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Abstract

In this paper, we address issues in situ-
ated language understanding in a rapidly
changing environment – a moving car.
Specifically, we propose methods for un-
derstanding user queries about specific tar-
get buildings in their surroundings. Unlike
previous studies on physically situated in-
teractions such as interaction with mobile
robots, the task is very sensitive to tim-
ing because the spatial relation between
the car and the target is changing while
the user is speaking. We collected situated
utterances from drivers using our research
system, Townsurfer, which is embedded
in a real vehicle. Based on this data, we
analyze the timing of user queries, spa-
tial relationships between the car and tar-
gets, head pose of the user, and linguis-
tic cues. Optimized on the data, our al-
gorithms improved the target identification
rate by 24.1% absolute.

1 Introduction

Recent advances in sensing technologies have en-
abled researchers to explore applications that re-
quire a clear awareness of the systems’ dynamic
context and physical surroundings. Such appli-
cations include multi-participant conversation sys-
tems (Bohus and Horvitz, 2009) and human-robot
interaction (Tellex et al., 2011; Sugiura et al.,
2011). The general problem of understanding and
interacting with human users in such environments
is referred to as situated interaction.

We address yet another environment, where sit-
uated interactions takes place – a moving car. In
the previous work, we collected over 60 hours of
in-car human-human interactions, where drivers
interact with an expert co-pilot sitting next to them
in the vehicle (Cohen et al., 2014). One of the
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insights from the analysis on this corpus is that
drivers frequently use referring expressions about
their surroundings. (e.g. What is that big building
on the right?) Based on this insight, we have de-
veloped Townsurfer (Lane et al., 2012; Misu et
al., 2013), a situated in-car intelligent assistant.
Using geo-location information, the system can
answer user queries/questions that contain object
references about points-of-interest (POIs) in their
surroundings. We use driver (user) face orienta-
tion to understand their queries and provide the re-
quested information about the POI they are look-
ing at. We have previously demonstrated and eval-
uated the system in a simulated environment (Lane
et al., 2012). In this paper, we evaluate its utility
in real driving situations.

Compared to conventional situated dialog tasks,
query understanding in our task is expected to be
more time sensitive, due to the rapidly changing
environment while driving. Typically, a car will
move 10 meters in one second while driving at 25
mi/h. So timing can be a crucial factor. In addi-
tion, it is not well understood what kind of linguis-
tic cues are naturally provided by drivers, and their
contributions to situated language understanding
in such an environment. To the best of our knowl-
edge, this is the first study that tackles the issue of
situated language understanding in rapidly moving
vehicles.

In this paper, we first present an overview of the
Townsurfer in-car spoken dialog system (Section
2). Based on our data collection using the sys-
tem, we analyze user behavior while using the sys-
tem focusing on language understanding (Section
3). Specifically, we answer the following research
questions about the task and the system through
data collection and analysis:

1. Is timing an important factor of situated lan-
guage understanding?

2. Does head pose play an important role in lan-
guage understanding? Or is spatial distance
information enough?
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Figure 1: System overview of Townsurfer

Table 1: Example dialog with Townsurfer
U1: What is that place. (POI in gaze)
S1: This is Specialty Cafe, a mid-scale coffee

shop that serves sandwiches.
U2: What is its (POI in dialog history) rating.
S2: The rating of Specialty Cafe is above av-

erage.
U3: How about that one on the left.

(POI located on the left)
S3: This is Roger’s Deli, a low-priced restau-

rant that serves American food.

3. What is the role of linguistic cues in this task?
What kinds of linguistic cues do drivers nat-
urally provide?

Based on the hypothesis obtained from the analy-
sis for these questions, we propose methods to im-
prove situated language understanding (Section 4),
and analyze their contributions based on the col-
lected data (Sections 5 and 6). We then clarify our
research contributions through discussion (Section
7) and comparison with related studies (Section 8).

2 Architecture and Hardware of
Townsurfer

The system uses three main input modalities,
speech, geo-location, and head pose. Speech is
the main input modality of the system. It is used to
trigger interactions with the system. User speech
is recognized, then requested concepts/values are
extracted. Geo-location and head pose informa-
tion are used to understand the target POI of the
user query. An overview of the system with a pro-
cess flow is illustrated in Figure 1 and an exam-
ple dialog with the system is shown in Table 1. A
video of an example dialog is also attached.

In this paper, we address issues in identify-
ing user intended POI, which is a form of ref-
erence resolution using multi-modal information
sources1. The POI identification process consists
of the following three steps (cf. Figure 1). This
is similar to but different from our previous work
on landmark-based destination setting (Ma et al.,
2012).

1) The system lists candidate POIs based on geo-
location at the timing of a driver query. Rela-
tive positions of POIs to the car are also cal-
culated based on geo-location and the head-
ing of the car.

2). Based on spatial linguistic cues in the user
utterance (e.g. to my right, on the left), a
2D scoring function is selected to identify ar-
eas where the target POI is likely to be. This
function takes into account the position of the
POI relative to the car, as well as driver head
pose. Scores for all candidate POIs are cal-
culated.

3) Posterior probabilities of each POI are cal-
culated using the score of step 2 as prior,
and non-spatial linguistic information (e.g.
POI categories, building properties) as obser-
vations. This posterior calculation is com-
puted using our Bayesian belief tracker called
DPOT (Raux and Ma, 2011).

The details are explained in Section 4.
System hardware consists of a 3D depth sen-

sor (Primesense Carmine 1.09), a USB GPS (BU-
353S4), an IMU sensor (3DM-GX3-25) and a
close talk microphone (plantronics Voyage Leg-

1We do not deal with issues in language understanding
related to dialog history and query type. (e.g. General infor-
mation request such as U1 vs request about specific property
of POI such as U2 in Table 1)
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end UC). These consumer grade sensors are in-
stalled in our Honda Pilot experiment car. We
use Point Cloud Library (PCL) for the face direc-
tion estimation. Geo-location is estimated based
on Extended Kalman filter-based algorithm using
GPS and gyro information as input at 1.5 Hz. The
system is implemented based on the Robot Oper-
ating System ROS (Quigley et al., 2009). Each
component is implemented as a node of ROS, and
communications between the nodes are performed
using the standard message passing mechanisms
in ROS.

3 Data Collection and Analysis

3.1 Collection Setting

We collected data using a test route. The route
passes through downtown Mountain View2 and
residential area around Honda Research Institute.
We manually constructed our database containing
250 POIs (businesses such as restaurants, compa-
nies) in this area. Each database entry (POI) has
name, geo-location, category and property infor-
mation explained in Section 3.4. POI geo-location
is represented as a latitude-longitude pair (e.g.
37.4010,-122.0539). Size and shape of buildings
are not taken into account. It takes about 30 min-
utes to drive the route. The major difference be-
tween residential area and downtown is the POI
density. While each POI in downtown has on aver-
age 7.2 other POIs within 50 meters, in residential
area POIs have only 1.9 neighbors. Speed limits
also differ between the two (35 mi/h vs 25 mi/h).

We collected data from 14 subjects. They were
asked to drive the test route and make queries
about surrounding businesses. We showed a demo
video3 of the system to the users before starting the
data collection. We also told them that the objec-
tive is a data collection for a situated spoken dia-
log system, rather than the evaluation of the whole
system. We asked subjects to include the full de-
scription of the target POI within a single utterance
to avoid queries whose understanding requires di-
alog history information4. Although the system
answered based on the baseline strategy explained
in Section 4.1, we asked subjects to ignore the sys-
tem responses.

As a result, we collected 399 queries with a
valid target POI. Queries about businesses that do

2We assumed that a POI is in downtown when it is located
within the rectangle by geo-location coordinates (37.3902, -
122.0827) and (37.3954, -122.0760).

3not the attached one.
4Understanding including dialog history information is

our future work.
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Figure 3: Target POI positions

not exist on our database (typically a vacant store)
were excluded. The data contains 171 queries in
downtown and 228 in residential area. The queries
were transcribed and the user-intended POIs were
manually annotated by confirming the intended
target POI with the subjects after the data collec-
tion based on a video taken during the drive.

3.2 Analysis of Spatial Relation of POI and
Head Pose

We first analyze the spatial relation between posi-
tion cues (right/left) and the position of the user-
intended target POIs Out of the collected 399
queries, 237 (59.4%) of them contain either right
or left position cue (e.g. What is that on the left?).
The relation between the position cues (cf. Figure
2) and POI positions at start-of-speech timing 5 is
plotted in Figure 3. The X-axis is a lateral distance
(a distance in the direction orthogonal to the head-
ing; a positive value means the right direction) and
the Y-axis is an axial distance (a distance in the
heading direction; a negative value means the POI
is in back of the car. ). The most obvious finding
from the scatter plot is that right and left are pow-

5Specifically, the latest GPS and face direction informa-
tion at that timing is used.
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Table 2: Comparison of average and standard deviation of distance (in meter) of POI form the car
ASR result timing Start-of-speech timing

Position cue Site Ave dist. Std dist. Ave dist. Std dist.
Right/left Downtown 17.5 31.0 31.9 28.3

Residential 22.0 36.3 45.2 36.5
No right/left Downtown 17.4 27.8 31.1 26.5
cue Residential 38.3 45.9 52.3 43.4

Distance (m)
y

θangular difference (degree)

Figure 4: Relation between POI positions and
head pose

erful cues for the system to identify target POIs.
We can also see that the POI position distribution
has a large standard deviation. This is partly be-
cause the route has multiple sites from downtown
and residential area. Interestingly, while the aver-
age distance to the target POI in downtown is 37.0
meters, that of residential area is 57.4 meters.

We also analyze the relation between face di-
rection and POI positions. Figure 4 plots the re-
lation between the axial distance and the angular
difference θ (between the user face direction and
the target POI direction) (cf. Figure 2). The scat-
ter plot suggests that the angular differences for
distant target POIs is often small. For close target
POIs the angular differences are larger and have a
large variance6.

3.3 Analysis of Timing

Referring expressions such as “the building on the
right” must be resolved with respect to the context
in which the user intended. However, in a moving
car, such a context (i.e. the position of the car and
the situation in the surroundings) can be very dif-
ferent between the time when the user starts speak-
ing the sentence and the time they finish speaking
it. Therefore, situated understanding must be very
time sensitive.

To confirm and investigate this issue, we ana-
lyze the difference in the POI positions between
the time the ASR result is output vs the time the
user actually started speaking. The hypothesis is

6We will discuss the reason for this in Section 6.2.

Table 3: User-provided linguistic cues
Category of linguistic cue Percentage

used (%)
Relative position to the car (right/left) 59.4
Business category (e.g. restaurant, cafe) 31.8
Color of the POI (e.g. green, yellow) 12.8
Cuisine (e.g. Chinese, Japanese, Mexican) 8.3
Equipments (e.g. awning, outside seating) 7.2
Relative position to the road (e.g. corner) 6.5

that the latter yields a more accurate context in
which to interpret the user sentence. In contrast,
our baseline system uses the more straightforward
approach of resolving expressions using the con-
text at the time of resolution, i.e. whenever the
ASR/NLU has finished processing an utterance
(hereafter “ASR results timing”).

Specifically, we compare the average axial dis-
tance to the target POIs and its standard deviation
between these two timings. Table 2 lists these fig-
ures broken down by position cue types and sites.
The average axial distance from the car to the tar-
get POIs is often small at the ASR result timing,
but the standard deviation is generally small at the
start-of-speech timing. This indicates that the tar-
get POI positions at the start-of-speech timing is
more consistent across users and sentence lengths
than that at the ASR result timing. This result indi-
cates the presence of a better POI likelihood func-
tion using the context (i.e. car position and orien-
tation) at the start-of-speech timing than using the
ASR result timing.

3.4 Analysis of Linguistic Cues
We then analyze the linguistic cues provided by
the users. Here, we focus on objective and sta-
ble cues. We exclude subjective cues (e.g. big,
beautiful, colorful) and cues that might change in
a short period of time (e.g. with a woman dressed
in green in front). We have categorized the linguis-
tic cues used to describe the target POIs. Table 3
lists the cue types and the percentage of user utter-
ances containing each cue type.

The cues that the users most often provided con-
cern POI position related to the car (right and left).
Nearly 60% of queries included this type of cue
and every subject provided it at least once. The
second most frequent cue is category of business,
especially in downtown. Users also provided col-
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ors of POIs. Other cues include cuisine, equip-
ments, relative position to the road (e.g. on the
corner).

Another interesting finding from the analysis is
that the users provided more linguistic cues with
increasing candidate POIs in their field of view.
Actually, the users provided 1.51 categories in av-
erage per query in downtown, while they provided
1.03 categories in residential area. (cf. POI den-
sity in Section 3.2: 7.2 vs 1.9) This indicates that
users provide cues considering environment com-
plexity.

4 Methods for Situated Language
Understanding

4.1 Baseline Strategy
We use our previous version (Misu et al., 2013)
as the baseline system for situated language un-
derstanding. The baseline strategy consists of the
following three paragraphs, which correspond to
the process 1)-3) in Section 2 and Figure 1.

The system makes a POI look-up based on the
geo-location information at the time ASR result
is obtained. The search range of candidate POIs
is within the range (relative geo-location of POIs
against the car location) of -50 to 200 meters in
the travelling direction and 100 meters to the left
and 100 meters to the right in the lateral direction.
The ASR result timing is also used to measure the
distances to the candidate POIs.

POI priors are calculated based on the distance
from the car (= axial distance) based on “the closer
to the car the likely” principle. We use a likelihood
function inversely proportional to the distance. We
use position cues simply to remove POIs from a
list of candidates. For example “right” position
cue is used to remove candidate POIs that are lo-
cated on < 0 position in the lateral distance. When
no right/left cue is provided, POIs outside of 45
degrees from the face direction are removed from
the list of candidates.

No linguistic cues except right/left are used to
calculate POI posterior probabilities. So, the sys-
tem selects the POI with the highest prior (POI
score) as the language understanding result.

4.2 Strategies Toward Better Situated
Language Understanding

To achieve better situated language understanding
(POI identification) based on the findings of the
analysis in Section 3, we modify steps 1)-3) as fol-
lows:

1. Using start-of-speech timing for the POI
prior calculation

Distance (m)y

•  :   right

X:   left

RightLeft Distance (m)

x

Figure 5: Example GMM fitting

2. Gaussian mixture model (GMM)-based POI
probability (prior) calculation

3. Linguistic cues for the posterior calculation.

We use the start-of-speech timing instead of the
time ASR result is output. Because the standard
deviations of the POI distances are small (cf. Sec-
tion 3.2), we expect that a better POI probability
score estimation with the POI positions at this tim-
ing in the subsequent processes than the positions
at the ASR result timing. The POI look-up range
is the same as the baseline.

We apply Gaussian mixture model (GMM) with
diagonal covariance matrices over the input pa-
rameter space. The POI probability (prior) is cal-
culated based on these Gaussians. We use two in-
put parameters of the lateral and axial distances for
queries with right/left cue, and three parameters of
the lateral and axial distances and the difference
in degree between the target and head pose direc-
tions for queries without right/left cue. (The effect
of the parameters is discussed later in Section 6.2.)
We empirically set the number of Gaussian com-
ponents to 2. An example GMM fitting to the POI
positions for queries with right and left cues is il-
lustrated in Figures 5. The center of ellipse is the
mean of the Gaussian.

We use the five linguistic cue categories of Sec-
tion 3.4 for the posterior calculation by the belief
tracker. In the following experiments, we use ei-
ther 1 or 0 as a likelihood of natural language un-
derstanding (NLU) observation. The likelihood
for the category value is 1 if a user query (NLU
result) contains the target value, otherwise 0. This
corresponds to a strategy of simply removing can-
didate POIs that do not have the category values
specified by the user. Here, we assume a clean POI
database with all their properties annotated manu-
ally.
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Table 4: Comparison of POI identification rate

Method Success
rate (%)

right/left linguistic cues,
the-closer-the-likely likelihood, 43.1
ASR result timing) (Baseline)
1) Start-of-speech timing 42.9
2) GMM-based likelihood 47.9
3) Linguistic cues 54.6
1) + 2) 50.6
1) + 3) 54.4
2) + 3) 62.2
1) + 2) + 3) 67.2

5 Experiments

We use manual transcriptions and natural language
understanding results of the user queries to focus
our evaluations on the issues listed in Section 1.
We evaluate the situated language understanding
(POI identification) performance based on cross
validation. We use the data from 13 users to train
GMM parameters and to define a set of possible
linguistic values, and the data from the remaining
user for evaluation. We train the model parameters
of the GMM using the EM algorithm. Knowledge
about the sites (downtown or residential area) is
not used in the training7.

We do not set a threshold for the presentation.
We judge the system successfully understands a
user query when the posterior of the target (user-
intended) POI is the highest. The chance rate,
given by the average of the inverse number of can-
didate POIs in the POI look-up is 10.0%.

6 Analysis of the Results

We first analyze the effect of our three methods
described in Section 4.2. The results are listed in
Table 4.

Simply using the POI positions at the start-of-
speech timing instead of those of the ASR result
timing did not lead to an improvement. This re-
sult is reasonable because the distances to target
POIs are often smaller at the ASR result timing
as we showed in Table 2. However, we achieved
a better improvement (7.5% over the baseline) by
combining it with the GMM-based likelihood cal-
culation. The results supports our Section 3.3 hy-
pothesis that the POI position is less dependent
on users/scenes at the start-of-speech timing. The
linguistic cues were the most powerful informa-

7The performance was better when the knowledge was not
used.
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Figure 6: Breakdown of error causes

tion for this task. The improvement over the base-
line was 11.5%. By using these three methods to-
gether, we obtained more than additive improve-
ment of 24.1% in the POI identification rate over
the baseline8. The success rates per site were
60.8% in downtown and 71.9% in residential area.

6.1 Error Analysis
To analyze the causes of the remaining errors, we
have categorized the errors into the following four
categories:

1. Ambiguous references: There were multi-
ple POIs that matched the user query. (e.g.
another yellow building sat next to the target)

2. Linguistic cue: The driver used undefined
linguistic cues such subjective expressions or
dynamic references objects (e.g. optometrist,
across the street, colorful)

3. Localization error: Errors in estimating
geo-location or heading of the car.

4. User error: There were errors in the user
descriptions (e.g. user misunderstood the
neighbor POI’s outside seating as the tar-
get’s)

The distribution of error causes is illustrated in
Figure 6. More than half of the errors are due
to reference ambiguity. These errors are expected
to be resolved through clarification dialogs. (e.g.
asking user “Did you mean the one in front or
back?”) Linguistic errors might be partly resolved
by using a better database with detailed category
information. For dynamic references and subjec-
tive cues, use of image processing techniques will
help. Localization errors can be solved by using
high-quality GPS and IMU sensors. User errors
were rare and only made in downtown.

6.2 Breakdown of Effect of the Spatial
Distance and Head Pose

We then evaluate the features used for the POI
prior calculation to investigate the effect of the in-
put parameters of the lateral and axial distances

8For reference, the performances of “1) + 2) + 3)” were
62.9%, 67.2%, 66.1%, 67.2%, and 66.2% when the number
of Gaussian components were 1, 2, 3, 4, and 5.
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Table 5: Relation between the parameters used for
the POI identification and success rates (%)

query type
parameters used right/left no cue
lateral (x) distance 58.6 51.2
axial (y) distance 59.5 53.7
face direction 43.3 44.4
lateral + axial (x + y) 73.8 54.3
lateral (x) + face direction 57.8 48.1
axial (y) + face direction 59.1 54.9
lateral + axial + face 68.4 57.4

and the difference in degree between the target
and user face direction angles. Table 5 lists the
relationship between the parameters used for the
GMM-based likelihood calculation and the POI
identification performances9.

The results indicate that the axial distance is
the most important parameter. We got a slight
improvement by using the face direction informa-
tion for the queries without right/left cue, but the
improvement was not significant. On the other
hand, use of face direction information for the
right/left queries clearly degraded the POI iden-
tification performance. We think this is because
the users finished looking at the POI and returned
the face to the front when they started speaking,
thus they explicitly provided right/left information
to the system. However, we believe that using a
long-term trajectory of the user face direction will
contribute to an improve in the POI identification
performance.

6.3 Breakdown of the Effect of Linguistic
Cues

We then evaluate the effect of the linguistic cues
per category. Table 6 lists the relationship between
the categories used for the posterior calculation
and the success rates. There is a strong correlation
between the frequency of the cues used (cf. Table
3) and their contributions to the improvement in
success rate. For example, business category in-
formation contributed the most, boosting the per-
formance by 8.5%.

Another point we note is that the contribution of
business category and cuisine categories is large.
Because other categories (e.g. color) are not read-
ily available in a public POI database (e.g. Google
Places API, Yelp API), we can obtain reasonable
performance without using a special database or

9Note that, we first determine the function to calculate
POI scores (priors) based on the position cues, then calculate
scores with the selected function.

Table 6: Effect of linguistic cues

linguistic cue Success
category used rate (%)
No linguistic cues (*) 50.6
(*) + Business category (e.g. cafe) 59.1
(*) + Color of the POI (e.g. green) 57.6
(*) + Cuisine (e.g. Chinese) 54.1
(*) + Equipments (e.g. awning) 53.9
(*) + Relative position (e.g. corner) 51.4

image processing.
We also found that linguistic cues were espe-

cially effective in downtown. Actually, while the
improvement10 was 20.0% in downtown that for
residential area was 14.4%. This mainly would be
because the users provided more linguistic cues in
downtown considering the difficulty of the task.

6.4 Using Speech Recognition Results
We evaluate the degradation by using automatic
speech recognition (ASR) results. We use Google
ASR11 and Julius (Kawahara et al., 2004) speech
recognition system with a language model trained
from 38K example sentences generated from a
grammar. An acoustic model trained from the
WSJ speech corpus is used. Note that they are
not necessarily the best system for this domain.
Google ASR uses a general language model for
dictation and Julius uses a mismatched acoustic
model in terms of the noise condition.

The query success rate was 56.3% for Julius and
60.3% for Google ASR. We got ASR accuracies
of 77.9% and 80.4% respectively. We believe the
performance will improve when N-best hypothe-
ses with confidence scores are used in the posterior
calculating using the belief tracker.

7 Discussion

The main limitation of this work comes from the
small amount of data that we were able to collect.
It is not clear how the results obtained here would
generalize to other sites, POI density, velocities
and sensor performances. Also, results might de-
pend on experimental conditions, such as weather,
hour, season. Hyper-parameters such as the opti-
mal number of Gaussian components might have
to be adapted to different situations. We there-
fore acknowledge that the scenes we experimented
are only a limited cases of daily driving activities.

101) + 2) vs 1) + 2) + 3).
11Although it is not realistic to use cloud-based speech

recognition system considering the current latency, we use
this as a reference system.
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However, the methods we propose are general and
our findings should be verifiable without loss of
generality by collecting more data and using more
input parameters (e.g. velocity) for the POI prior
calculation.

In addition, much future work remains to realize
a natural interaction with the system, such as tak-
ing into account dialog history and selecting opti-
mal system responses. On the other hand, we be-
lieve this is one of the best platform to investigate
situated interactions. The major topics that we are
going to tackle are:

1. Dialog strategy: Dialog strategy and system
prompt generation for situated environments
are important research topics, especially to
clarify the target when there is ambiguity as
mentioned in Section 6.1. The topic will in-
clude an adaptation of system utterances (en-
trainment) to the user (Hu et al., 2014).

2. Eye tracker: Although we believe head pose
is good enough to estimate user intentions be-
cause we are trained to move the head in driv-
ing schools to look around to confirm safety,
we would like to confirm the difference in
this task between face direction and eye-gaze.

3. POI identification using face direction trajec-
tory: Our analysis showed that the use of face
direction sometimes degrades the POI identi-
fication performance. However, we believe
that using a trajectory of face direction will
change the result.

4. Database: We assumed a clean and perfect
database but we are going to evaluate the per-
formance when noisy database is used. (e.g.
A database based on image recognition re-
sults or user dialog log.)

5. Feedback: Koller et al. (2012) demonstrated
referential resolution is enhanced by giving
gaze information feedback to the user. We
would like to analyze the effect of feedback
with an automotive augmented reality envi-
ronment using our 3D head-up display (Ng-
Thow-Hing et al., 2013).

8 Related Work

The related studies include a landmark-based nav-
igation that handles landmarks as information for
a dialog. Similar system concepts have been
provided for pedestrian navigation situations (Ja-
narthanam et al., 2013; Hu et al., 2014), they do
not handle a rapidly changing environment.

Several works have used timing to enhance
natural interaction with systems. Rose and

Horvitz (2003) and Raux and Eskenazi (2009)
used timing information to detect user barge-ins.
Studies on incremental speech understanding and
generation (Skantze and Hjalmarsson, 2010; Deth-
lefs et al., 2012) have proved that real-time feed-
back actions have potential benefits for users.
Komatani et al. (2012) used user speech timing
against user’s previous and system’s utterances
to understand the intentions of user utterances.
While the above studies have handled timing fo-
cusing on (para-)linguistic aspect, our work han-
dles timing issues in relation to the user’s physical
surroundings.

Recent advancements in gaze and face direction
estimation have led to better user behavior under-
standing. There are a number of studies that have
analyzed relationship between gaze and user in-
tention, such as user focus (Yonetani et al., 2010),
preference (Kayama et al., 2010), and reference
expression understanding (Koller et al., 2012), be-
tween gaze and turn-taking (Jokinen et al., 2010;
Kawahara, 2012). Nakano et al. (2013) used face
direction for addressee identification. The previ-
ous studies most related to ours are reference res-
olution methods by Chai and Prasov (2010), Iida
et al. (2011) and Kennington et al. (2013). They
confirmed that the system’s reference resolution
performance is enhanced by taking the user’s eye
fixation into account. However, their results are
not directly applied to an interaction in a rapidly
changing environment while driving, where eye
fixations are unusual activities.

Marge and Rudnicky (2010) analyzed the effect
of space and distance for spatial language under-
standing for a human-robot communication. Our
task differs with this because we handle a rapidly
changing environment. We believe we can im-
prove our understanding performance based on
their findings.

9 Conclusion

We addressed situated language understanding in
a moving car. We focused on issues in understand-
ing user language of timing, spatial distance, and
linguistic cues. Based on the analysis of the col-
lected user utterances, we proposed methods of us-
ing start-of-speech timing for the POI prior calcu-
lation, GMM-based POI probability (prior) calcu-
lation, and linguistic cues for the posterior calcula-
tion to improve the accuracy of situated language
understanding. The effectiveness of the proposed
methods was confirmed by achieving a significant
improvement in a POI identification task.
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Table 7: Example user utterances
- What is that blue restaurant on the right?
- How about this building to my right with outside seating?
- What is that Chinese restaurant on the left?
- Orange building to my right.
- What kind of the restaurant is that on the corner?
- The building on my right at the corner of the street.
- What about the building on my right with woman with a jacket in front
- Do you know how good is this restaurant to the left?
- Townsurfer, there is an interesting bakery what is that?
- Is this restaurant on the right any good?
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11 Appendix

Test route:
https://www.google.com/maps/
preview/dir/Honda+Research+
Institute,+425+National+Ave+
%23100,+Mountain+View,+CA+
94043/37.4009909,-122.0518957/
37.4052337,-122.0565795/37.
3973374,-122.0595982/37.4004787,
-122.0730021/Wells+Fargo/37.
4001639,-122.0729708/37.3959193,
-122.0539449/37.4009821,-122.
0540093/@37.3999836,-122.
0792529,14z/data=!4m21!4m20!
1m5!1m1!1s0x808fb713c225003d:
0xcf989a0bb230e5c0!2m2!
1d-122.054006!2d37.401016!
1m0!1m0!1m0!1m0!1m5!1m1!1s0x0:
0x86ca9ba8a2f15150!2m2!1d-122.
082546!2d37.388722!1m0!1m0!1m0!
3e0
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