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Abstract

Metaphor is a cognitive process that
shapes abstract target concepts by map-
ping them to concrete source concepts.
Thus, many computational approaches to
metaphor make reference, directly or in-
directly, to the abstractness of words and
concepts. The property of abstractness,
however, remains theoretically and empir-
ically unexplored. This paper implements
a multi-dimensional definition of abstract-
ness and tests the usefulness of each di-
mension for detecting cross-domain map-
pings.

1 Introduction

The idea of metaphor as cross-domain map-
ping goes back, at least, to Black (1954), who
made explicit an earlier implicit view that lin-
guistic metaphors depend upon non-linguistic
(i.e., conceptual) connections between networks
of concepts. Black’s premises were later em-
ployed to represent groups of related linguistic
metaphoric expressions using non-linguistic con-
ceptual metaphors (for example, Reddy, 1979,
and Lakoff & Johnson, 1980). Inherent in this
approach to representing metaphor is the idea
that metaphor is, at its core, a matter of cross-
domain mapping (e.g., Lakoff, 1993); in other
words, metaphor is a cognitive process that builds
or maps connections between networks of con-
cepts. The study of cognitive metaphor processes
has largely focused on content-specific representa-
tions of such mappings within a number of content
domains, such as TIME and IDEAS. Thus, a cross-
domain mapping may be represented as something
like ARGUMENT IS WAR.

Computational approaches to metaphor, how-
ever, have represented cross-domain mappings
using higher-level properties like abstractness

(Gandy, et al., 2013; Assaf, et al., 2013; Tsvetkov,
et al., 2013; Turney, et al., 2011), semantic
similarity (Li & Sporleder, 2010; Sporleder &
Li, 2010), domain membership (Dunn, 2013a,
2013b), word clusters that represent semantic sim-
ilarity (Shutova, et al. 2013; Shutova & Sun,
2013), and selectional preferences (Wilks, 1978;
Mason, 2004). Most of these approaches rely
on some concept of abstractness, whether directly
(e.g., in terms of abstractness ratings) or indi-
rectly (e.g., in terms of clusters containing abstract
words). Further, these approaches have viewed ab-
stractness as a one-dimensional scale between ab-
stract and concrete concepts, with metaphor cre-
ating mappings from concrete source concepts to
abstract target concepts.

Although both theoretical and computational
treatments of metaphor depend upon the concept
of abstractness, little has been done to either de-
fine or operationalize the notion. To fill this gap,
this paper puts forward a multi-dimensional def-
inition of abstractness and implements it in order
to test the usefulness of the dimensions of abstract-
ness for detecting cross-domain mappings.

2 Multi-dimensional abstractness

This approach recognizes four dimensions of ab-
stractness: Domain of the Referent, Domain of
the Sense, Fact-Status, and Function-Status, each
of which has a range of values from more ab-
stract to less abstract, as shown in Table 1. Do-
main refers to top-level categories in a hierarchi-
cal ontology as in, for example, ontological se-
mantics (Nirenburg & Raskin, 2004), which uses
four top-level domains: PHYSICAL, MENTAL, SO-
CIAL, ABSTRACT. Each concept belongs within a
certain domain so that, at the highest level, cross-
domain mappings can be represented as mappings
between, for example, a PHYSICAL concept and
an ABSTRACT concept. This dimension corre-
sponds most with the traditional one-dimensional
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approach to abstractness.

Here we divide domain membership into two
types: (i) Domain of the Sense and (ii) Domain
of the Referent. The idea is that a concept may
refer to an object in one domain but define prop-
erties of that concept relative to another domain.
For example, the concept teacher refers to a PHYS-
ICAL object, a human who has physical proper-
ties. At the same time, the concept teacher is de-
fined or distinguished from other humans in terms
of SOCIAL properties, such as being focused on
the education of students. Thus, the referent of
the concept is within the PHYSICAL domain but
its sense is within the SOCIAL domain. This is
also true, for example, of countries (e.g., Mexico)
which refer to a PHYSICAL location but also to a
SOCIAL entity, the government and people who
reside in that physical location. It is important
to distinguish sense and reference when searching
for cross-domain mappings because many con-
cepts inherently map between different domains in
this way (and yet are not considered metaphoric).
Within both types of Domain, ABSTRACT is the
category with the highest abstractness and PHYSI-
CAL with the least abstractness.

Fact-Status is an ontological property as op-
posed to a domain within a hierarchical ontol-
ogy. It represents the metaphysical property of
a concept’s dependence on human consciousness
(Searle, 1995). In other words, PHYSICAL-FACTS

are those, like rocks and trees, which exist in the
external world independent of human perceptions.
NON-INTENTIONAL facts are involuntary human
perceptions such as pain or fear. INTENTIONAL

facts are voluntary products of individual human
consciousness such as ideas and opinions. COL-
LECTIVE facts are products of the consciousness
of groups of humans, such as laws and govern-
ments. Thus, all categories except for PHYSICAL-
FACTS are dependent on human consciousness.
NON-INTENTIONAL and INTENTIONAL facts de-
pend only on individuals, and in this sense are less
abstract than COLLECTIVE facts, which exist only
if a group of humans agrees to recognize their ex-
istence. This dimension of abstractness measures
how dependent on human consciousness and how
socially-constructed a concept is, with COLLEC-
TIVE facts being more socially-constructed (and
thus more society-dependent) than the others.

The final dimension of abstractness is Function-
Status, which reflects how embedded function in-

Property Value
Domain of the Referent Abstract

Mental
Social
Physical

Domain of the Sense Abstract
Mental
Social
Physical

Fact-Status Collective
Intentional
Non-Intentional
Physical

Function Institutional
Physical-Use
Non-Agentive
None

Event-Status Object
State
Process

Animacy Human
Animate
Inanimate
Undefined

Table 1: Concept properties and values.

formation is in the sense of a concept. Function in-
formation is human-dependent, being present only
as assumed by humans; thus, this dimension is
also related to how human-centric a particular con-
cept is. Many concepts have no function informa-
tion embedded in them, for example rock or tree,
and these are the least human-dependent. Some
concepts have NON-AGENTIVE functions, some-
times called NATURAL functions; for example, the
function of a heart is to pump blood. Some con-
cepts have PHYSICAL-USE functions, in which the
embedded function is a reflection of how humans
use a physical object; for example, the function
of a hammer is to drive nails. Finally, many
concepts have embedded within them INSTITU-
TIONAL functions, those which perform a social
function only insofar as a group of individuals
agree that the social function is performed. For
example, a group of individuals may declare that
certain taxes will be collected on income; but if
others do not consent to the performance of that
function then it is not performed (e.g., if the group
had no legal authority to do so). Thus, INSTITU-
TIONAL functions have the highest abstractness.
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In addition to these dimensions of abstract-
ness, two properties are added in order to test
how they interact with these dimensions of ab-
stractness: Event-Status, distinguishing OBJECTS

from STATES and PROCESSES, and Animacy, dis-
tinguishing HUMANS from ANIMATE non-humans
and INANIMATE objects.

3 Implementation

The system has two main steps: first, the input
text is mapped to concepts in the Suggested Up-
per Merged Ontology (Niles & Pease, 2001); sec-
ond, features based on the ontological properties
of these concepts are used to represent the input
sentences as a feature vector. The text is processed
using Apache OpenNLP for tokenization, named
entity recognition, and part of speech tagging.
Morpha (Minnen, et al., 2001) is used for lemma-
tization. At this point word sense disambiguation
is performed using SenseRelate (Pedersen & Kol-
hatkar, 2009), mapping the lexical words to the
corresponding WordNet senses. These WordNet
senses are first mapped to SynSets and then to con-
cepts in the SUMO ontology, using existing map-
pings (Niles & Pease, 2003). Thus, the input to
the second part of the system is the set of SUMO

concepts which are pointed to by the input text.
The properties of these concepts are contained in
a separate knowledge-base developed for this sys-
tem and available from the author. Each concept
in SUMO has a value for each of the concept prop-
erties. This value is fixed and is the same across all
instances of that concept. Thus, SenseRelate dis-
ambiguates input text into WordNet synsets which
are mapped onto SUMO concepts, at which point
the mapping from concepts to concept properties
is fixed.

Feature Type Number
Relative value frequency 23
Main value / concepts 6
Other values / concepts 6
Number of value types 6
Total 41

Table 2: Concept properties and values.

The concept properties discussed above are
used to create a total of 41 features as shown in Ta-
ble 2: First, 23 features contain the total number of
instances of each possible value for the properties
in each sentence relative to the number of concepts

present. Second, 6 features contain the relative fre-
quency of the most common values of a property
(the “main” value) and 6 features the relative fre-
quency of all the other values (the “other” value).
Third, 6 features contain the number of types of
property values present in a sentence relative to the
number of possible types.

4 Evaluation of the Features

We evaluated these features in a binary classifi-
cation task using the VU Amsterdam Metaphor
Corpus (Steen, et al., 2010), which consists of
200,000 words from the British National Corpus
divided into four genres (academic, news, fiction,
and spoken; the spoken genre was not evaluated)
and annotated by five linguists. Metaphorically
used prepositions have been untagged, as have
ambiguously metaphoric sentences. Non-sentence
fragments have been removed (e.g., titles and by-
lines), along with very short sentences (e.g., “He
said.”).

The first step was to evaluate the features
individually for their usefulness in detecting
metaphoric language, allowing us to ask theoreti-
cal questions about which dimensions of abstract-
ness are most related to metaphor. The Classifier-
SubSetEval feature in Weka (Hall, et al., 2009)
was used with the logistic regression classifier
on the full corpus with 10 fold cross-validation.
Three different search algorithms were used to en-
sure that the best possible combination of vari-
ables was found: the Greedy Stepwise, Linear For-
ward Selection, and Rank Search algorithms. The
final feature rating was computed by taking the re-
verse ranking given by the GreedyStepwise search
(e.g., the top ranked feature out of 41 is given a
41) and adding the number of folds for which that
feature was selected by the other two algorithms.
Table 3 below shows the top variables, arranged
by score.

An interesting finding from this selection pro-
cess is that each of the concept properties made the
list of the top 16 features in the form of the Prop-
erty: Other feature. In other words, the number of
minority values for each property is useful for de-
tecting cross-domain mappings. Next, each of the
values for the Function property was a top feature,
while only two of the Domain-Sense and one of
the Domain-Referent properties made the list. The
properties of Animacy and Fact are represented by
the number of types present in the utterance, and
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Property Feature Score
Function Other Values 45.5
Fact-Status Other Values 41
Animacy Types 39.1
Fact-Status Collective 37.8
Event-Status Other Values 31
Function Non-Agentive 30.6
Animacy Other Values 29.8
Function Physical-Use 29.8
Fact-Status Types 28.3
Domain-Sense Abstract 27.1
Domain-Sense Other Values 25.1
Domain-Sense Mental 22.1
Domain-Referent Social 21.8
Function None 20.5
Function Institutional 17.1
Domain-Referent Other Values 12.8

Table 3: Top features.

Fact is also significant for the number of concepts
with the Collective value. These are interesting,
and unexpected, findings, because the most im-
portant properties for detecting metaphor are not
the traditional Domain-defined notions of abstract-
ness, either Sense or Referent, but rather those
notions of abstractness which are tied to a con-
cept’s degree of dependence on human conscious-
ness and degree of being socially-constructed.

Using these top 16 variables, a binary classifi-
cation task was performed on the entire VU Am-
sterdam Corpus, prepared as described above, us-
ing the logistic regression algorithm with 10 fold
cross-validation, giving the results shown below
in Table 4. These results show that while the full
set of 41 features performs slightly better than the
select set of the top 16, the performance gain is
fairly small. For example, the F-measure on the
full corpus raises from 0.629, using only the top
16 variables, to 0.649 using the full set of 41 vari-
ables. Thus, a similar performance is achieved
much more efficiently (at least, in terms of the
evaluation of the feature vectors; the top 16 vari-
ables still require many of the other variables in or-
der to be computed). More importantly, this shows
that the different dimensions of abstractness can
be used to detect cross-domain mappings, licens-
ing the inference that each of these operationaliza-
tions of abstractness represents an important and
independent property of cross-domain mappings.

Var. Corpus Prec. Recall F1
Select Full 0.655 0.629 0.629
All Full 0.672 0.691 0.649
Select Academic 0.655 0.682 0.600
All Academic 0.639 0.676 0.626
Select Fiction 0.595 0.597 0.592
All Fiction 0.642 0.642 0.642
Select News 0.749 0.813 0.743
All News 0.738 0.808 0.746

Table 4: Results of evaluation.

5 Relation between the dimensions of
abstractness

In order to determine the relationship between
these dimensions of abstractness, to be sure that
they are not measuring only a single scale, prin-
cipal components analysis was used to determine
how many distinct groups are formed by the prop-
erties and their values. The written subset of the
American and Canadian portions of the Interna-
tional Corpus of English, consisting of 44,189 sen-
tences, was used for this task. The corpus was
not annotated for metaphor; rather, the purpose
is to find the relation between the features across
both metaphor and non-metaphor, using the direct
oblimin rotation method.

# Main Features CL. Vari.
1 Domain-Sense: Types .834 18.7%

Domain-Ref.: Types .816
Event-Status: Types .808

2 Fact-Status: Main .778 14.2%
Fact-Status: Physical .774

3 Domain-Sense: Physical .509 11.1%
Domain-Ref.: Physical .548
Event-Status: Object .451

4 Fact-Status: Intentional .990 10.6%
Fact-Status: Collective .990
Fact-Status: Other .913

5 Domain-Sense: Abstract .997 6.6%
Domain-Ref.: Abstract .997

6 Domain-Sense: Main .851 5.8%
Domain-Ref.: Main .773

7 Function: Physical-Use .876 4.4%
8 Event-Status: Process .574 3.6%
9 Animacy: Main .800 2.9%
10 Function: Non-Agentive .958 2.4%

Table 5: Grouped features.
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This procedure identified 10 components with
eigenvalues above 1 containing unique highest
value features, accounting for a cumulative 83.2%
of the variance. These components are shown in
Table 5 along with the component loadings of the
main features for each component and the amount
of variance which the component explains. All
features with component loadings within 0.100 of
the top feature are shown.

These components show two important results:
First, the division of the Domain property into
Sense and Referent is not necessary because the
two are always contained in the same compo-
nents; in other words, these really constitute a
single-dimension of abstractness. Second, Do-
main, Function, and Fact-Status are not contained
in the same components, but rather remain distin-
guishable dimensions of abstractness.

The important point of this analysis of the rela-
tions between features is that, even for those sys-
tems which do not represent abstractness in this
way (e.g., systems which use numeric scales in-
stead of nominal attributes), the dimensions of ab-
stractness used here do represent independent fac-
tors. In other words, there is more than one dimen-
sion of abstractness. Domain membership, which
corresponds most closely to the traditional one-
dimensional view, refers essentially to how con-
crete or physical a concept is. Thus, love is more
abstract than grass, but no distinction is possible
between love and war. Fact-Status refers to how
dependent on human consciousness a concept is.
PHYSICAL concepts do not depend upon humans
in order to exist. Thus, PHYSICAL concepts will be
represented with the same degree of abstractness
by both the Domain and Fact-Status properties.
However, Fact-Status adds distinctions between
abstract concepts. For example, ideas are not
physical, but laws are both non-physical and de-
pend upon complex social agreements. Function-
Status refers to how much of the definition of a
concept is dependent upon Function information
which is, ultimately, only present in human un-
derstandings of the concept. This dimension adds
distinctions between even physical concepts. For
example, canes are just as physical as sticks, but
cane embeds function information, that the object
is used to help a human to walk, and this function
information is dependent upon human conscious-
ness. These two additional and distinguishable di-
mensions of abstractness, then, operationalize how

dependent a concept is on human consciousness
and how socially-constructed it is.

Using the traditional one-dimensional approach
to abstractness, not all metaphors have abstract tar-
get concepts. For example, in the metaphoric ex-
pressions “My car drinks gasoline” and “My sur-
geon is a butcher,” the concepts CAR and SUR-
GEON are both PHYSICAL concepts in terms of
Domain, and thus not abstract. And yet these con-
cepts are the targets of metaphors. However, the
concept DRINKING, according to this system, has
an INTENTIONAL Fact-Status, because it is an ac-
tion which is performed purposefully, and thus is
an action which only sentient beings can perform.
It is more abstract, then, than a verb like uses,
which would not be metaphoric. The second ex-
ample, however, cannot be explained in this way,
as both SURGEON and BUTCHER would have the
same concept properties (they are not included in
the knowledge-base; both map to HUMAN). This
phrase occurs only twice in the 450+ million word
Corpus of Contemporary American English, how-
ever, and represents a rare exception to the rule.

6 Conclusions

This paper has examined the notion of abstract-
ness, an essential component of many theoreti-
cal and computational approaches to the cross-
domain mappings which create metaphoric lan-
guage. There are two important findings: First,
of the four posited dimensions of abstractness,
three were shown to be both (1) members of
separate components and (2) useful for detecting
metaphoric mappings. These three dimensions,
Domain Membership, Fact-Status, and Function-
Status, are different and distinguishable ways of
defining and operationalizing the key notion of
abstractness. Second, and perhaps more impor-
tantly, the Fact-Status and Function-Status di-
mensions of abstractness, which are not directly
present in the traditional one-dimensional view
of abstractness, were shown to be the most use-
ful for detecting metaphoric mappings. Al-
though more evidence is needed, this suggests
that cross-domain mappings are mappings from
less socially-constructed source concepts to more
socially-constructed target concepts and from less
consciousness-dependent source concepts to more
consciousness-dependent target concepts. This
multi-dimensional approach thus provides a more
precise definition of abstractness.
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