al., 2001; Katz and Lin, 2003). Un-
fortunately, the large variability of natural lan-
guage makes such triples rather sparse thus dif-
ferent methods explore soft matching (i.e., lexical
similarity) based on answer types and named en-
tity types (Aktolga et al., 2011). Passage reranking
using classifiers of question and answer pairs were
proposed in (Radlinski and Joachims, 2006; Jeon
et al., 2005).

Regarding kernel methods, our work in (Mos-
chitti et al., 2007; Severyn and Moschitti, 2012)
was the first to exploit tree kernels for modeling
answer reranking. However, such method lacks
the use of important relational information be-
tween a question and a candidate answer, which
is essential to learn accurate relational patterns. In
contrast, this paper relies on shallow and depen-
dency trees encoding the output of question and
focus classifiers to connect focus word and NEs of
the answer passage. This provides more effective
relational information, which allows our model to
significantly improve on previous rerankers.

8 Conclusions

This paper shows a viable research direction in
the automatic QA engineering. One of its main
characteristics is the use of structural kernel tech-
nology to induce features from structural seman-
tic representations of question and answer pas-
sage pairs. The same technology is also used to
construct question and focus classifiers, which are
used to derive relational structures.

An interesting result of this paper is that to de-
sign an answer passage reranker for a new do-
main, we can use off-the-shelf syntactic parsers
and NERs along with little training data for the
QC and FC classifiers. This is due to the fact
that: (i) the kernel technology is able to automat-
ically extract effective structural patterns; and (ii)
the extracted patterns are rather robust, e.g., mod-
els learned on Answerbag improve accuracy on
TREC test data.
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